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Abstract

We present a new multiscale approach for deformable contour optimization. The method relies on a multigrid minimization method and a

coarse-to-®ne relaxation algorithm. This approach consists in minimizing a cascade of optimization problems of reduced and increasing

complexity instead of considering the minimization problem on the full and original con®guration space. Contrary to classical multi-

resolution algorithms, no reduction of image is applied. The family of de®ned energy functions are derived from the original (full resolution)

objective function, ensuring that the same function is handled at each scale and that the energy decreases at each step of the deformable

contour minimization process. The ef®ciency and the speed of this multiscale optimization strategy is demonstrated in the dif®cult context of

the minimization of a region-based contour energy function ensuring the boundary detection of anatomical structures in ultrasound medical

imagery. In this context, the proposed multiscale segmentation method is compared to other classical region-based segmentation approaches

such as Maximum Likelihood or Markov Random Field-based segmentation techniques. We also extend this multiscale segmentation

strategy to active contour models using a classical edge-based likelihood approach. Finally, time and performance analysis of this approach,

compared to the (commonly used) dynamic programming-based optimization procedure, is given and allows to attest the accuracy and the

speed of the proposed method. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Segmentation remains a necessary step in medical

imaging to obtain qualitative measurements such as the

location of objects of interest as well as for quantitative

measurements such as area, volume or the analysis of

dynamic behaviour of anatomical structures over time.

Among these images, ultrasound images play a crucial

role, because they can be produced at video-rate and there-

fore allow a dynamic analysis of moving structures. More-

over, the acquisition of these images is non-invasive, cheap,

and does not require ionizing radiations compared to other

medical imaging techniques. On the other hand, the auto-

matic segmentation of anatomical structures in ultrasound

imagery is a real challenge due to acoustic interferences

(speckle noise) and artifacts which are inherent in these

images. These artifacts, caused by turbulent blood ¯ow,

multiple reverberations, non-rigid deformation of observed

anatomical structures, air in the lungs, ribs, etc., create open

contours and/or ill de®ned boundaries, making ineffective

algorithms such as classical maximum likelihood (ML) or

Markov random ®eld-based segmentation techniques [1,2].

Among the existing segmentation techniques, the active

contour models, or so-called snakes [3], are an effective way

to overcome these artifacts and to rightly model the fact that

the object to be detected is assumed to be connected.

Besides, their ability to ef®ciently combine both the avail-

able a priori knowledge about the structure of interest

(generally a smoothness constraint) and local correspon-

dences with the image features (such as the grey level statis-

tical distribution inside and outside the object), makes them

very attractive for the segmentation task in ultrasound

imagery. Nevertheless, this modelling ®nally requires to

solve an intricate energy function minimization problem.

The con®guration space of this optimization problem is

generally very large and the resulting energy function

may exhibit many local minima, especially when the

image contains strong noise, which is frequently the case
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in ultrasound imagery. In order to cope with this optimiza-

tion problem, gradient-based methods have originally been

proposed [3]. The main drawback of these techniques is to

require a proper initialization of the initial contour not too

far from the expected boundary, otherwise they will

converge towards bad local minima. dynamic programming

(DP) [4] can solve the optimality problem, although at the

expense of a very high computational load. In order to

shorten execution times, researchers have recently

suggested to combine gradient or DP-based methods with

a multiresolution framework [5]. Nevertheless, the optimal

solution is no more guaranteed. Besides, the construction of

the ªmultiresolution pyramidº results in losing some impor-

tant information that the energy function to be minimized is

sensitive to.

In order to overcome these above mentioned problems,

we propose herein to extend, to our minimization problem,

the multiscale optimization strategy combined with the

multiresolution framework introduced in Ref. [6] for the

estimation of the optical ¯ow in an image sequence. The

key idea of this strategy consists in minimizing the global

energy function through an appropriate hierarchy of

subspaces of the whole con®guration space. These

subspaces contain constrained con®gurations describing

the expected solution at different scales. In our application,

these solutions are modelled as being the optimal positions

of a sequence of dynamic contour models, of decreasing

thickness, whose energy function is derived from the origi-

nal energy function. This constrained optimization is imple-

mented using a coarse-to-®ne procedure on a pyramidal

structure. This multiscale method has shown to be very

robust for optimizing highly non-linear objective functions

and has turned out to provide quickly good estimates very

close to the global minima [6].

