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a b s t r a c t

This paper presents a differential optical flow method which accounts for two typical motion-estimation
problems: (1) flow regularization within regions of uniform motion while (2) preserving sharp edges near
motion discontinuities i.e., where motion is multimodal by nature. The method proposed is a modified
version of the well known Lucas–Kanade (LK) algorithm. While many edge-preserving strategies try to
minimize the effect of outliers by using a line process or a robust function, our method takes a novel
approach to solve the problem. Based on documented assumptions, our method computes motion with
a classical least-squares fit on a local neighborhood shifted away from where motion is likely to be mul-
timodal. In this way, the inherent bias due to multiple motion around moving edges is avoided instead of
being compensated. This edge-avoidance procedure is based on the non-parametric mean-shift algorithm
which shifts the LK integration window away from local sharp edges. Our method also locally regularizes
motion by performing a fusion of local motion estimates. The regularization is made with a covariance
filter which minimizes the effect of uncertainties due in part to noise and/or lack of texture. Our method
is compared with other edge-preserving methods on image sequences representing different challenges.

Crown Copyright � 2008 Published by Elsevier Inc. All rights reserved.
1. Introduction

In the past 30 years, numerous solutions have been proposed to
solve the optical flow problem [1–3]. As observed by Barron et al.
[3], optical flow techniques can be divided into families among
which are the phase-based methods [4], spectral-based methods
[5], energy-based methods [6–8], Markovian methods [9–11],
and differential methods [12–14]. Choosing one approach versus
another depends very much on the application and the nature of
the flow to be estimated. For instance, a densely cluttered scene
with different global movements might be amenable to a spec-
tral-based method, whereas a differential method might be better
suited for a scene exhibiting objects (such as cars for instance)
moving in front of a fixed background. These techniques are vari-
ous and adapted to all kinds of situations. However, most of them
are expressed as global optimization problems involving a data
conservation constraint likelihood term and a spatial coherence con-
straint prior term (also called regularization term) [15].

The data conservation constraint is generally built upon the
brightness constancy assumption which stipulates that the bright-
ness of a single point remains constant with time. This simple
assumption is frequently used to develop simple optical flow
008 Published by Elsevier Inc. All r
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methods that generate fairly good results. However, as one might
expect, the brightness constancy assumption is only valid for ideal
noise-free scenes and thus almost never holds exactly. Further-
more, due to lack of texture and occlusion, different motions with-
in a local area can be indistinguishable even though only one is
valid. In other words, the brightness constancy assumption only
partially constrains the data leaving the problem ill-posed since
this assumption allows several solutions as being ‘‘optimal”,
although only one is objectively correct. This problem is well doc-
umented and referred to as the aperture problem [1,15].

To obtain accurate estimates, a spatial coherence constraint has
to be added to the first constraint. While some authors see this
additional constraint as an integration window [13,16,17], others
see it as a prior function [11,12] modeling the way motion vectors
should be distributed in the final vector field. The choice of spatial
constraint is often the key element differentiating one approach
from another. Typically, these spatial constraints assume that mo-
tion is locally uniform and changes smoothly across regions of the
scene. Unfortunately, this isotropic assumption is violated when a
region spans a motion discontinuity [15,18]. As explained by Black
and Anandan [15], the spatial neighborhood must be large enough
to sufficiently constrain the solution but also small enough to avoid
spanning multiple motions.

Many popular motion estimation approaches were built upon
these competing constraints [7,12,13], which often ignore the mul-
timodal nature of motion near moving edges. As a result, the esti-
mated motion in these areas is often imprecise and blurry. To
gain more accuracy and better preserve motion discontinuities,
ights reserved.

mailto:Pierre-Marc.Jodoin@usherbrooke.ca
mailto:mignotte@iro.umontreal.ca
mailto:mignotte@iro.umontreal.ca
http://www.dmi.usherb.ca/~jodoin/
http://www.iro.umontreal.ca/~mignotte/
http://www.iro.umontreal.ca/~mignotte/
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


512 P.-M. Jodoin, M. Mignotte / Computer Vision and Image Understanding 113 (2009) 511–531
several solutions have been proposed. As mentioned by Thompson
[18], the optical flow literature proposes two broad families of
solutions designed to preserve sharp motion edges: the flow-based
family and the image-based family.

1.1. Flow-based methods

The flow-based methods typically allow for mixed motion dis-
tributions near boundaries. In fact, these methods assume that
the imprecision around moving edges is due to the presence of
‘‘outliers” pooling from a spatial neighborhood and corrupting
the final solution. Consequently, this family of solutions aims to
minimize the influence of these undesired values.

One popular method for dealing with outliers is the use of a ro-
bust error function that gives a relative influence to outliers, pre-
venting them from corrupting the final solution. Black and
Anandan [15,19] (soon followed by Odobez and Bouthemy [20])
were the first to explicitly use robust functions to minimize the ef-
fect of those measures violating the data conservation or the spa-
tial coherence constraint. They adapted their robust framework
to two common motion estimation techniques: the recovery of
multiple parametric motion models and the recovery of piece-
wise-smooth flow fields. Aubert et al. [21] presented a variational
technique whose convergence was carefully demonstrated. Their
method is presented as a differential method similar to that of
Horn and Schunck [12] but with an edge preserving regularization
term and a half-quadratic optimizer. Weickert [22] also proposes a
variational technique implementing a robust isotropic regulariza-
tion term. The use of such regularization term prevents the method
from smoothing across motion discontinuity. Shortly after, Weick-
ert and Schnörr [23] proposed another variational method that
could be seen as an extension of Weickert’s technique [22]. In their
paper, they propose an anisotropic flow-driven regularization
technique which not only prevents from smoothing across flow dis-
continuity, but also encourages smoothing along flow edges. This
method implements a diffusion tensor embedded in a diffusion–
reaction system minimized with a downhill search technique.
More recently, Brox et al. [24] proposed a variational technique
minimizing an energy function composed of three terms: a bright-
ness consistency term, a novel gradient constancy term and a ro-
bust spatio-temporal smoothness term.

Another class of flow-based optical flow methods is those
implementing a least-median-of-squares technique. As opposed to
the robust methods which minimize the influence of outliers, these
methods explicitly detect and reject outliers. The retained mea-
sures (called inliers) are then used to estimate the flow. Bab-Hadia-
shar and Suter [25] and Ong and Spann [26] proposed interesting
work in that field.

Other flow-based methods consider motion vectors as ‘‘esti-
mates” that are to be fused together. During the fusion process,
each estimate is given an importance value which makes it more
or less influent locally. In this way, a region with a high confidence
will propagate more information than a region with a low confi-
dence. An early paper in that field has been published by Singh
[6] in 1990. In this work, Singh uses a multiresolution-two-step
sum of squared differences (SSD) procedure to help preserve flow
discontinuity without any prior knowledge on the location of the
boundary. In a first step, Singh’s method estimates a variance–
covariance matrix based on a SSD measure over a correlation win-
dow. This matrix is then used as a confidence measure to propa-
gate the flow using neighborhood information. More recently,
Comaniciu [27] presented a non-parametric fusion approach that
appears as an improvement of Singh’s method [6]. Comaniciu’s
method pre-estimates the flow with a simple biased-least-squares
method before locally fusing the motion vectors with a multiscale
mean-shift procedure.
Let us also mention the work by Farneback [28] in which 3D ori-
entation tensors are combined to affine parametric motion models
for the estimation of the optical flow. Farneback shows that the
fundamental relations between the 3D orientation tensors and
optical motion as a good solution for quickly estimating precise
motion fields. The author argues that this approach can be com-
bined with a region-growing segmentation algorithm to sharpen
the results [28].

1.2. Image-based methods

The second class of edge-preserving optical flow methods at-
tempt to locate motion discontinuities [18]. These methods often
assume that a flow boundary always corresponds to an intensity
edge. Based on this assumption, most image-based methods make
sure that measures gathered from opposite side of an intensity
edge never influence each other. In that perspective, several ap-
proaches coping with motion discontinuities use the Markov Ran-
dom Field (MRF) formulation inspired by Geman and Geman’s
work [29]. Most of these MRF methods rely on a line process to esti-
mate border locations and keep points from opposite sides of the
border from influencing each other [10,11]. In particular, this is
what Black [30] does when he jointly estimates a motion vector
field together with a motion region map. To do so, this method
minimizes an energy-based Markovian function made up of an
intensity model, a border model and a motion model. Local con-
straints on motion and intensity allow for the preservation of sharp
flow discontinuities.

