

TRAITEMENT D'IMAGES RECONNAISSANCE DE FORMES

Max Mignotte

Département d'Informatique et de Recherche Opérationnelle. Http://www.iro.umontreal.ca/~mignotte/ift6150 E-mail: mignotte@iro.umontreal.ca

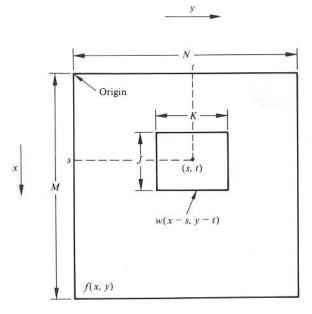
RECONNAISSANCE DE FORMES SOMMAIRE

Détection par Corrélation	2
Principe Général	5
Descripteurs de Fourier	6
Attributs descriptifs de formes	8
Algorithme de clustering non supervisé	10
Algorithme de clustering supervisé	11
Analyse Factorielle Discriminante	12

RECONNAISSANCE DE FORMES

DÉTECTION PAR CORRÉLATION (1)

- Le but de la détection d'objets est de localiser dans une image f(x,y) de dimension $M\times N$ des objets ou formes représentés par une sous image w(x,y) de dimension $J\times K$ $(j\leq M$ et $K\leq N)$
- L'approche par corrélation consiste à déplacer l'objet w(x,y) sur l'image f(x,y) et de calculer une fonction de ressemblance entre w(x,y) et f(x,y) au voisinage de chaque point



$$C(s,t) = \sum_{x=s-J/2}^{s+J/2} \sum_{y=t-K/2}^{t+K/2} f(x,y) w(x-s,y-t) = f(x,y) * w(-x,-y)$$

ightharpoonup Sensible aux changements d'amplitude de w et f (contraste et brillance)

RECONNAISSANCE DE FORMES DÉTECTION PAR CORRÉLATION (2)

► Mesure de corrélation insensible aux changements de contraste et de brillance

$$\rho(s,t) = \frac{\sum_{x=s-J/2}^{s+J/2} \sum_{y=t-K/2}^{t+K/2} \left[f(x,y) - \overline{f}(x,y) \right] \left[w(x-s,y-t) - \overline{w} \right]}{\sqrt{AB}}$$

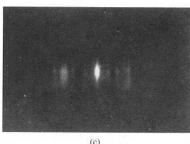
avec

$$A = \sum_{x=s-J/2}^{s+J/2} \sum_{y=t-K/2}^{t+K/2} \left[f(x,y) - \overline{f}(x,y) \right]^{2}$$

$$B = \sum_{x=s-J/2}^{s+J/2} \sum_{y=t-K/2}^{t+K/2} \left[w(x-s,y-t) - \overline{w} \right]^{2}$$

Exemple

et



RECONNAISSANCE DE FORMES DÉTECTION PAR CORRÉLATION (3)

- ▶ Onéreuse en temps machine
- ► Solution : accomplir la corrélation dans le domaine spectrale

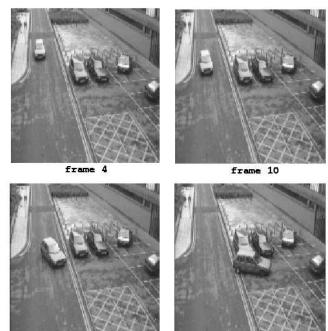
$$C(s,t) = f(x,y) * w(-x,-y)$$

$$F^{-1} \middle| F$$

$$C(u,\nu) = F(u,\nu).W^*(u,\nu)$$

Application

▶ Détection & suivie de formes dans des séquences d'images



frame 16

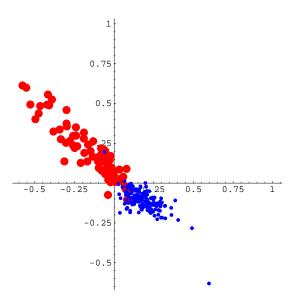
frame 24

RECONNAISSANCE DE FORMES PRINCIPE GÉNÉRAL

- 1. Reconnaissance de forme par corrélation (Matching)
- ► Cf. slides précedents

2. Méthodes multidimensionnelles

 \blacktriangleright Les méthodes multidimensionnelles consistent à associer à chaque forme (ou texture) un vecteur de q attributs et à rechercher dans cette espace de représentation (de dimension q) le cluster ou la classe à laquelle il appartient



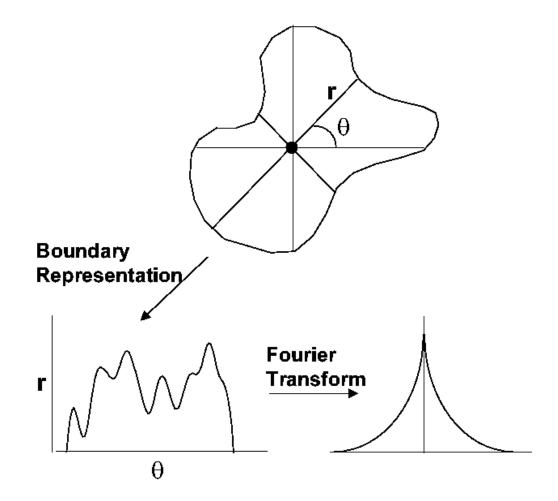
Reconnaissance de Texture

▶ Cf. Chap. Texture & Traitement d'images couleurs

RECONNAISSANCE DE FORMES

DESCRIPTEURS DE FOURIER (1)