This paper is organized as follows. Section 2 presents the

dynamic contour model used in a region and edge-based

segmentation approach and the resulting energy functions

to be optimized in these two cases. Section 3 recalls the DP-

based optimization procedure commonly used to tackle this

problem. The proposed multiscale minimization strategy

adapted to these two problems is described in Section 4.

In Section 5, we report some experimental results on

synthetic and real ultrasound and radiographic medical

images. Finally, Section 6 contains concluding remarks

and perspectives.

2. The active contour model

The active contour model (or snake), introduced by Kass

et al. in Ref. [3], formulates the boundary detection issue as

an energy function minimization problem. Formally, an

active contour V is simply de®ned by an ordered set of n

nodes, V � �v1; v2;¼; vn�; giving coordinates of points on

the contour in a circular manner. A cubic B-spline curve

involving these n control points (or a simple straight line

between each node) allows to completely de®ne this model.

Given an input image y, its energy function is generally

given by,

Esnake�V� �
Xn

i�1

�Eint�vi�1 bEext�vi; y��; �1�

where b is a weighting parameter. Eint and Eext are the inter-

nal and external energy terms, respectively, also called the

constraint forces, of the contour element vi. These two

energy terms play different roles in the energy minimization

process. The internal energy allows to express the available

a priori knowledge about the contour shape to be detected

whereas the external energy allows to pull the snake towards

the desired image features [3] (such as edges, regions, or

both [7], textures, etc.). The de®nition of these energy terms

have to be carefully de®ned according to the application and

the input image. Let us ®nally add that the use of such global

energy-based models fall into the Bayesian framework [8].

In order to model our a priori knowledge on the smooth-

ness of the anatomical shape boundary to be detected, a

commonly used solution consists in measuring the curvature

at each node of the contour [9] and then in using this

measure as the internal energy term, i.e.

Eint�vi� � arccos
vi21vi
���!´vivi11

���!
ivi21vi
���!i´ivivi11

���!i

� �
; �2�

that is the angle between the two vectors vi21vi
���! and vivi11

���!:

i~vi is the norm of the vector ~v and ª´º represents the dot

product between two vectors. In the minimization process,

this a priori energy term penalizes high curvature on the

contour.

In a commonly used active contour model-based segmen-

tation approach, spatial gradient measures derived from the

input image y, are generally exploited in the external (or

likelihood) energy term [8]. This energy term can be de®ned

by,

Eext�vi; y� � 2i7y�vi�i; �3�

which de®nes external energy as the negative of the image

gradient 7y at vi. In order to pull the snake towards the right

edges and to improve the detection results, we can also

make the external energy sensitive to the tangent angle of

the contour at vi [10].

In ultrasound imagery, due to the speckle noise and arti-

facts which are inherent to acoustic images, our external

energy term cannot rely ef®ciently on this type of measure.

An alternative model consist in exploiting the statistical

distribution of the grey levels inside and outside the bound-

ary of the object to be detected [11]. Let y � {ys [ S}; the

set of pixels of the image located on a lattice S of M sites s.

Assuming one probability density function (PDF), Pin�´�; for

the pixels inside the object and another PDF, Pout�´�; for the

pixels outside the object, we can then de®ne the following
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external energy term by:

Eext�vi; y� � 2
1

Nin

X
s[vin

i

ln Pin�ys�2
1

Nout

X
s[vout

i

ln Pout�ys�;

�4�

where ys designates the grey level of the pixel at site s.

The summation of the ®rst and second term of Eext is over

all the Nin and Nout selected points belonging to the

straight segment perpendicular to the contour at node vi,

passing through this point, and, respectively, located

inside and outside the contour, as shown in Fig. 1. This

likelihood term is minimal when the snake delineates two

homogeneous regions, at node vi, distributed according to

the grey level statistical distribution corresponding to

each region.

Using these two energy terms, the optimal contour, Vopt,

can then be obtained by ®nding the one that minimizes the

energy Esnake(V), i.e.

Vopt � arg min
{vi}

Esnake�V�: �5�

where {vi} designates the set of nodes that minimizes the

snake energy (i.e. the optimal contour). Unfortunately,

minimizing such a global energy function is often an intri-

cate problem: the space of possible contours V is generally

very large and the energy function may exhibit many local

minima, especially when the image contains strong noise,

which is frequently the case in ultrasound imagery (see

Section 5).