Other image-based methods estimate motion based on a pre-
estimated segmentation map. These methods make the underlying
assumption that a motion discontinuity cannot span a region of
uniform intensity. In that perspective, a color region map is pre-
estimated and the optical flow is computed within the color re-
gions. Among the first contributions in this area is the work by
Fuh and Maragos [31] who proposed a region-based matching
method combined with a post-processing median filtering. A few
years later, Meyer and Bouthemy [32], Dang et al. [33], and Black
and Jepson [34] proposed methods to fit affine models within
pre-estimated regions of uniform intensity. In the latter paper,
the method has been made iterative to better refine the flow.

Many image-based variational techniques have also been pro-
posed. These methods can be seen as extensions of Horn and Sch-
nunk’s original method [12]. These variational methods use a
regularization term to smooth out the flow based on the image
content. For instance, in their 1999 paper, Alvarez et al. [35] pro-
posed a variational method that reduces its regularization in the
vicinity of all image edges. This is done with a non-linear regular-
izer inversely proportional to the image gradient. Such an approach
is sometimes referred to as an image-based isotropic variational
approach [23]. Another class of variational techniques comprises
the image-based anisotropic methods [23]. These methods imple-
ment a regularization term that both prevents smoothing flow
across image edges and encourages smoothing along image edges.
Anisotropic image-based methods were proposed by Nagel–Enkel-
mann [36], Nagel [14], Schnörr [37], and more recently, Alvarez
et al. [38].

1.3. Our method

In this paper, a modification to the well known Lucas–Kanade
(LK) algorithm [13] is proposed. The objective of our method is
twofold: (1) minimize uncertainties (often caused by noise and
lack of texture) by strongly constraining the flow within regions
of uniform movement while (2) preserving flow discontinuities
around moving objects. Since our method is based on a least-
squares fit (and thus is sensitive to multimodal motion) the
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key idea is to avoid computing flow in areas where motion is
likely to be multimodal. Following the same assumption made
by most image-based methods, our approach assumes that every
motion boundary correspond to a strong intensity edge. More
specifically, in areas near a strong intensity gradient, our algo-
rithm computes motion with a neighborhood window shifted
away from the nearest intensity edge. In this way, the flow is
computed over sections of the scene where motion is likely to
be unimodal. Our least-squares fitting algorithm can thus pre-
serve sharp motion boundaries by avoiding having to deal with
multiple motions. To our knowledge, such an avoidance proce-
dure has never been investigated before. To better constrain the
solution, our method implements a fusion procedure similar to
the flow-based method proposed by Singh [6]. This fusion proce-
dure implements a covariance filter that locally averages motion.
In the experimental section, our method is compared with other
techniques whose purpose is also to preserve motion discontinu-
ities. Results are obtained after processing synthetic, realistic, and
real sequences.

The remainder of this paper is organized as follows. Because our
method is a modified version of LK, an introduction of the LK meth-
od [13] is first presented in Section 2. Section 3 then presents our
modifications to LK, which includes a covariance filter and an edge-
avoidance procedure based on the mean-shift [39] algorithm. Sec-
tion 5 then presents the optical flow methods to which we com-
pare our method. This section also includes results obtained on
various synthetic, realistic and real image sequences. Section 6 dis-
cusses our method and concludes.
2. Lucas–Kanade motion estimation

The Lucas–Kanade (LK) approach was first introduced as a least-
squares fitting method applied to stereovision [13]. However, its
extension to motion estimation is trivial and goes as follows. Let
S ¼ fs ¼ ði; jÞji 2 ½0;N½; j 2 ½0;M½g denotes a 2D lattice of size
N�M and Iðs; tÞ the intensity of the site s at time t. In our imple-
mentation, Iðs; tÞ takes a value between 0 and 255. Considering the
brightness constancy assumption and assuming that the velocity is
locally linear, LK looks for a vector field V ¼ f~vs ¼
ðus;v sÞjs 2 S; ~v s 2 R2g that minimizes the residual quadratic
error

Eð~v sÞ ¼
X
r2gs

Iðr; tÞ � Iðr þ~v s; t þ 1Þ½ �2; 8 s 2 S ð1Þ

where gs is a neighborhood window of size N � N centered on site s.
Eð~vsÞ can be reformulated based on its Taylor expansion:

Eð~v sÞ �
X
r2gs

usIx þ v sIy þ IT
� �2 ð2Þ

¼
X
r2gs

rIT~vs þ IT

h i2
ð3Þ

where Ix; Iy and IT are, respectively, the spatial and temporal deriv-
atives over site r at time t [16,40]. As mentioned by Lucas and Ka-
nade, this quadratic error function can be minimized by setting
its first derivative to zero: @Eð~vÞ

@~v ¼ 0, which formally corresponds toX
r2gs

rI rIT~vs þ IT

� �
¼ 0 ð4Þ

or, equivalently,
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Although the assumption that velocity is locally linear is true in
regions of constant flow, it can be a problem when N is large and/or
when gs spans motion discontinuities. Thus, to minimize the influ-
ence of outliers, many authors add a weighting term Wi which
gives more influence to pixels that are close of the center of gs than
those at the periphery [3]. This added term is mathematically ex-
pressed asP
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where W typically contains Gaussian isotropic values. However,
since the flow in our method is already constrained by a fusion pro-
cedure (see Section 3), W is assigned spatial gradient data
(Wr ¼ krIrk2) in such a way that more influence is given to those
sites located in textured areas.

To simplify the notation, it is common to rewrite Eq. (6) as

Ms~v s þ~bs ¼ 0 ð7Þ

where Ms is the 2� 2 matrix in Eq. (6) and~bs is the 2D vector in the
same equation. Following Eq. (7), the least-squares solution can be
obtained after a simple matrix inversion

~vs ¼ �M�1
s bs: ð8Þ

Of course, LK provides only a solution to those sites s 2 S for which
Ms is not singular. This singularity problem was first addressed by
Nagel [41] and then by Barron et al. [3]. In the latter paper, a simple
solution is proposed: reject every unreliable estimate v s for which
the eigenvalues k1 and k2 of Ms, are below a given threshold s.
Although this approach is intuitively acceptable, it allows flow
fields of density much lower than 100% ð35% for the YOSEMITE se-
quence and 39% for the TRANSLATING TREE sequence [3]). Other authors
[27,16] proposed adding a bias to Ms to ensure its invertibility.
Mathematically, this can be formulated as

ðMs þ bIdÞ~v s þ~bs ¼ 0 ð9Þ

where Id is the identity matrix and b may be a constant [27] or pro-
portional to the covariance of the noise [16]. In this paper, we use a
bias that is different from the one of Eq. (9). As shown in Algorithm
3, the bias we use is a small random white noise added to the input
image sequence. This noise adds a bias to the spatial gradient ðIx; IyÞ
but does not affect the temporal gradient IT . Thus, our bias makes
Ms invertible everywhere without adding any significant error to
the results, as can be seen in Figs. 16 and 17.

Optical flow obtained from (Eq. (8) or Eq. (9)) is often consid-
ered as being the standard LK solution. In practice, however, to
gain more accuracy, it may be good idea to implement a New-
ton–Raphson-like iterative version of this scheme [17]. Further-
more, to better cope with large displacements, one must to
implement LK in a multiresolution framework.