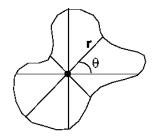
Descripteurs de Fourier

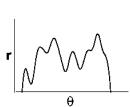


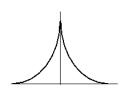
RECONNAISSANCE DE FORMES

DESCRIPTEURS DE FOURIER (2)

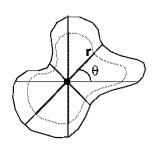
Translation

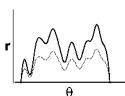


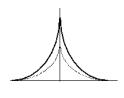




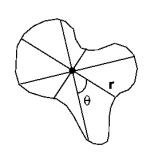
Facteur d'échelle

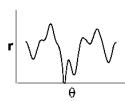


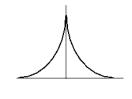




Rotation







RECONNAISSANCE DE FORMES ATTRIBUTS DESCRIPTIFS DE FORMES (3)

Compacité

▶ Mesure le degré de compacité d'une forme

$$C = \frac{4\pi S}{l^2}$$

où l et S désignent le périmètre et l'aire de la surface délimité par le contour (= 1 pour un cercle)

Élongation

▶ Paramètre donné par les valeurs propres de la matrice de corrélation (cf. Transformée de Hotteling)

$$\mathcal{C} = \left(\begin{array}{cc} c_{xx} & c_{xy} \\ c_{xy} & c_{yy} \end{array}\right)$$

On obtient

$$\sigma_1 = \frac{1}{2} \left(c_{xx} + c_{yy} + \sqrt{(c_{xx} - c_{yy})^2 + 4c_{xy}^2} \right)$$

$$\sigma_2 = \frac{1}{2} \left(c_{xx} + c_{yy} - \sqrt{(c_{xx} - c_{yy})^2 + 4c_{xy}^2} \right)$$

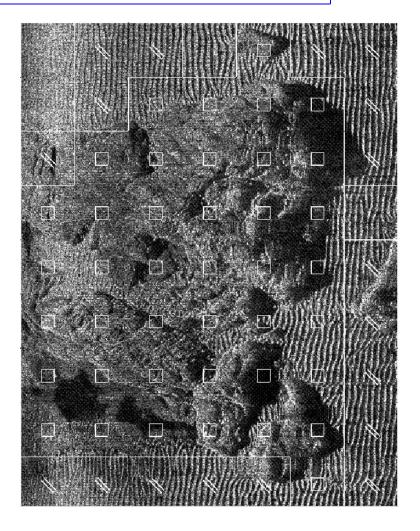
Orientation

▶ Paramètre calculé à partir des valeurs de la matrice de corrélation (cf. Transformée de Hotteling)

$$\alpha = \arctan\left(\frac{\sigma_1 - c_{xx}}{c_{xy}}\right)$$

RECONNAISSANCE DE FORMES ATTRIBUTS DESCRIPTIFS DE FORMES (4)

Exemple: Classification des fonds marins



RECONNAISSANCE DE FORMES ALGORITHME DE CLUSTERING NON SUPERVISÉ

Algorithme K-Moy

1. On choisit les K premiers échantillons comme étant les K centres $(c_1^{[1]},\dots,c_K^{[1]})$ des K groupements

$$c_i^{[1]} = \mathbf{x}_i, \quad 1 \le i \le K$$

2. A l'itération p, on associe l'échantillon \mathbf{x}_l , $(1 \leq l \leq M)$ au groupement C_i (noté $C_i^{[p]}$) si

$$\parallel \mathbf{x}_l - c_i^{[p]} \parallel < \parallel \mathbf{x}_l - c_j^{[p]} \parallel, \quad \forall j \neq i$$

(On associe l'échantillon \mathbf{x}_l au groupement dont le centre lui est le plus proche)

3. $C_i^{[p]}$ correspond au groupement i constitué à l'itération p après l'étape 2. On détermine le nouveau centre de chaque groupement par

$$c_i^{[p+1]} = \frac{1}{N_i} \sum_{\mathbf{x} \in C_i^{[p]}} \mathbf{x}, \quad \forall i$$

avec N_i le nombre d'échantillons de $C_i^{[p]}$

4. Si les centres des groupements à l'itération p sont les mêmes que ceux obtenus à l'itération précédente, alors l'algorithme a convergé

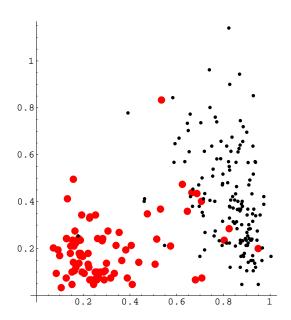
si
$$c_i^{[p+1]}=c_i^{[p]}, \quad \forall i, \quad \text{fin de l'algorithme}$$
 sinon on retourne en 2.