3. Snake optimization methods

In Ref. [3] and in many other works, gradient-based

methods are used for the energy minimization of this energy

function type. These methods are simple but have the disad-

vantage to require a proper initialization of the dynamic

contour not too far from the expected boundary, otherwise

they will converge toward bad local minima. In order to

overcome this problem, stochastic methods based on simu-

lated annealing (SA) [8] have then been proposed. These

ones have the capability of avoiding local minima and

consequently no human interaction is required to initialize

the active contour model. However, one of the major draw-

backs of these procedures is their very high computational

load. Various deterministic algorithms based on DP or

variational methods [4] have then been constructed for ®nd-

ing the optimal (minimum energy) contour in a neighbour-

hood of the initial contour.

Contrary to gradient ascent-based methods which use

derivative measures, the DP-based optimization method

determines the minimum of an energy function by a

straightforward search technique. This procedure is espe-

cially well suited for the deformable contour minimization

problem for which the optimization problem to be solved

exhibits optimal substructure (i.e. the optimal solution

contains within it optimal solutions to subproblems) and

overlapping subproblems (i.e. the optimization problem

revisits the same subproblem over and over again) [12].

We can indeed easily notice that energy function given in

Eq. (1) can be written in terms of separate energy term, i.e.

E1;E2;¼;En22; such that each energy term Ei depends only
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Fig. 1. Portion of a contour model showing ®ve connected nodes and the set of points vin
i and vout

i used in the external energy term. Nin � Nout � 2 in this

example.



on vi21, vi and vi11. More precisely, we have,

Esnake�v1; v2;¼; vn� � E1�v1; v2; v3�1 E2�v2; v3; v4�1 ¼

1 En22�vn22; vn21; vn�; �6�
where Ei21�vi21; vi; vi11� � Eint�vi�1 bEext�vi; y�: In a DP-

based optimization context, each variable vi is allowed to

take only m possible values, generally corresponding to

adjacent ªsnaxelº locations within a search neighbourhood.

Consequently, we can ef®ciently de®ne the value of an opti-

mal solution recursively in terms of the optimal solutions to

the following optimization subproblems,

s1�v2; v3� � min
v1

{E1�v1; v2; v3�};

s2�v3; v4� � min
v2

{s1�v2; v3�1 E2�v2; v3; v4�};

¼

sn22�vn21; vn� � min
vn 2 2

{sn23�vn22; vn21�

1 En22�vn22; vn21; vn�};
and ®nally, the optimal contour can be obtained by mini-

mizing,

arg min
{vi}

Esnake�V� � min
vn 2 1;vn

sn22�vn21; vn�: �7�

Since each optimal value function is calculated by iterating

on three contour elements and there are �n 2 2� of them, the

time complexity of DP algorithm is polynomial and is

O(nm3). This recursive procedure constitutes a single itera-

tion. For ®nding the ®nal optimal contour the iterative

process continues until arg minvEsnake(V) does not change

between two iterations. The resulting contour produced

the optimal contour if this one is contained within the initial

search window because DP checks every possible alterna-

tive [12]. If this neighbourhood is too small and an unproper

initialization of the initial contour is given, a local sub-opti-

mal solution is then found. Nevertheless, if this search

window is large enough, the optimal contour is then guar-

anteed, although at the expense of a signi®cant increase of

the computational complexity.

In order to shorten execution times for practical applica-

tions, researchers have recently suggested to combine DP

algorithm with a multiresolution framework [5,13]. The

main idea in using a multiresolution method is to allow to

reduce the number of candidates in the search window, so

that the research process gets faster. Deformable contour

optimization algorithm is applied to the coarser resolution

level and the obtained solution is used as the initial snake

position for the next lower level. The process continues until

the contour is optimized at the original image level. This

procedure noticeably shorten the computational time.

Nevertheless, the optimal solution is no more guaranteed.

Besides, the construction of different resolution levels,

usually obtained by low-pass ®ltering the data, results in

losing some important information that our external energy

term is sensitive to. In a region-based segmentation

approach, this low pass-®lter would change the nature and

the parameter of the different PDFs exploited in the external

energy term (see Eq. (4)). It is even more true if the PDFs

are not Gaussian, which is our case in ultrasound imagery

(see Section 5). At coarser levels, the optimization algo-

rithm will converge towards a biased solution. The same

problem remains valid for external energies using edges

or textures. In these cases, the information used by the

external energy can be altered or simply destroyed due to

the ®ltering process.