2.1. Iterative LK

In this section, we present an iterative version of the traditional
LK method, primarily inspired of the work by Bouguet [17] and
Black and Anandan [15]. Let ~vk

s be the motion vector on site s after
k � 1 iterations and D~vk

s the incremental motion vector computed
during the kth iteration. Here, the goal is to estimate the D~vk

s that
will best minimize the residual error

E ~vkþ1
s

� �
¼
X
r2gs

I r þ~vk
s þ D~vk

s ; t
� �

� Iðr; t þ 1Þ
� �

: ð10Þ

According to Eq. (8), the kth motion increment can be computed
by
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D~vk
s ¼ �ðMsÞ�1~bk

s ð11Þ

where

~bk
s ¼

P
r

WrI
k
T IxP
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WrI

k
T Iy

0
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1
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Ik
T ¼ I r þ~vk

s ; t
� �

� Iðr; t þ 1Þ

where value Iðr þ~vk
s ; tÞ is computed with a bilinear interpolation.

After k iterations, the motion vector on site s is given by

~vkþ1
s ¼ ~vk

s þ D~vk
s ð12Þ

or equivalently

~vkþ1
s ¼ ~vk

s �M�1
s
~bk

s : ð13Þ
2.2. Multiresolution LK

As mentioned previously, a multiresolution framework is fre-
quently a good solution to deal with large displacements. Its is also
a good solution to help regularize the flow in noisy and/or texture-
less areas. When implementing a multiresolution framework, two
pyramids based on IðtÞ and Iðt þ 1Þ need to be built. The process of
building an image pyramid is often referred to as ‘‘image decima-
tion” [42,43]. In most pyramid representation, the original image
(of size N�M) appears at the bottom of the pyramid, i.e., at level
0. The original image is first convoluted by a low-pass filter and
then decimated by a factor of two in each dimension. The resulting
image (of size N=2�M=2) is then placed at level 1 of the pyramid.
The same two operations are then applied to the image at level 1 to
produce the next N=4�M=4 pyramid level. This process is re-
peated up until when the desired number of pyramid level has
been reached. In our application, as shown in Fig. 1(a), a 3� 3
low-pass Bartlett filter [42] is used. Some authors refer to this filter
pyramidal or weighted average by some authors [44]. Since each le-
vel IL has a size of N=2L �M=2L, the pyramids can have up to
min½log2ðNÞ; log2ðMÞ� levels. However, our tests revealed that
more than four levels does not provide any major advantage, at
least for those sequences we worked with and for which motion
never exceeds 5 pixels.

Once the two input pyramids have been computed, the flow is
estimated from the highest level of the pyramid down to level 0.
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Fig. 1. (a) The pyramid level ILþ1 is obtained after convoluting IL with h and
decimating IL by a factor 2 in each dimension. (b) When projecting a level Lþ 1
down to level L, a simple bilinear interpolation method is used.
At each level, vector field VL is iteratively estimated with Eq. (13)
after which it is projected down to level L� 1. The downscaling
operation is done with a bilinear interpolation as illustrated in
Fig. 1(b). The iterative and multiresolution version of LK is pre-
sented in Algorithm 1. Notice that at the highest level, the flow is
initialized with zero values.
a

Algorithm 1: Multiresolution and Iterative LK Algorithm
3. Our method

The LK algorithm is simple and generates fairly good results
over a wide range of real image sequences, hence its popularity.
However, it is widely accepted that its implementation suffers
from two fundamental limitations. First, since (Eq. (13) and (8))
do not model the inherent uncertainties caused by noise and low
contrast regions [16], the output vector field V may be locally inac-
curate, especially if the neighborhood gs is small. Second, the LK
solution hardly takes account of multiple motions and thus gener-
ates blurry edges around moving objects. This is especially true
when LK is implemented with a multiresolution framework.

3.1. Dealing with uncertainties

Several solutions are conceivable to alleviate the problem of
uncertainties. While some have adapted Eq. (13) to a probabilistic
framework [16] to account for noise, others have replaced V by a
piecewise-smooth vector field made up of parametric models
[45–47]. Also, a variety of filters has been proposed, from simple
median filters [46] to more elaborate Kalman-like filters [8,27].

For our method, every vector ~v s is considered as an ‘‘estimate”
that is to be fused locally with its neighbors to yield a better result
[27]. Assuming that ~v s has a 2� 2 covariance matrix Cs propor-
tional to the variance of the noise, the vectors surrounding site s
can be fused with a linear combination [8,27] of the form

~vs ¼ Ps

X
i2fs

C�1
i
~v i ð14Þ

Ps ¼
X
i2fs

C�1
i

 !�1
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Motion from LucasKanade

Real motion at time t

Position
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Image intensity at time t

s c

Intensity edge

N N

Image intensity at time t-1 and t+1

p

Fig. 2. Synthetic motion returned by Eq. (13) versus the real motion boundary. The
arrows point at three positions (s; p and c) for which ~Vs � ~Vp and ~Vs–~Vc .
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where fs is a neighborhood window of size X�X around site s.
Here, C½�1�

i can be seen as a ‘‘confidence measure” that give more
or less influence to an estimate ~v i. In this way, a vector ~v i with a
large confidence will influence more ~v s than another one with a
smaller confidence. Here, Ci is a 2� 2 covariance matrix computed
as follows:

Cs ¼

P
t2bs

ðut � usÞ2
P
t2bs

ðut � usÞðv t � v sÞ
P
t2bs

ðut � usÞðv t � v sÞ
P
t2bs

ðv t � v sÞ2

0
BB@

1
CCA

=K�K

ð15Þ

where bs is a neighborhood window of size K�K around s and
~v t ¼ ðut;v tÞ. This matrix is similar to the one proposed by Singh
[6]. Notice that such fusion procedure is sometimes referred to as
a Best Linear Unbiased Estimate (BLUE) by some authors [27,48].
Combining Eqs. (13) and (14), the iterative LK procedure can be
rewritten as

~vkþ1
s ¼ Pk

s

X
i2fs

Ck�1

i ~vk
i þM�1

i
~bk

i

� �
: ð16Þ

This scheme makes sense intuitively since it encourages flow to
propagate from high-confidence regions (regions with low covari-
ance) to regions of low confidence. To make sure Ci is invertible, its
eigenvalues are forced to be larger or equal to 0:001 (here in pixel-
distance units). This is done via a singular value decomposition.

For applications in which processing time is a determining fac-
tor, the fusion procedure of Eq. (16) may be replaced by a simpler
and yet faster, Gaussian filter.

3.2. Dealing with multimodal motion

As previously mentioned, estimating motion with an isotropic
approach such as LK often results in a flow with blurry edges,
which explains why so many robust functions and anisotropic fil-
ters have thus far been proposed. In this contribution, the way
multiple motion is handled is based on the following four
assumptions:

(1) moving objects are textured enough to have their motion
correctly estimated by a differential method;

(2) motion boundaries are close to sharp intensity edges;
(3) in regions with no sharp intensity edge, motion is locally

invariant;
(4) motion estimated away from flow discontinuities is reason-

ably accurate.

From these four assumptions (that are generally accepted in the
literature [15,18]) a fundamental observation can be made: two
close sites that are not separated by an intensity edge tend to have
similar motion vectors. To illustrate this assertion, let us take the
three sites s; p and c shown in Fig. 2. Each of these sites has a true
motion vector ~Vs; ~Vp and ~Vc

1 that are to be estimated by an opti-
cal flow method (here LK). Since Eq. (13) includes no edge informa-
tion, a vector ~vk

s computed with the standard LK approach will be
corrupted by the dual nature of the motion around s. In other
words, because ~v s (and ~vc) is estimated with a neighborhood win-
dow of size N � N, the bimodal nature of motion around the site s
will locally bias the flow. Since s is a close neighbor of c, ~v s � ~vc

whereas ~Vs–~Vc , hence the blurry contour. As a consequence, flow
estimated with a least-squares fit method close to a sharp intensity
edge is likely to be corrupted by multiple motions.

Also, with the above four assumptions, it may be assumed
(without prior information on the true nature of the flow) that
1 V is the true vector field whereas v is the one estimated by LK.
~Vs � ~Vp and ~Vs–~Vc . In fact, because no intensity edge separates
s and p, motion has to change smoothly between these neighbors
and thus ~Vs � ~Vp. Similarly, since s and c are separated by a sharp
intensity edge, it cannot be assumed that ~Vs ¼ ~Vc , hence why
~Vs–~Vc. Of course, there are many cases for which two close sites
separated by an intensity edge have the same motion (a back-
ground made of stationary objects is a good example). Thus, from
the previous four assumptions, one can assume that site s and c
are likely (but not certain) to have different motion.