RECONNAISSANCE DE FORMES ALGORITHME DE CLUSTERING SUPERVISÉ

► Supposent la connaissance *a priori* de l'appartenance de chaque échantillon de l'ensemble d'apprentissage à une classe donnée

Algorithme K-plus proches voisins

- 1. Pour un K donné, on affecte l'échantillon \mathbf{x}_i , la classe majoritaire parmi les K plus proches voisins
- lackbox Si K est faible, le vote risque d'être perturbé par le bruit
- ► Coût de stockage important (les éléments de l'ensemble d'apprentissage doivent être stockés)
- ▶ Coût élevé de la recherche des Kppv $(o(K^2n \log n))$



RECONNAISSANCE DE FORMES ANALYSE FACTORIELLE DISCRIMINANTE (1)

- \blacktriangleright L'AFD a pour but de trouver les axes factoriels qui discriminent au mieux les K classes de l'ensemble d'apprentissage (i.e., les projections des échantillons d'une même classe soient les + concentrées possible)
- ullet L'ensemble d'apprentissage est stocké dans une matrice X de M lignes (représentant les échantillons) et de q colonnes (représentant les attributs)
- Échantillon : $\mathbf{x}_i = (x_i^j)_{1 \le j \le q}$, vecteur de ses q attributs
- ullet Valeurs du jième attribut, stockées dans $\mathbf{x}^j = (x_i^j)_{1 \leq i \leq M}$
- ullet Chaque individu appartient à une classe \mathcal{C}_k , $k=1,\ldots,K$
- 1. La moyenne de l'attribut j

$$\overline{x}^j = \sum_{i=1}^M x_i^j$$

- 2. $\overline{\mathbf{x}}$ = Le vecteur des moyennes de chaque attributs
- 3. $\overline{\mathbf{x}}_k = \mathsf{Le}$ vecteur des moyennes de chaque attributs des échantillons de \mathcal{C}_k
- 4. $N_k=$ Le cardinal de \mathcal{C}_k

RECONNAISSANCE DE FORMES ANALYSE FACTORIELLE DISCRIMINANTE (2)

Soit T, B et W les matrices de variances totale, interclasse et intraclasse,

Matrice de Variance totale

$$T = \frac{1}{M} \sum_{i=1}^{M} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^t$$

Matrice de Variance intraclasse

$$\mathbf{W} = rac{1}{M} \sum_{k=1}^K \sum_{m \in \mathcal{C}_k} (\mathbf{x_m} - \overline{\mathbf{x_k}}) (\mathbf{x_m} - \overline{\mathbf{x}_k})^{\mathrm{t}}$$

Matrice de Variance interclasse

$$\mathbf{B} = \frac{1}{M} \sum_{k=1}^{K} N_i \left(\overline{\mathbf{x}_i} - \overline{\mathbf{x}} \right) \left(\overline{\mathbf{x}_i} - \overline{\mathbf{x}} \right)^t$$

Ces trois matrices sont liées par la relation

$$T = W + B$$

ightharpoonup Le problème est de déterminer le système orthonormé de vecteurs ${\bf u_i}$ $i=1,\ldots,r$ de R^q , (r< q) pour lequel l'inertie intraclasse est minimale et l'inertie interclasse maximale

On cherche les vecteurs $\mathbf{u_i}$ qui minimisent

$$\frac{\mathbf{u_i}^t \mathbf{W} \mathbf{u_i}}{\mathbf{u_i}^t \mathbf{T} \mathbf{u_i}}$$

sous la contrainte $u_i^t T u_i = 1$

RECONNAISSANCE DE FORMES ANALYSE FACTORIELLE DISCRIMINANTE (3)

comme
$$\mathbf{u_i}^t \mathbf{T} \mathbf{u_i} = \mathbf{u_i}^t \mathbf{B} \mathbf{u_i} + \mathbf{u_i}^t \mathbf{W} \mathbf{u_i}$$

Ceci est équivalent à déterminer les $\mathbf{u_i}$ qui maximisent $\mathbf{u_i}^t \mathbf{B} \mathbf{u_i}$ sous la contrainte $\mathbf{u_i}^t \mathbf{T} \mathbf{u_i} = 1$

Les axes factoriels discriminants sont donnés par les vecteurs \mathbf{v}_i vérifiant

$$BT^{-1}u_i = \lambda_i u_i$$

Ces vecteurs sont donc les vecteurs propres de la matrice ${\bf BT^{-1}}$. On se limite généralement aux r (r fixé) plus grande valeurs propres telles qu'elles constitue une proportion importante de la trace de la matrice ${\bf BT^{-1}}$

$$\mathsf{Tr}(\mathbf{B}\mathbf{T}^{-1}) = \sum_{i}^{r} \lambda_{i}$$

- ▶ Il est donc possible de diminuer la taille de l'espace discriminant par cette méthode
- ▶ Dans ce sous-espace, la moyenne des variances de classes est minimale et les moyennes de classes sont les plus dispersées possible.