In order to overcome these above mentioned problems,

we propose to extend the discrete multiscale relaxation

strategy combined with the multiresolution framework

introduced by Heitz et al. in Ref. [6] for the minimization

of our global energy function and also for all type of energy

function associated to a dynamic contour. We consider this

in the next section.

4. Multiscale minimization strategy

Instead of minimizing our global energy function directly

on the full con®guration space V , i.e. the space of possible

contours, the optimization is led through a sequence of

constrained con®guration subspaces of increasing sizes,

dim�V L� , dim�V L21� , ¼ , dim�V 0�; �8�
with V 0 ; V and where V l

; l � 0;¼;L; designates the

constrained con®guration space at level l. At this resolution

level, we choose to de®ne Vl as a rough estimate of the

contour model, de®ned by an ordered set of nl nodes, Vl �
�vbl

1
; vbl

2
;¼; vbl

nl
� (with V0 ; V and vb0

i
; vi�; giving coordi-

nates of points of this crude contour. Each point (or node) of

this contour is indexed on a grid Sl which results from the

reduction of S �; S0� by 2l in each direction and is asso-

ciated to the block of pixels bl
s , S of size 2l £ 2l

; ªdescen-

dantº of node vbl
s

(see Fig. 2).

The constrained optimization in V l of the original bound-

ary detection problem is then equivalent to the minimization

of the new energy function,

Esnake�Vl� �
Xnl

i�1

�Eint�vbl
i
�1 blEext�vbl

i
; y��: �9�

Using a multigrid approach [6], we can easily de®ne the

external energy term Eext�vbl
i
; y� involved in a region-based

segmentation approach (see Eq. (4)) by,

Eext�vbl
i
; y� � 2

1

Nin

X
s[vin

bl
i

X
p[bl

s

ln Pin�yp�

2
1

Nout

X
s[vout

bl
i

X
p[bl

s

ln Pout�yp�: �10�
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where the ®rst summation �Pp[bl
s
� is over the block of pixels

bl
s of size 2l £ 2l

; ªdescendantº of node vbl
s

(see Fig. 2) and

the second summation �Ps[vin

bl
i

and
P

s[vout

bl
i

� is over all the Nin

and Nout selected points belonging to the straight segment

perpendicular to the contour at node vbl
i

(see Fig. 1).

In the same way, we can also de®ne the external energy

term Eext�vbl
i
; y� involved in a classical edge-based segmen-

tation approach (see Eq. (3)) by,

Eext�vbl
i
; y� � 2

X
s[bl

i

i7y�vs�i: �11�

which de®nes the external energy term at level l as the negative

summation of the image gradient over the block of pixels bl
i of

size 2l £ 2l ªdescendantº of node vbl
i
(see Fig. 2).

The de®nition of Eint�vbl
i
� remains similar to the one given

in Eq. (2). However, one has to keep in mind that the angle

between the two vectors has to be estimated on the reduced

grid Sl. In addition, due to the size of each node at level l, we

have b � 4lbl: From this family of energy functions, we are

now able to de®ne our minimization scheme as a cascade

(from l � L to l � 0� of optimization problems of reduced

and increasing complexity, i.e.

Vl
opt � arg min

{vi}
Esnake�Vl�; l � L;¼; 0: �12�

These optimization problems are solved using a standard

ªcoarse-to-®neº multigrid strategy. Starting from a coarse

scale L, the optimization problem is ®rst solved in V L
: This

de®nes a ®rst (crude) solution to the original problem and

the obtained solution, a rough contour, is then used as the

initial snake position for the next lower level. This process

continues until the contour is optimized at the original

image level (see Fig. 3). Contrary to standard multi-resolu-

tion approaches, no reduction of image data is applied. The

family of de®ned energy functions uses the original image,

ensuring that the same energy function (or more precisely,

different smoothed versions of this energy function) is

handled at each scale, and that the energy decreases at

each step of the minimization process. This method has

shown to exhibit fast convergence property and robustness

against local minima for highly non-linear combinational

problems [6]. Each of the associated energy minimization

problems can be ef®ciently solved with a standard determi-

nistic optimization algorithm, such as a classical gradient-

based method or a DP algorithm requiring a small search

window (and thus allowing to ensure the optimality of the

solution). In the case of a region or a edge-based segmenta-

tion technique, we propose the two following strategies.