From these observations, it may be inferred that:

(1) when two neighbors s and p are not separated by an inten-
sity edge and s is closer than p to a motion boundary, then
jj~v s � ~VskP k~vp � ~Vsk. In other words, a motion vector
estimated away from a strong intensity edge is more likely
to be accurate;
Fig. 3. Zoom on a frame of MOM AND DAUGHTER sequence. Every vector shows the
estimated mean-shift displacement between a site s and a site p.
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(2) when the distance between a site p and the closest motion
boundary is larger than N (N being the size of gs), then
~vp � ~Vp (a similar conclusion was already stated by Thomp-
son in [18]).

Consequently, to fight against the influence of multiple motions
and thus keep sharp edges, Eq. (16) will be rewritten as:

~vkþ1
s ¼ Pk

d

X
i2fd

Ck�1

i
~vk

i þM�1
i
~bk

i

� �
ð17Þ

where

d ¼
s if DðsÞP N

p otherwise

�
ð18Þ

where N denotes the LK window size (see Eq. (1)). Here, Dð�Þ de-
notes the distance to the nearest intensity edge and p is a neigh-
bor of site s located further away from that same edge (see
Fig. 3). The latter equations may be understood as follows: when
s is close to an intensity edge, ~vs estimated with the standard LK
approach is likely to be corrupted by multiple motions. It is thus
preferable to compute ~v s with a neighborhood window gp,
shifted away from the nearest intensity edges. In this way, ~v s

is computed with a neighborhood that is more likely to contain
a unimodal motion.

As previously mentioned, in real-life scenarios, many strong
edges may not correspond to a motion discontinuity. In these
cases, estimating the flow with Eq. (17) could seem, at first glance,
to be a source of error. Fortunately though, when an intensity edge
does not correspond to a motion discontinuity, this means that s
and p are located in an area of uniform motion. Thus, since s and
p are neighbors, motion is likely to be nearly constant between
them in such a way that ~Vs � ~Vp. Also, the fusion procedure of
Eq. (17) helps significantly constrain the flow and thus reduce, if
not prevent, error propagation.

3.3. Mean-shift

As shown in Eq. (18), when DðsÞ < N;~vk
s is computed over a

neighboring site p, located further away from the nearest intensity
edge. In this way, ~vs will be less likely to be corrupted by multiple
motion. From Section 3.2’s four assumptions, a good site p must re-
spect the following two criteria

(1) p must be a neighbor of site s with DðpÞP DðsÞ (assump-
tions 2 and 4).

(2) krIðp; tÞk � 0 (assumptions 3).

From these criteria, we found that the mean-shift procedure
[39] offers an appropriate strategy to determine p given s and
IðtÞ. Mean-shift is a simple iterative non-parametric estimator
of density gradient that was first introduced by Fukunaga and
Hostetler [49] and adapted to imagery by Comaniciu and Meer
[39]. Mean-shift is based on the multivariate kernel density
estimate

f̂ ðxÞ ¼ 1

nhd

Xn

j¼1

K
x� xj

h

� �
ð19Þ

where Kð�Þ is a kernel of radius h and fxjgj¼1...n is a set of n points of
dimension d. With this density estimate, the density gradient can be
expressed as

rf̂ ðxÞ ¼ 1

nhd

Xn

j¼1

rK
x� xj

h

� �
ð20Þ

where, as suggested by Comaniciu and Meer [39], Kð�Þ can be re-
placed by the Epanechnikov kernel. However, as mentioned in a
second paper [50], other kernel functions can be used. With the
Epanechnikov kernel, the last equation can be redefined as

rf̂ ðxÞ ¼ nx

nðhdcdÞ
dþ 2

h2 MhðxÞ ð21Þ

where MhðxÞ is called the sample mean-shift, i.e.,

MhðxÞ ¼
1
nx

X
xj2ShðxÞ

ðxj � xÞ ð22Þ

where ShðxÞ is a d-dimensional hypersphere of radius h and of vol-
ume cd. This hypersphere is centered on x and contains nx points.
Mean-shift is thus a fairly simple iterative procedure as shown in
the following algorithm.

Algorithm 2: Mean-Shift Algorithm

When using mean-shift to filter an image, the iterative procedure

is applied on data xj located in a so-called spatial-range domain. The
spatial domain refers to the 2D space of lattice S while the range do-
main refers to the pixel color/intensity level. In this context, each site
s 2 S is associated with a point xs in a d-dimensional spatial-range
domain. Here, the first two dimensions of xs correspond to the I � J
spatial Euclidean coordinates while the other dimensions corre-
spond to the intensity (or color) observed over site s. Thus, d is al-
ways set to 5 ði; j;Reds;Greens;BluesÞ for color images and to 3
ði; j; IntensitysÞ for grayscale images. After successive mean-shift iter-
ations, the hypervolume Sh is shifted from its initial location xs to a
final position xp where the local gradient is null. We define the
mean-shift vector as vector~Ps linking site s to site p: p ¼ sþ~Ps. This
last relation is the one we have chosen to use in Eq. (18). By the very
nature of mean-shift, p is always located further away from the near-
est intensity edge than s and jjrf ðxpÞjj � 0. Also, in general, the
stronger the intensity gradient is around site s, the larger ~Ps will
be. These are the reasons why we consider that mean-shift meets
the two criteria presented at the beginning of this section. To make
sure p is a neighbor of s, the length of~Ps is clamped to a maximum
value: jj~Psjj ¼minðjjPsjj;NÞ. The reason why the mean-shift vector
length is limited to N can be understand as follows. As illustrated
in Fig. 2 and mentioned in the second observation of Section 3.2, a
pixel located at a distance P N of the nearest edge is less likely to
be corrupted by multiple motion. On the other hand, a motion vector
~vp estimated with a window located too far away from its original
pixel s will violate the first observation of Section 3.2. Therefore,
by making sure the mean-shift displacement is limited to N, both
observations are being respected. For more details on mean-shift,
please refer to [39].



Algorithm 3: Our Method Processing one Pyramid Level

Fig. 4. Synthetic sequences. (a) YOSEMITE WITH SKY (b) YOSEMITE WITHOUT SKY and (c) the
SHAPES sequence.
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Fig. 3 shows a mean-shift vector field P with vectors linking site
s to site p. As can be seen, the closer to the edge a site s is, the larger
the mean-shift displacement is.
4. Other methods implemented

In Section 5, the proposed method is compared with eight other
optical flow methods whose objective is to preserve sharp motion
discontinuities (except for Horn and Schunck). In this section, we
review in detail these methods and underline how they were
implemented numerically.

4.1. Horn and Schunck

We have compared our method with differential optical flow
methods among which some seek to preserve sharp discontinu-
ities. All differential methods we have implemented are based on
the data conservation constraint:

Ixuþ Iyv þ IT ¼ 0 ð23Þ

where Ix and Iy are the spatial derivatives, IT the temporal derivative
and ðu;vÞ the horizontal and vertical image velocity at a site s 2 S.
Because this formulation involves one equation and two unknowns,
it admits an infinite number of solutions. As previously mentioned,
the standard solution for handling this ill-posed problem is to add a
spatial coherence term Esp whose essential role is to constrain the
solution. One common formulation of Esp is the membrane model
proposed by Horn and Schunck [12]

Espð~vÞ ¼ jjrujj2 þ jjrv jj2 ð24Þ

or, when considering the discrete version of r,

Espð~vÞ ¼
1
4

X
r2Gs

ður � usÞ2 þ ðv r � vsÞ2
h i

ð25Þ

where Gs contains the four neighbors of size s. In this context, the
energy function Eð~vÞ, to be minimized at every site s 2 S, is repre-
sented by

Eð~vÞ ¼ ðIxuþ Iyv þ ITÞ2 þ
a
4

X
r2Gs

ður � usÞ2 þ ðv r � v sÞ2
h i

ð26Þ
where a is a constant giving more or less importance to the spatial
constraint. With the Euler–Lagrange equations, the underlying com-
putation in Eq. (26) reduces to a Jacobi optimization, namely

u½kþ1� ¼ �u½k� � Ix
Ixu½k� þ Iyv ½k� þ IT

a2 þ I2
x þ I2

y

ð27Þ

v ½kþ1� ¼ �v ½k� � Iy
Ixu½k� þ Iyv ½k� þ IT

a2 þ I2
x þ I2

y

ð28Þ

where ð�u; �vÞ is the local mean of the four nearest neighbors s. In our
implementation, a total of 1000 iterations is used and a is set be-
tween 5 and 30 depending on the sequence.

