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a b s t r a c t

In this paper, we present an original image segmentation model based on a preliminary spatially adaptive
non-linear data dimensionality reduction step integrating contour and texture cues. This new dimension-
ality reduction model aims at converting an input texture image into a noisy color image in order to
greatly simplify its subsequent segmentation. In this latter de-texturing model, the (spatially adaptive)
non-local constraints based on edge and contour cues allows us to efficiently regularize the reduced data
(or the resulting de-textured color image) and to efficiently combine inhomogeneous region and edge
based features in a data fusion/reduction model used as pre-processing step for a final segmentation task.
In addition, a set of color/texture and edge-based adaptive spatial continuity constraints is imposed dur-
ing the segmentation step. These improvements lead to an appealing and powerful two-step adaptive
segmentation model, integrating contour and texture cues. Extensive experimental evaluation on the
Berkeley image segmentation database demonstrates the efficiency of this hybrid segmentation model
in terms of classification accuracy of pairwise pixels in the resulting segmentation map and in the preci-
sion–recall framework widespread used for evaluating contour detectors.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Image segmentation is a frequent pre-processing step whose goal
is to simplify the representation of an image into meaningful and
spatially coherent regions (also known as segments or superpixels)
with similar attributes such as consistent parts of objects or of the
background. This low-level vision task, which changes the represen-
tation of an image into something that is easier to analyze, is often
the preliminary and also crucial step in the development of many
image understanding algorithms and computer vision systems.

A review of literature indicates that most of natural image seg-
mentation algorithms can be generally divided into two categories,
namely the so-called region-based and edge-based segmentation ap-
proaches. Region-based segmentation methods attempt to group
spatially coherent regions with similar attributes. They include seg-
mentation methods exploiting clustering schemes [32,22,46,34]
(with fuzzy sets [37] or Gaussian mixture models [41] and after a
possibly de-texturing approach [34,35]), mean-shift-based (or more
generally mode seeking) procedures [9,25,6], watershed or [30] re-
gion growing strategies [11], lossy coding and compression models
[26,30], MRF-based statistical [19,14,12,39,7], Bayesian [38,8] or
graph-based models [43,16,45], variational methods [3,15,40],
deformable surfaces [23], spectral clustering [10] and finally by
ll rights reserved.
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some fusion techniques of multiple weak (region-based) segmenta-
tions [32,20,33].

On the other hand, edge-based segmentation methods rely on
the prediction of local edge fragments which are simply defined
by significant localized changes or discontinuities in some image
features. In this way, classical edge detectors, such as Canny’s [5]
search for discontinuities in the luminance or color intensity while
more recent edge-based segmentation methods can also use steer-
able filters [17], filter-based methods [24], energy-based models
[36], probabilistic approaches [13] or take into account color and
texture information with a preliminary learning step for the opti-
mal cue combination [28]. It is worth mentioning that, due to the
local nature of such contour detectors and thus, their inherent sen-
sitivity to noise artifacts, boundary detection algorithms inevitably
produce false and disconnected contours (excepted in [2]). By this
fact, and contrary to the result given by a region-based segmenta-
tion method, the resulting soft boundary detection map does not
generally exhibit, for a given threshold, a set of closed curves cor-
responding to the boundaries of a segmentation into regions and
consequently, this resulting soft edge map often remains more dif-
ficult to exploit in a high level image analysis system compared to
a classical region map.

In order to find a reliable segmentation, some attention has
been given to associating/combining a region and edge based
segmentation approach or equivalently to proposing an image
segmentation model fusing contour or gradient features with
color/texture cues. In this attempt, we can cite the Data-Driven
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Markov Chain Monte Carlo (DDMCMC) paradigm proposed by [47]
in order to combine (possibly) different edge detectors and region-
based clustering methods in order to guide the Markov chain
search and to select a set of important segmentation solutions at
multiple scales of details. We can also cite the hierarchical segmen-
tation method proposed in [2] which transforms the output of any
contour detector (and especially the so-called gPb contour detector
[1] combining local gradient and color/texture cues) into a hierar-
chical region tree structure represented as an ultrametric contour
map (UCM) and producing a set of closed curves for any threshold
(and thus also encoding a set of segmentation maps at different
scales). Extensive experimental results reported in [2] shows that
this latter segmentation algorithm is currently the best to date
both in terms of quality of segmented regions and detected con-
tours. More precisely, in terms of two reliable and complementary
performance metrics, namely the Probabilistic Rand Index (PRI)
[44] and the F-measure [28] which appear to be fully effective
for evaluating both a region-based segmentation and the quality
of contours produced by this segmentation map (comparatively
to multiple, manually generated, ground-truth segmentations ob-
tained from human subjects). In fact, the PRI score measures in
percentage the number of pairs of pixel labels correctly classified
in the segmentation results and the F-measure provides a precision
score, evaluating the agreement between region boundaries of the
machine segmentation and the ground-truth segmentation. This
latter measure is, in fact, deduced from the well-known preci-
sion/recall values that characterizes, in this case, respectively the
fraction of detections that are true boundaries and the fraction of
true boundaries detected.