4.1. Region-based multiscale segmentation technique

For the minimization of each energy function (at each

scale), we use simply the following iterative technique:

for each node vbl
i

of the contour, we compute Esnake(V
l) for

the current position of the node and for the two consecutive

points belonging to the perpendicular of the contour at the

current node, respectively, located inside and outside the

contour. At a given iteration, and for each node, we accept

the position of the contour that minimizes Esnake(V
l) and this

process is iterated until there is no change in the shape of the

contour between two iterations.

In our case, once the optimization problem at level l is

solved, the initial snake position for the next lower level

(level l 2 1� is then obtained by keeping the descendant

(among four) of each node ensuring the minimal external

energy (see Fig. 3).

Finally, in order to initialize the model at the coarsest

level l � L; we exploit the result of a two-class segmenta-

tion result achieved in a ML sense on the coarsest grid SL.
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Fig. 3. ªCoarse-to-®neº minimization strategy. The initial snake position

for the next lower level is then obtained by keeping the descendant (among

four) of each node ensuring the minimal external energy.

Fig. 2. Hierarchical structure �L � 1 in this example) involved in the multiscale minimization strategy and block of pixels bl
s associated to the node vbl

s
:



To this end, let xL � {xL
s ; s [ SL}; the set of labels asso-

ciated to each block of pixels bL
s : Each xL

s can take two

labels {ein,eout}, associated to the two homogeneous

regions and distributed according to the conditional

distribution Pin(ys) and Pout(ys). This ML blocky segmen-

tation is given by,

;s [ SL
; x̂L

s � ein

if
X

p[bl
s

ln Pin�yp� .
X

p[bl
s

ln Pout�yp�; else; x̂L
s � eout:

This blocky segmentation is then high-pass ®ltered in

order to extract the initial crude contour that will be

used for the initialization of the optimization procedure

at the coarsest level (see Section 5 and upper left of the

pyramid reported in Fig. 6a).

4.2. Edge-based multiscale segmentation technique

In this case, a multiscale ML segmentation cannot be

constructed and exploited in order to extract an initial

contour. We have to initialize the initial snake position

not too far from the optimal solution. A DP algorithm

using a small search window then allows to ensure the opti-

mal solution at the coarsest level l � L and for the next

higher resolution levels. Once the optimization problem at

level l is solved, the initial snake position for the next lower

level is then obtained by the strategy previously described

(see Fig. 3). This process continues until the contour is

optimized at the original level.

5. Experimental results

5.1. Ultrasound imagery

We have validated our region-based multiscale detection

method on real echographic and echobrachial images, in

order to detect the endocardial contour or the inner wall

of an artery, respectively. For the experiments, we have

chosen b � 1 for the weighting factor penalizing the inter-

nal energy with respect to the external energy and L � 4 for

the number of resolution levels. The size of these acoustic

pictures is 256 £ 256 pixels (256 grey levels).

In order to take into account the speckle noise phenom-

enon [14] in the reverberation areas, we model the condi-

tional PDFs Pin�´� and Pout�´� of each homogeneous region

of the input ultrasound image by a shifted Rayleigh law with

different parameters F � �min;a�;

RY �ys;min;a� � ys 2 min

a2
exp 2

�ys 2 min�2
2a2

 !
; �13�

with ys . min and a . 0: The ®rst region arises from the
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Fig. 4. Image histogram of the ultrasound image reported in Fig. 6 (solid

curve) and estimated PDF mixture obtained with the ICE procedure (dashed

and dotted curves).