4.2. Black and Anandan

It is well known that the quadratic functions of Eq. (26) give an
overwhelming importance to outliers which is a major cause of
blurry edges. Among the first robust formulation of Eq. (26) was
Black and Anandan’s proposal [15]. The robust gradient-based for-
mulation they proposed has the following form:

Eð~vÞ ¼ qðIxuþ Iyv þ IT ;rDÞ þ a
X
r2Gs

qður � us;rSÞ þ qðv r � v s;rSÞ½ �

where, in our implementation, the importance function q is the
Lorentzian function [15]



Table 1
Results: YOSEMITE sequence with sky.

Technique wE rwE
we

E rwe
E

Horn and Schunck 7.35 9.77 – –
LK (Algorithm 1) 8.54 14.94 – –
Black 5.94 9.31 – –
IB-Iso 8.25 9.16 – –
IB-Aniso 8.28 11.55 – –
FB-Iso 7.16 12.80 – –
FB-Aniso 8.65 10.31 – –
HS–LK 7.9 11.20 – –
Our method 6.20 13.7 – –

Table 2
Results: YOSEMITE sequence without sky.

Technique wE rwE
we

E rwe
E

Horn and Schunck 3.50 4.44 – –
LK (Algorithm 1) 3.42 3.65 – –
Black 2.30 1.66 – –
IB-Iso 5.87 6.31 – –
IB-Aniso 4.35 5.51 – –
FB-Iso 2.92 3.20 – –
FB-Aniso 4.96 6.45 – –
HS–LK 3.66 3.21 – –
Our method 1.81 1.78 – –

Table 3
Results: TRANSLATING SHAPES sequence.

Technique wE rwE
we

E rwe
E

Horn and Schunck 18.7 22.1 31.1 27.6
LK (Algorithm 1) 8.9 19.0 25.8 27.3
Black 10.7 16.8 24.4 22.5
IB-Iso 9.5 15.7 23.7 19.6
IB-Aniso 14.0 19.1 29.2 23.8
FB-Iso 8.0 14.4 19.7 19.8
FB-Aniso 7.2 13.2 18.6 18.2
HS–LK 5.0 12.2 13.0 18.7
Our method 2.3 10.0 6.9 17.3

Fig. 5. Realistic sequences. (a) TRANSLATING TREE (b) DIVERGING T

Fig. 6. Real sequences. (a) CLAIRE (b) KARLSRUHE (
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qðx;rÞ ¼ log 1þ 1
2

x
r

� �2
	 


: ð29Þ

As suggested by Black and Anandan, Eð~vÞ can be minimized
with a multiresolution Successive Over-Relaxation method with a
fixed number of iterations (20 in our case) on each level of the pyr-
amid. Following Black and Anandan’s recommendations, the values
of rD and rS are also lowered according to an annealing schedule
[15]. This schedule comprises six stages for which rD and rS vary,
respectively, from 18=

ffiffiffi
2
p

to 5=
ffiffiffi
2
p

and 3=
ffiffiffi
2
p

to 0:03=
ffiffiffi
2
p

. The vari-
able a was set to 0.2.
REE (c) ROTATING BONSAI (d) CARS OVER PARK and (e) PARTHENON.

c) MOM AND DAUGHTER (d) TAXI and (e) FLOWER.



Fig. 7. Results for the TRANSLATING SHAPES sequence.

Table 4
Results: TRANSLATING TREE sequence.

Technique wE rwE
we

E rwe
E

Horn and Schunck 1.83 2.15 – –
LK (Algorithm 1) 1.65 4.20 – –
Black 1.14 1.03 – –
IB-Iso 4.21 3.84 – –
IB-Aniso 1.89 1.41 – –
FB-Iso 1.30 1.64 – –
FB-Aniso 2.00 2.10 – –
HS–LK 3.71 3.80 – –
Our method 0.80 1.68 – –

Table 5
Results: DIVERGING TREE sequence.

Technique wE rwE
we

E rwe
E

Horn and Schunck 2.30 2.06 – –
LK (Algorithm 1) 4.60 3.39 – –
Black 2.25 1.30 – –
IB-Iso 6.40 5.01 – –
IB-Aniso 2.50 3.85 – –
FB-Iso 2.16 1.79 – –
FB-Aniso 2.69 2.47 – –
HS–LK 5.00 3.39 – –
Our method 2.48 1.71 – –

Table 6
Results: realistic CARS OVER PARK sequence.

Technique wE rwE
we

E rwe
E

Horn and Schunck 12.0 18.7 33.0 31.2
LK (Algorithm 1) 9.5 20.6 25.9 38.4
Black 8.0 5.7 25.4 28.4
IB-Iso 13.9 18.4 32.8 29.0
IB-Aniso 10.1 19.2 29.0 35.7
FB-Iso 7.8 15.2 20.0 29.2
FB-Aniso 7.2 16.6 22.1 32.3
HS–LK 9.2 18.3 27.2 34.4
Our method 4.0 16.9 16.2 34.1

Table 7
Results: realistic PARTHENON sequence.

Technique wE rwE
we

E rwe
E

Horn and Schunck 12.2 18.5 18.2 21.7
LK (Algorithm 1) 14.7 24.1 22.5 28.3
Black 10.4 18.1 15.5 21.4
IB-Iso 16.0 17.6 21.3 19.0
IB-Aniso 14.1 21.2 18.7 23.8
FB-Iso 10.7 18.0 16.1 21.0
FB-Aniso 11.0 16.9 17.0 19.5
HS–LK 13.1 16.7 17.3 19.4
Our method 9.80 20.7 15.2 25.5
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Table 8
Results: realistic ROTATING BONSAI sequence.

Technique wE rwE
we

E rwe
E

Horn and Schunck 22.1 22.3 36.1 25.2
LK (Algorithm 1) 10.4 21.5 25.4 28.1
Black 14.1 19.4 30.1 23.0
IB-Iso 15.6 18.5 28.9 21.1
IB-Aniso 22.8 21.9 37.0 25.1
FB-Iso 13.7 19.2 29.1 22.3
FB-Aniso 11.8 20.9 27.2 25.3
HS–LK 8.8 15.8 20.3 20.9
Our method 5.3 15.0 13.2 20.1
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4.3. Image-based isotropic regularization

Although Horn and Schunck’s method enjoys a great deal of
popularity and is still frequently used, as mentioned previously
its ‘‘blind” quadratic regularizer Esp is well known to blur-out mo-
tion discontinuities. Consequently, variational methods with a dif-
ferent regularization term have been proposed to better preserve
flow in those areas. A survey of some of these methods has been
published by Weickert and Schnörr [23].

One such method we have implemented uses an image-based
robust isotropic regularization factor similar to the one proposed
by Alvarez et al. [35]:

Esp ¼ WðjjrIjj2Þðjjrujj2 þ jjrv jj2Þ: ð30Þ

The goal of this regularization function is to strongly regularize
flow in textureless areas and reduce smoothing at image bound-
aries. Since Wð�Þ is a decreasing and strictly positive function, the
Fig. 8. Results for the CARS OVER PARK sequence. The red channel contains the magnitude o
vectors pointing downward. (For interpretation of the references to color in this figure
Charbonnier function has been implemented: Wðs2Þ ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2=k2

q
. In this way, as opposed to Horn and Schunck’s meth-

od which uniformly regularizes the flow, the W function prevents
Alvarez’ method from smoothing across an image edge. In other
words, in the vicinity of an image edge (i.e., where jjrIjj is large)
the influence of the prior function Esp is significantly reduced. This
makes the method less prone to smooth out the flow where there
is likely to be a motion discontinuity.