The segmentation approach, proposed in this paper, further
explores the MDS-based de-texturing pre-processing step initially
presented in [35]. Concretely, this de-texturing step aims at
converting the original texture image, in which each pixel is associ-
ated with a (local) D-dimensional feature vector, in a low (three)
dimensional space, i.e., into a noisy color image, thus simplifying
the segmentation step (see Fig. 1). In the proposed model, our con-
tribution includes both the integration of contour cues in this
region-based dimensionality reduction and clustering procedures,
Fig. 1. From left to right: original Berkeley images (n0 105019 and n0 134008 and n0 1340
color image) of the local color and gradient value distribution of the texture regions. Sec
cues. Third column: MDS-based de-texturing method using only texture cues as propos
thus allowing to further simplify the segmentation process by effi-
ciently ‘‘regularizing’’ the de-textured color image and finally to
greatly improve the segmentation result. We will see that the pro-
posed strategy appears as an interesting alternative to efficiently
combine region and edge cues in a hybrid segmentation model. In
addition, we also propose a complexity measure which allows us
to adaptively set, for each natural image to be segmented, the differ-
ent parameters of our two-step (de-texturing and clustering) seg-
mentation model. The experimental evaluation demonstrates that
our model provides a powerful segmentation framework which ap-
pears as an interesting alternative to complex models existing in the
literature for the difficult image segmentation problem.
2. Proposed model

As starting point for our segmentation model, we consider, in a
first step, the gradient and color/texture feature extraction step
proposed in [35] (see Section 2.1) and locally computed on over-
lapping squared small windows (centered around the pixel to be
classified). This yields, for each pixel, to a D-dimensional feature
vector whose dimension will be non-linearly reduced, in a second
step, to three dimensions (3D) by an improved version of the non-
linear MDS-based dimensionality reduction technique introduced
in [35] (see Section 2.2). This non-linear dimension reduction step
can also be viewed as a de-texturing approach which converts the
original texture image into a (low) 3D representation of the local
color and gradient value distribution of the texture regions. Con-
cretely speaking, this latter step aims at converting the input tex-
tured image into a (noisy) color image, without texture, that will
be drastically easier to segment (see Fig. 1).
2.1. Texture feature extraction step

In order to validate our segmentation model, we use as texture
features (to characterize each textured region) and to be repre-
sented in a lower dimensional space:
52) and de-textured related images i.e., low (three)-dimensional representation (as a
ond column: our MDS-based de-texturing method integrating contour and texture

ed in [35].
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1. First, the set of values of the local color non-normalized histo-
gram and estimated around the pixel to be classified for an
input image expressed in the LAB color space. In our applica-
tion, this local histogram is equally re-quantized with qc equi-
distant binnings for each of the A and B color channels, and
(qc � 1) equidistant binnings for the L channel (in order to be
somewhat invariant to shadows effects) in a final
Nb ¼ ðqc � 1Þ � q2

c bin descriptor, computed on an overlapping
squared fixed-size (Nw) neighborhood centered around the
pixel to be classified.

2. Second, the four sets of (respectively vertical, horizontal, right
diagonal and left diagonal) Ng equidistant bin values in the
interval [0:Gmax] of the non-normalized local histogram of the
gradient magnitude (i.e., the absolute value of the first order
difference) computed on the luminance component of each
pixel contained in an overlapping Nw-squared fixed-size neigh-
borhood (centered around the pixel to be classified).

In this simpler feature extraction model, a texton is thus herein
characterized by the values of the re-quantized color and gradient
magnitude histograms in the four directions (see [35] for more de-
tails), and thus yields to a D ¼ ½Nb þ 4Ng � ¼ ½ðqc � 1Þq2

c þ 4Ng �-
dimensional feature vector (for each pixel to be segmented). In
our application, we take qc = 4, Ng = 10 and Nw = 7.

Let us note that Nw must be large enough to efficiently model
the texton feature but should also be not too large in order not to
affect (too much) the accuracy of the boundary estimation be-
tween distinct textured regions. A good compromise, between
good classification of the segmentation and contour accuracy,
seems to be the value Nw = 7. Some tests have shown that Nw = 5
and Nw = 9 give slightly similar performance results and a size va-
lue greater than Nw = 11 affects the accuracy of the boundary loca-
tion. This observation was also noticed in [34].