Fig. 5. Unsupervised Markovian segmentation of an ultrasound image using the single scale deterministic relaxation technique called ICM and based on the

parameters estimated by the ICE procedure. (a) Real ultrasound image. (b) Two-class Markovian segmentation. The resulting segmented map exhibits

unproper blood or muscle areas due to the strong speckle noise present in this image.



low acoustic wave reverberation in the different cavity of

anatomical structures, generally ®lled with blood. The

second region is due to the acoustic signal reverberation

on the different organs (cardiac muscles for an echographic

image, or wall of arteries for an echobrachial image). In our

application, the parameter of these distribution laws are

given by a preliminary statistical estimation method called

iterative conditional estimation (ICE) [11]. Fig. 4 represents

the distribution mixture estimated on the echogram shown

in Fig. 5a and the histogram of this ultrasound image: the

two conditional likelihoods (weighted by the estimated

proportion pi of each class) are superimposed to the

image histogram. Corresponding estimates obtained by the

ICE procedure are given in Table 1. Let us mention that this

noise model estimation and the discussed unsupervised

region-based segmentation procedure can easily be general-

ized for segmentation of anatomical structures in medical

images exhibiting more than two classes.

Fig. 6a (at upper left) shows the ML blocky segmenta-

tion at the coarsest resolution level l � L that is used to

extract the initial crude endocardial contour. Fig. 6(b)±(f)

shows the resulting estimated snakes at different resolution

levels. We can notice (cf. Fig. 6a) that the ML blocky

segmentation maps exhibits unproper blood or muscle

areas at lower levels (higher resolution levels) of the pyra-

midal structure due to artifacts created by the ultrasound

imagery process. The boundary of the endocardial contour

cannot be ef®ciently extracted on these lower levels.

Nevertheless, a closed (but crude) contour can be ef®-

ciently extracted at the highest level of the pyramidal struc-

ture. This crude contour is then used for the initialization of

the optimization process at the coarsest level. The proposed

multiscale strategy allows ef®ciently to obtain a good

initial guess at each level that is re®ned at the ®ner scales

(see Fig. 6(a)±(f)). Finally, a reliable detection of the
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Fig. 6. (a) ML blocky segmentation at different resolution levels and estimated snakes at different resolution levels (b±f).

Table 1

Estimated parameters for the ultrasound image reported in Fig. 6. p stands

for the proportion of the two classes within the image. min and a are the

shifted Rayleigh law parameters

ECI procedure

F in 0.48(p ) 24(min) 207(a 2)

F out 0.52(p ) 24(min) 9436(a 2)



endocardial contour or of the inner wall of an artery is

obtained. Figs. 7 and 8 present the segmentation results

obtained on other echographic images and on three echo-

brachial images, respectively. On these previous images,

the a priori assumption, inherent to the snake model, that

the structure to be detected has to be connected and the

restricted size of each input image creates some artifacts on

each side of the inner wall of the artery that has not to be

taken into account. Finally, Fig. 9 shows a synthetic image

presenting an object on a background with a strong

synthetic speckle noise and the resulting segmentation

obtained by our method. The proposed boundary segmen-

tation procedure is very fast and takes about 2±3 s (average

CPU time) on a standard Sun/Sparc 5 workstation which

makes this procedure compatible with a practical applica-

tion. Let us also mention that this procedure does not

require to a priori ®x the optimal number of nodes of the

contour model.

In order to validate the accuracy and the speed of the

proposed optimization method, we have compared the

segmentation results obtained by a classical (single scale)

DP-based optimization procedure. In the experiments, the

initial endocardial contour which is used to initialize the DP

procedure is the inner contour given by the coarser ML

blocky segmentation and thus, this contour remains not

too far from the optimal contour. In this context, the search

window is de®ned by the set of eight points belonging to the

straight segment perpendicular to the contour at each node

and located inside and outside the contour. Segmentation

result comparison is reported in Fig. 10 and show similar

resulting boundary but at the expense of a ten times higher

computational load (i.e. about 30 s).

We can also use this multigrid approach in order to de®ne

an ef®cient tracking procedure for dealing with ultrasound

image sequence. An ef®cient tracking strategy consist in

simply projecting the ®nal highest resolution contour with

a ª®ne-to-coarseº strategy and to use this new crude contour

as an initialization of the multiscale optimization process for

the next time frame. This multiscale tracking strategy has

demonstrated to be more robust than the classical method,

commonly used, that consist in using the ®nal contour as

an initialization for the next frame and that assumes
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Fig. 7. Detection of the endocardial contour at different time frames during the cardiac cycle.

Fig. 8. Detection of the inner wall of an artery on echobrachial images. On these images, the a priori assumption, inherent to the snake model, that the structure

to be detected has to be connected and the restricted size of each input image creates some artifacts on each side of the inner wall of the artery that has not to be

taken into account.