As mentioned by Alvarez et al. [35], following the Euler–
Lagrange equations, the to-be-optimized optical flow ðu;vÞ must
satisfy the following diffusion–reaction system at its steady state
(i.e., k!1)

@u
@k
¼ adivðWðjjrIjj2ÞruÞ � IxðIxuþ Iyv þ ITÞ ð31Þ

@v
@k
¼ adivðWðjjrIjj2ÞrvÞ � IyðIxuþ Iyv þ ITÞ ð32Þ

where k denotes an artificial evolution parameter that should not be
confused with time variable t of the image sequence. This system
can be solved with a modified-explicit scheme whose numerical
structure is given by

u½kþ1� � u½k�

s
¼ Ix Ixu½kþ1� þ Iyv ½k� þ IT

� �
� aA u½k�; v ½k�

� �
ð33Þ

where AðukÞ is the numerical approximation of divðaWðjjrIjj2ÞruÞ; k
is the iteration index and s is the optimization time step (again, not
to confuse with the time variable t or the temporal derivative index
T) that we set to 0.25. Note that this optimization scheme comes
from Weickert and Schnörr’s (2001) paper [23] and will be used
f the vectors pointing upward and the blue channel contains the magnitude of the
legend, the reader is referred to the web version of this paper.)



Fig. 9. Results for the ROTATING BONSAI sequence.
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for flow-based isotropic and the flow-based anisotropic methods. Here,
a total of 1000 iterations are used together with a set between 100
and 400 and k between 0.5 and 10. Variables a and k are manually
adjusted to each video sequence. Notice that v is optimized in
similar way.

4.4. Image-based anisotropic regularization

The anisotropic image-based variational method we have
implemented is the one proposed by Nagel and Enkelmann
[14,36] which uses second-order spatial derivatives to constrain
the flow. The key idea of their method is the use of an ‘‘oriented
smoothness” constraint that suppresses smoothing across image
edges while encouraging smoothing along image edges. The en-
ergy function their method minimizes has the following shape
[14,3]:

Eð~vÞ ¼ ðIxuþ Iyv þ ITÞ2 þ a2 trððr~vÞTWðr~vÞÞ ð34Þ

with

W ¼ 1
I2
x þ I2

y þ 2c
I2
y þ c �IxIy

�IxIy I2
x þ c

 !
ð35Þ

where c and a are two constants set between 2 and 5 depending on
the nature of the flow to be estimated and ‘‘tr” is the trace operator.
This functional may be minimized by a Gauss–Seidel optimizer as
explained in [3,14]. All details of our implementation have been
taken from Appendix A of Barron et al.’s technical report [51]. How-
ever, in contrast to what Barron et al. [3] suggested, a fixed number
of 500 iterations have been used.
4.5. Flow-based isotropic regularization

Another kind of modification to Horn and Schunck’s variational
model leads to the so-called ‘‘flow-based” methods [21–23,52,53].
These isotropic flow-based methods are implemented on top of a
robust regularizer that reduces the influence of outliers. The meth-
od we have implemented is similar to the one proposed by Weick-
ert [22] and to the 2D version of Weickert and Schnörr [52] spatio-
temporal method. For this method, the energy functional to be
minimized is expressed as:

Eðu;vÞ ¼ ðIxuþ Iyv þ ITÞ2 þ aWðjjrujj2 þ jjrv jj2Þ ð36Þ

where Wð�Þ is a robust function. In this way, this flow-based isotro-
pic method strongly regularizes the flow in areas where jjrujj2 and
jjrv jj2 are small and reduce regularization where jjrujj2 and/or
jjrv jj2 is strong, i.e., in the vicinity of a motion discontinuity.

The gradient descent of this functional leads to the reaction–dif-
fusion system:

@u
@k
¼ r W0ðjjrujj2 þ jjrvjj2Þru

� �
� Ix

a
ðIxuþ Iyv þ ITÞ ð37Þ

@v
@k
¼ r W0ðjjrujj2 þ jjrv jj2Þrv

� �
� Iy

a
ðIxuþ Iyv þ ITÞ ð38Þ

where W0ðs2Þ is the derivative of Wðs2Þ (with respect to s2) that we
set equal to 1ffiffi

ð
p

1þs2=k2Þ
as suggested by Weickert [22]. As is the case

for the image-based isotropic method, we resort to a modified-
explicit scheme [52] to perform the gradient descent. A total
number of 1000 iterations is used, with k set between 0.01 and
0.1 and a ¼ 300.



Fig. 10. Results for the PARTHENON sequence.
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4.6. Flow-based anisotropic regularization

Flow-based anisotropic regularization motion estimation meth-
ods are similar to the previously introduced anisotropic image-
based methods. The flow-based anisotropic methods encourage reg-
ularization along flow discontinuities while discouraging regulariza-
tion across flow discontinuities [23,54,55]. This family of methods is
thus clearly different from the flow-based isotropic methods which
only prevent smoothing across motion discontinuity. The aniso-
tropic method we have implemented was taken from Weickert
and Schnörr [23] which minimizes the following functional:

Eðu; vÞ ¼ ðIxuþ Iyv þ ITÞ2 þ a trWðruruT þrvrvTÞ ð39Þ

where Wð�Þ is a robust function. Using the Euler–Lagrange theorem,
the gradient descent of this functional leads to the reaction–diffu-
sion system [23]

@u
@k
¼ Ix

a
ðIxuþ Iyv þ ITÞ þ divðW0ðJÞruÞ ð40Þ

@v
@k
¼ Iy

a
ðIxuþ Iyv þ ITÞ þ divðW0ðJÞrvÞ ð41Þ

where

J ¼ ruruT þrvrvT ð42Þ

and

W0ðJÞ ¼ W0ðr1Þ~l1~lT
1 þW0ðr2Þ~l2~lT

2 ð43Þ
where r1;r2 and ~l1; ~l2 are the eigenvalues and the eigenvectors of

J, and W0ðs2Þ is fixed to 1ffiffi
ð
p

1þs2=k2Þ
. The optimization is performed

through a modified-explicit scheme [52] together with a total of
1000 iterations. The variable k is set between 0.01 and 0.1 and a be-
tween to 100 and 500. As is the case for the other methods, these
values are adjusted according to the nature of the flow to be
estimated.

4.7. Combined local–global method

The traditional Lucas–Kanade method which estimates flow with
a simple matrix inversion (see Eq. (8)) is clearly a local approach
since it provides no means to propagate flow. However, a basic iter-
ative scheme such as the one of Algorithm 1, or a more elaborate one
such as the one we propose in Algorithm 3, can allow a LK-based
method to propagate flow. Thus, we believe that our method should
be compared with a recently-published method which explicitly
combines the Lucas–Kanade and Horn and Schunck method into a
synthetic ‘‘local–global” method [56]. Using the notations

~ws ¼ ðus;v s;1ÞT

jj~wsjj2 ¼ jjrusjj2 þ jjrv sjj2

r3I ¼ ðIx; Iy; ITÞT

Jqðr3IÞ ¼Wq � ðr3Ir3ITÞ ð44Þ



Fig. 11. Results for the FLOWER sequence.
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where Wq is a Gaussian kernel with standard deviation q and
Jqðr3IÞ is a structure tensor. The authors argue that the Lucas–Ka-
nade and Horn and Schunck energy functionals can be, respectively,
expressed as

ELKð~wÞ ¼ ~wTJqðr3IÞ~w ð45Þ

EHSð~wÞ ¼
Z
~wTJ0ðr3IÞ~wþ ajjrwjj2 dxdy ð46Þ

where J0ðr3IÞ is a structure tensor with a zero standard deviation. A
local–global energy function can thus be obtained by simply replac-
ing J0ðr3IÞ by Jqðr3IÞ with q > 0:

EHS—LKð~wÞ ¼
Z
~wTJqðr3IÞ~wþ ajjrwjj2 dxdy: ð47Þ

As can be seen, EHS—LK implements two spatial coherence con-
straints: an integration window (first term) and a prior function
(second term). These two constants implicitly compensate for their
mutual limitations and thus generate a better constrained flow.
The authors argue that more accurate results can be obtained with
a non-quadratic variation of ELK—HS whose formulation is as
follows:

EHS—LKð~wÞ ¼
Z

W1ð~wTJqðr3IÞ~wÞ þ aW2ðjjrwjj2Þdxdy ð48Þ
where W1ðs2Þ and W2ðs2Þ are non-quadratic robust functions. All re-
sults reported in this section with the subscript ‘‘HS–LK” have been
obtained after minimizing Eq. (48). As mentioned by the authors,
the Euler–Lagrange equations of EHS—LK are given by

0 ¼ divðW02ðjjr3wjj2ÞruÞ

� 1
a

W01 ~wTJqðr3IÞ~w
� �

W11uþW12v þW13ð Þ

0 ¼ divðW02ðjjr3wjj2ÞrvÞ

� 1
a

W01 ~wTJqðr3IÞ~w
� �

W21uþW22v þW23ð Þ

where Wij is a component of the structure tensor Jqðr3IÞ. In our

implementation, Wiðs2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þs2=k2

i

p and the vector field v is computed

with a Successive Over-Relaxation optimization scheme [56]. The
number of iterations is set to 1000 and variables k1 and k2 are as-
signed values ranging between 0.05 and 0.005, depending on the
nature of the scene.

Bruhn et al. [56] stipulate that the method can be made ‘‘3D”
through the use of spatio-temporal filters. Although this modifica-
tion may improve motion estimation, to make the comparison style
fair for the other methods implemented in a ‘‘2D” style, we have
implemented what Bruhn et al. call the non-quadratic 2D energy
function (here Eq. (48)).



Fig. 12. Results for the TAXI sequence.
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5. Results

In this section, an extensive set of results obtained with our
method and the ones introduced in the previous section are pre-
sented. These results have been obtained on synthetic, realistic,
and real sequences. For those sequences with a ground truth vector
field, two angular error metrics taken from Barron et al. [3] are
used to provide a quantitative measure of quality. For the ones
with unknown ground truth, vector fields snapshots are provided.

5.1. Setup and implementation details

In order to correctly gauge performance, all optic flow methods
were implemented in a similar matter. They share the same spatial
and temporal gradient function, the same multiresolution frame-
work and they process video sequences that were pre-filtered by
the same low-pass spatio-temporal filter. In fact, all image se-
quences presented in this paper have been pre-filtered by a spa-
tio-temporal Gaussian filter. For each sequence, the spatial
standard deviation of the filter is set to 1.5 whereas, the temporal
standard deviation is set to 1.5 for sequences YOSEMITE, TRANSLATION

TREE, DIVERGENCE TREE, CARS OVER PARK, FLOWER, and MOM AND DAUGHTER and to
0.5 for sequences ROTATING BONSAI, PARTHENON, TRANSLATING SHAPES, CLAIRE,

TAXI, and KARLSRUHE. The spatial derivatives in x and y used by every
method is approximated with a central difference. As for the tem-
poral derivative, a simple two-frame difference is used through
every sequence.

Since our method is built upon a multiresolution framework,
each method has also been implemented in a multiresolution
fashion in order to make the comparison fair for every approach.
Here, the multiresolution framework is the same for every meth-
od: the coarse-scale solution obtained at level L serves as initial
data for estimating the flow at the level L� 1. The reader should
be aware that the number of pyramid levels is a fundamental is-
sue when estimating motion. For instance, we observed that for
scenes with global motion such as Yosemite or the Translating
Tree sequence, a high pyramid with many levels improves estima-
tion of the flow. On the other hand, scenes with local motion, i.e.,
motion with small-scale details such as the Taxi or the Bonsai se-
quences for instance, a pyramid implementation with fewer lev-
els is preferable. For these reasons, the number of pyramid
levels used by each method has been manually adjusted to each
sequence. Typically, the number of levels is set between 1 and
3 for each method.

Since a uniform implementation framework is used for every
method, some results reported in this paper differ slightly from
those reported in previous papers. For instance, our implementa-
tion of Horn and Schunck’s method produces, for the Yosemite se-
quence, an average angular error of 7.35 as opposed to 11.26 in
Barron et al. [3]. This is mainly due to the fact that our implemen-
tation of HS has been made multiresolution.

Also, when we implemented these methods, we first used the
parameter sets provided by the authors. However, we came to
realize that these parameters are not well suited for every se-
quences. For instance, the a regularization term of the Horn and
Schunck method needs to be large when estimating a ‘‘global”
optical flow (i.e., a vector field with little or no motion discontinu-
ities) such as the TRANSLATING TREE, the DIVERGING TREE and the YOSEMITE

SEQUENCES. Indeed, when a is large, the flow diffusion is maximal
and regions with little or no texture can be compensated by a



Fig. 13. Results for the MOM AND DAUGHTER sequence.
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strong regularization. On the other hand, using a large a value on
‘‘local” sequences such as KARLSRUHE, TAXI and the MOVING SHAPES, has
the effect of over-regularizing the flow and thus generate ‘‘super-
blurry” motion fields. Thus, for those local sequences, a smaller a
value is better suited. In other words, a good set of parameters for
a global sequence is not necessarily appropriate for a local se-
quence. Thus, to fairly compare the methods, we believe that
the parameters of every method need to be adjusted to the con-
tent of the sequence. Using only one parameter set per method
would be harmful for most methods. Unfortunately, since most
original papers do not provide a parameter set for local and global
sequences, we had to heuristically adjust it. Consequently, the
parameters were optimized to obtain the best results based on
the content of the scenes.

Let us also mention that since processing speed is not the core
of this paper, a large number of iterations (sometimes much great-
er than necessary) has been given to every method. This is to en-
sure that every method converges towards a stable solution. In
most cases, the specific number of iterations has been taken from
the original papers and, in some cases, increased slightly.

For our method, X ¼ K ¼ N ¼ 9 or 112 (for Algorithm 1,
N 2 f7;9;11g) and the noise level bias (variable Nl in Algorithm
3) between 2.0 and 5.0 for every sequence.

Notice that the noise level has also been used in the implemen-
tation of Algorithm 1 to make sure LK always produces vector
fields of 100% density. In fact, the Algorithm 1 is identical to our
method except for the edge-avoidance procedure and the fusion
2 X is the fusion window half-size in Eq. (14) and K is the window half-size used to
compute the covariance matrix Cs in Eq. (15).
procedure (Eq. (16)). In this way, the results clearly illustrate the
difference between our method and the traditional iterative LK
algorithm. Also, as shown in Algorithm 3, our method requires that
the covariance matrix Cs be computed for each s 2 S at each opti-
mization iteration. However, we observed empirically that com-
puting Cs only once at the first iteration and reusing it afterward
does not significantly reduce the quality of the results. In this
way, Cs is estimated once at every scale of the pyramid. We thus
adopted that strategy as a means to save processing time.

The number of iterations for Algorithms 1 and 3 is set to three
whereas the number of mean-shift iterations is set to four. For each
example, the radius of the mean-shift hypervolume ShðxÞ is set to N
in the spatial domain and to 10 in the range domain. Notice that all
flow fields presented in this section have a density of 100%.

5.2. Metrics

As mentioned, three kinds of sequences are used to compare the
methods: synthetic, realistic and real sequences. While synthetic
sequences are composed of pure computer-generated images, real-
istic sequences are made up of real-world images with simulated
motion. Both synthetic and realistic sequences come with a ground
truth vector field which makes it possible to quantitatively com-
pare the methods. Following Barron et al. [3], we implemented
the average angular error metric to evaluate the distance between
the ground truth vector field V and the estimated vector field v̂ ,
namely

�wE ¼
1

N�M

X
s2S

arccosð~v s � ~VsÞ ð49Þ



Fig. 14. Results for the CLAIRE sequence.
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where ~v s and ~Vs are normalized 3D vectors: ~v s ¼ ðu;v;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þ1
p . Because

our method is meant to preserve sharp discontinuities, the metric
was also implemented on vectors located at a distance lower or
equal than 10 pixels from a motion edge, i.e.,

�we
E ¼

1
N�M

X
s2S

Ds610

arccosð~v s � ~VsÞ ð50Þ

where Ds is the distance in pixels between site s and the nearest
motion edge. This metrics is used to evaluate how accurate the opti-
cal flow algorithms are near flow discontinuities. The results are
also presented in terms of the standard deviation

rwE
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�M

X
s2S

ðarccosð~v s � ~VsÞ � �wEÞ2
s

ð51Þ

and

rwe
E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�M

X
s2S

Ds610ðarccosð~v s � ~VsÞ � �we
EÞ

2

s
: ð52Þ



Fig. 15. Results for the KARLSRUHE sequence.
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5.3. Synthetic sequences

We have compared the nine methods over three synthetic se-
quences, namely YOSEMITE WITH SKY, YOSEMITE WITHOUT SKY, and TRANSLATING

SHAPES. Notice that in the case of the YOSEMITE WITH SKY sequence,
although the first version of the ground truth file had a sky with
a translational velocity of 1.0, we used the more recent one with
a velocity of 2.0. The two YOSEMITE sequences were taken from Bar-
ron et al. [3] and Michael Black’s web site (http://www.cs.brown.e-
du/people/black/) while the TRANSLATING SHAPES sequence was

http://www.cs.brown.edu/people/black/
http://www.cs.brown.edu/people/black/
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Fig. 16. The effect of the noise level variable on the angular error of four sequences.
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computer generated. The latter sequence exhibits two arbitrary
shapes running horizontally in front of a uniform background.
The three sequences are shown in Fig. 4 and the quantitative re-
sults are presented in Tables 1–3. The results for the TRANSLATING

SHAPES sequence are also plotted in Fig. 7. In this figure, the first
row presents the magnitude of the estimated vector field (in red)
overlapped with a time frame. These images (as well as the zoom
on the vector field) illustrate visually how precise each method is
on that sequence.

Notice that for these three synthetic sequences, our method
generates results that are at least as precise than the ones pro-
duced by the other methods. This is especially true near the motion
edges of the TRANSLATING SHAPES sequence.

5.4. Realistic sequences

The methods were also tested over the five realistic sequences
presented in Fig. 5. The first two are the famous TRANSLATING TREE

and DIVERGING TREE sequences [3] for which motion is global with
no discontinuities. The other three sequences were computer gen-
erated with real images. For the CARS OVER PARK sequence, four cars
(cropped from the KARLSRUHE sequence) are pasted on top of a pic-
ture of Central Park. The four cars move upward while the back-
ground is diagonally shifted toward the lower left corner. For the
ROTATING BONSAI sequence, an image of a bonsai (a small tree in a
pot) rotates in front of a flat motionless background. The last real-
istic sequence is the PARTHENON sequence for which an image of the
Parthenon is plotted in front of an image of Florence’s Duomo. In
this sequence, the Parthenon moves horizontally toward the right
whereas the background has a counterclockwise rotation. The rea-
son why we picked these sequences was to illustrate how good our
method is with sequences having different amounts of texture.

Quantitative results for the realistic sequences are presented in
Tables 4–8. As we did for the synthetic TRANSLATING SHAPES sequence,
the magnitude of the estimated vector fields have been overlapped
with a time frame to illustrate how precise the methods are near
motion boundaries. This is shown in Figs. 8–10. Except for the
DIVERGING TREE sequence, our approach appears to be either the best
or the second best method according to both quantitative mea-
sures. This is true whether the moving objects have a translational
(CARS OVER PARK) or a rotational motion (ROTATING BONSAI). Even on highly
textured scenes, i.e., scenes for which most strong color/intensity
edges do not correspond to a motion discontinuity, the results sug-
gest that our method is as good as, if not better than the others.

5.5. Real sequences

As shown in Fig. 6, five well known image sequences have been
used to compare the methods. These sequences are CLAIRE, KARLSRUHE,
MOM AND DAUGHTER, TAXI, and FLOWER. Qualitative results are presented
in Figs. 11–15.

6. Discussion

The results presented in the previous section demonstrate that
our method is competitive on all types of sequences. This includes
sequences with global motion (YOSEMITE with and without sky,
TRANSLATING and DIVERGING TREE) and local motion (KARLSRUHE, TAXI, TRANS-

LATING SHAPES and BONSAI). Our method also shows good performance
in estimating translating motion, rotating motion and diverging
motion. Our method works well over sequences exhibiting large
textureless backgrounds (BONSAI, TRANSLATING SHAPES, and CLAIRE) and
on more highly textured sequences (PARTHENON, YOSEMITE, and FLOWER).
These results illustrates the fact that the combination of a fusion
procedure (Eq. (14)) and an edge avoidance procedure makes the
method efficient on various sequences representing different chal-
lenges. While the mean-shift-based avoidance procedure preserves
sharp motion boundaries, the covariance filter smoothes out the
vector field and thus minimizes errors due to lack of texture, occlu-
sion and noise. More specifically, the fact that our method relies on
the assumption that image and motion boundaries coincide might
suggest that our method is error-prone in regions where the num-
ber of motion boundaries is larger than the number of image edges
(such as in YOSEMITE, TRANSLATING and DIVERGING TREE sequences). This
would certainly be true if only the edge-avoidance procedure (first
part of Algorithm 2) was used to estimate the flow. However, since
the covariance filter is used at each iteration, errors that could
eventually be induced by the mean-shift-based motion estimation
are significantly reduced. Also, since the magnitude of the mean-
shift vector Ps (see Section 3.3) is limited to N, the avoidance pro-
cedure cannot induce a large error. Our method is thus efficient for
estimating motion over highly textured scenes.

While testing our approach, we observed two limitations with
our method. The first one concerns the processing time. Even by
calculating Cs only once during the first iteration, our method is
approximately 5 times slower than LK. Since this can be a major
limitation for some applications, one might consider a technical
solution to that problem. In fact, our method can be implemented
on a parallel architecture (such as a programmable graphics card
for example) and work in interactive time. Such implementation
is possible because calculation over each site s 2 S (at each stage
of the algorithm) is independent of the processing of its neighbors.
The parallel implementation would thus be effective for the mean-
shift calculation, motion estimation, and covariance filtering. Also,
as we previously mentioned, another way to accelerate our method
is by replacing the covariance filter with a simple Gaussian low-
pass filter. This would greatly improve the processing times,
although at the expense of precision. The second limitation of
our method comes from the fact that, in some specific cases, de-
spite the covariance filter, some mean-shift vectors Ps induce er-
rors which could not be compensated. This is typically true when
the intensity edges of two objects cross. Fig. 18 shows two exam-
ples for which a background edge is taken as a part of the moving
object. As mentioned, since the magnitude of the mean-shift vec-
tors is limited to N these errors are very local. One way to minimize
this problem would be to include a motion segmentation step to
the motion estimation process. This way, only the mean-shift vec-
tors Ps located in the vicinity of a moving edge would be retained.
With such modification, our approach would then become a mo-
tion segmentation/estimation method.

Finally, we have tested the influence of the most important vari-
ables of our method. These variables are the neighborhood window
size N and the noise level Nl. As mentioned before, for every exam-
ple presented in this paper, N was set to 9 or 11 and the noise level
between 2 and 5. We observed that the resulting vector fields react



Fig. 17. Vector fields obtained with our method with different neighborhood window size N and different noise levels.
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smoothly to a change of these variables and that other values
could have been used. To illustrate this assertion, Fig. 17 presents
different vector fields obtained on the CLAIRE and the TAXI sequences
with different values for N and for the noise level variable. The
resulting vector fields react smoothly to a change of these two
variables. In Fig. 17, we plotted the angular error (wE) of four



Fig. 18. Two examples for which the mean-shift-based avoidance procedure has locally induced an error.
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sequences processed with different noise levels. For those highly
textured sequences (YOSEMITE and TRANSLATION TREE) a larger noise level
tends to slightly raise the angular error; for less textured
sequences, a higher noise level clearly reduces the angular error
(wE). In other words, the use of such a bias makes our method esti-
mate vector field with 100% density without inducing any signifi-
cant error, even on highly textured sequences that might require
little or no bias.
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