(sometimes wrongly) that the inter-frame motion is always

small (cf. Fig. 7).

We can compare our results to those obtained by a

Markovian segmentation of the ultrasound image in two

classes (blood, muscle) based on the parameters estimation

given by the ICE procedure. To this end, let now X �
{Xs; s [ S} be the label ®eld. Each Xs takes its value in

{e0 � blood; e1 � muscle} and prior distribution PX(x) is

now assumed to be stationary and Markovian. For the

local a priori model, we adopt a standard isotropic Potts

model with the eight-connexity spatial neighbourhood [1].

In this model, there are four parameters, called ªthe clique

parametersº denoted b1;b2;b3;b4 and associated to the

horizontal, vertical, right and left diagonal binary cliques,

respectively [1]. Finally, in this framework, the segmenta-

tion issue can be viewed as a statistical labelling problem

according to a global Bayesian formulation in which the

following posterior energy has to be minimized [1],

U�x; y� �
X
s[S

2 ln�Pin�ys�d�xs 2 e0�1 Pout�ys�d�xs 2 e1��|��������������������{z��������������������}
U1�x;y�

1
X
ks;tl

bs;t�1 2 d�xs; xt��|�������{z�������}
U2�x�

; (14)

where U1 expresses the adequacy between observations

and labels, U2 represents the energy of the a priori

model and d is the point Kronecker function. More

precisely, the ®rst term of energy, U1, favours the

blood label (and, respectively, the muscle label) in

terms of likelihood (thanks to the preliminary estimation

of the PDF of each class). The second term, U2, corre-

sponds to so-called Potts prior model which is exten-

sively used in MRF-based segmentation techniques. It

discourages segmentation with isolated labels and those

with complex frontiers between regions. In our applica-

tion, we use the following parameters: bst � b1 � b2 �
b3 � b4 � 1 according to the type of the clique ks; tl
horizontal, vertical, right and left diagonal, respectively.

We use the deterministic algorithm ICM [1] to mini-

mize this global energy function. For the initialization

of this algorithm, we exploit the segmentation map

obtained by a ML segmentation (cf. Fig. 6a at higher

resolution level). We can notice (cf. Fig. 5) that the

resulting map exhibits unproper blood or muscle areas

due to the strong speckle noise that creates open and/or

ill de®ned contours. The boundary of the endocardial

contour cannot be ef®ciently extracted by this method

due to the unproper local prior model that does not

assume that the object to be detected has to be

connected.
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Fig. 9. Synthetic ultrasound image showing an object lying on a background with strong speckle noise and the resulting segmentation obtained by our method.

Fig. 10. Segmentation result comparison between the proposed multiscale optimization procedure (a) and a classical single scale DP-based optimization

procedure (b).



5.2. Radiographic imagery

Finally, we have validated our edge-based multiscale

detection method (see Section 4.2) on real radiographic

medical images in order to detect anatomical structures

such as bones. For the experiments, we have chosen b �
10 for the weighting factor penalizing the internal energy

with respect to the external energy and L � 3 for the number

of resolution levels. The procedure is once again very fast

about 1±2 s (average CPU time) on a standard Sun/Sparc 5

workstation and also twenty times faster than a classical

single scale DP-based optimization procedure (cf. Fig. 11).

6. Conclusion

In this paper, we have developed a robust algorithm to

detect the boundaries of anatomical structures, like the

endocardial contour or the inner wall of arteries, in ultra-

sound images. We have stated this detection problem in the

active contour model framework and we have taken into

account the inherent smoothness of these structures and

the grey level statistical distribution inside and outside the

boundary of the object to be detected. We have ®nally

presented a multiscale framework for the minimization of

the global energy function resulting from this modelling.

The minimization is ef®ciently performed through a multi-

grid algorithm, which consists in imposing successively

weaker and weaker constraints on the searched estimate.

In our application, this procedure results in estimating

successively the optimal position of contour models of

decreasing thickness. This framework can be used for

edge-based segmentation technique and also easily general-

ized to texture-based energy-minimizing contour model as

well as for three-dimensional boundary detection. This

scheme is fast, exhibits good convergence properties, and

is especially well suited to automatic extraction of anatomi-

cal structure boundaries in ultrasound imagery.
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