It is also important to note that qc and Ng, respectively the num-
ber of bins of each color channel and the number of bins of the gra-
dient magnitude histogram, should not be too large, in order to
avoid a resulting over-segmentation map. Indeed, the more the
number of bins is small and the more the number of similar texture
regions is important in the Bhattacharyya distance sense (see Eq.
(2)). Conversely, a large number of bins will favor different region
labels. In our application, we have empirically chosen these two
parameters after some trial and error.

Gmax, the maximal value of the gradient histogram, is set to
Gmax = 10 (thus, in our application, a gradient magnitude value
greater than 10 thus fall into the last bin).
2.2. MDS-based dimensionality reduction step

As proposed in [35], we separately reduce the dimensionality of
the color and the gradient magnitude feature vectors, since these
two texture clues are not very interrelated. This strategy allows
the MDS algorithm to (computationally) more easily find a non-lin-
ear manifold (without altering the accuracy of the final results).
Moreover, since the color features seem more important than the
gradient magnitude clues to characterize a texture region, we also
use twice as much weight by searching for them a non-linear man-
ifold with two times more dimensions. Finally, we construct a low-
dimensional representation with three dimensions1; this allows us
also to visualize this low-dimensional representation as a three-
channel (RGB or color) image. In this context, we have therefore a
1 Experimental tests have shown that a higher dimension representation does not
provide more information but, on the other hand, may affect the efficiency of the
clustering process. Conversely, a representation with less than three dimension
results in significant loss of information in the non-linear dimensionality reduction
method and thus in the accuracy of the segmentation result.
2D space for the texture/color based feature vector and a 1D space
for the gradient magnitude based feature vector.

Mathematically speaking, we consider the set of texture fea-
tures of an input color image (with N pixels) as a data cube
Iðs; kÞ or a 3D array, where s indicates the spatial location
s = (row, column) and hs(�) 2 IRD is the texture feature vector, in-
dexed by k, at location s. D is the dimensionality of the original tex-
ture feature vectors (i.e., the high dimensional space) and d = 3, the
dimensionality of the target low-dimensional representation. In
this context, the MDS approach, which attempts to find an embed-
ding from the N initial feature vectors in the high dimensional
space (d = D) such that distances are faithfully preserved in the
low dimensional (d = 3) target space, consists of finding
û ¼ ðbR bGÞt a 2D vector of mappings and v̂ ¼ ðbBÞt a 1D vector solu-
tion of the two (independent and) objective stress functions to be
minimized

û ¼ arg min
u

X
s;ts–t

ws;tb
½0:Nb ½
s;t � kus � utk2

2

� �2

v̂ ¼ arg min
v

X
s;ts–t

ws;tb
�Nb :D�
s;t � ðvs � vtÞ2

� �2

8>>><
>>>:

ð1Þ

where the summation
P

s;ts–t
is over all pairs of sites (i.e., for all sites

s and for all pairs of sites including s) existing in the image. b½k0�k1 �
s;t

denotes the squared Bhattacharyya distance between the pair of
feature vectors hs(k) and ht(k) (at pixels locations s and t and
k 2 [k0:k1]):

bI
s;t ¼ DB hH

s ;h
H

t

h i
¼ 1�

X
k2I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH

s ðkÞh
H

t ðkÞ
q

ð2Þ

In this histogram-based similarity measure (derived from the
Bhattacharyya similarity coefficient and whose measures range
from 0 to 1), hH

s ð�Þ denotes the normalized (integrating to 1) texture
feature vector or the normalized (color/texture or gradient) histo-
gram related to each pixel. After minimization, the three mapping
results ðbR bG bBÞ can be seen as a (noisy) de-textured color image
(see Fig. 1).

In [35], ws,t was a factor equal to 0.5 for sites t belonging to the
first neighborhood (i.e., four nearest neighbors) of s and equal to
1.0 elsewhere. The goal of this was to include, in this dimension
reduction step, a prior on the (de-textured color image) solution
favoring homogeneity between neighboring sites and to somewhat
constraint the low-dimensional mapping to exhibit homogeneous
regions (and thus allowing to simplify the subsequent segmenta-
tion procedure). In order to make this de-textured image even eas-
ier to subsequently segment, we have decided to make this factor
depending on the result of a coarse edge-based segmentation.
More precisely, a soft edge map (in the textural sense) is prelimin-
ary computed. One possibility, which we exploit here, is the simple
texture gradient based edge map proposed in [34] (see Fig. 2). In
order now to favor homogeneity (for the color value) of the sites
s and t when these ones are not separated by an edge in the soft
edge map and vice versa, we have used, as empirical choice for
the estimator of ws,t:

ws;t ¼ 2Wðs; tÞ ð3Þ

where W(s,t) denotes the maximal contour potential found on the
straight line existing between the sites s and t in the (soft) edge
map plane (see Fig. 2) normalized between [01]. With this
additional constraint, two feature vectors will be even further away
(in distance) in the (3D low dimensional) target space if they are
separated by an edge (thus penalizing two same colors for two re-
gions separated by an edge). Inversely, two feature vectors will be
even closer (in distance) in the target space if they are not separated
by an edge (thus favoring an homogeneous region). This allow us to
easily include a global prior constraint, based on contour cues,



Fig. 2. From top to bottom and left to right; a natural image (number 134052) from
the Berkeley database, its soft edge map and six pairs of sites represented by six line
segments whose the size is proportional to the value of the edge potential crossed
by the line segment.
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within our energy-based dimensionality reduction model exploiting
pairwise (texture) region-based distances. In addition, as additional
region-based regularization effect, and in order to take into account
that the soft edge map or the input texture image may be noisy, we
have added the following hard thresholding or constraint:
if ws;tbs;t < TBhð¼ 0:1Þ then ws;tbs;t ¼ 0:0 ð4Þ

Fig. 1 shows three original Berkeley images and their de-tex-
tured representation (as a color image), with and without contour
cues, and thus showing the ‘‘regularizing’’ effect of the non-local
Fig. 3. Examples of complexity values on some images of the Berkeley database. From lef
classes (K) of the K-mean clustering algorithm respectively to 2, 4, 5, 7 and 8 in our seg

Fig. 4. From top to bottom and left to right; a natural image from the Berkeley database
edge potential is respectively below n = 0.1 (7 homogeneous regions), n = 0.2 (18 hom
region). The white region corresponds to the sets of pixels whose edge potential is above
sense). By selecting the segmentation map exhibiting the maximum number of regions
merging of different textural regions during the spatially constrained K-means algorithm
constraints based on contour cues (which will greatly simplify
the subsequent segmentation problem and consequently to in-
crease its robustness).

Finally in order to minimize our energy-based dimensionality
reduction model (see Eqs. (1)–(4)), we use the optimization strat-
egy described in [35].

To this end (and qualitatively explained), we rely on a coarse-
to-fine minimization method. The goal of this multiresolution opti-
mization strategy is first to estimate (at coarser resolution level) an
approximate (and hence computationally simpler) solution of the
original minimization problem and then exploits this coarser esti-
mate to obtain (via an interpolation scheme) a good initial guess
that guides and accelerates the minimization process of the follow-
ing finer resolution level. At the coarser level, the solution is initial-
ized at random. At each resolution level, a conjugate gradient
descent procedure is then first used and, after convergence, the
solution is then refined by a stochastic local exploration around
the current solution using the Metropolis criteria and a low radius
of exploration. For further details, see [35].

2.3. Segmentation step

The above-presented MDS-based de-texturing approach, greatly
simplifies our segmentation problem (see Fig. 1) for which we have
decided to use a simple spatially constrained K-means clustering
procedure. In this clustering process, we have used as input multi-
dimensional feature descriptor, the set of (color) values estimated
on an overlapping squared fixed-size (Nkm = 5) neighborhood cen-
tered around each pixel (of our de-textured image) to be classified
t to right, complexity value = 0.235, 0.364, 0.515, 0.661, 0.803 setting the number of
mentation model.

(n0 134052), its soft edge map and the sets of connected pixels (i.e., regions) whose
ogeneous regions), n = 0.3 (12 homogeneous regions) and n = 0.4 (1 homogeneous

the threshold n (and thus corresponding to inhomogeneous regions in the textural
(in this example; the map related to n = 0.2), this allows, almost surely, to avoid a
.



Fig. 5. From left to right; a natural image from the Berkeley database (n0 198054), its segmentation before the refinement step, its texture-based over-segmentation and the
final result after the refinement step.
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(this strategy allows us to ‘‘regularize’’ a bit the K-means proce-
dure). In addition, K (the number of classes of the K-means) is herein
adaptively set for each image by a metric measuring the complexity,
in terms of number of different texture types, of a natural color im-
age (see the following section). The spatial constraints applied on
the K-mean clustering process is explained in Section 2.3.2.

2.3.1. Image complexity
This measure will allow us to adaptively set the number of clas-

ses of the K-mean algorithm. This metric is herein defined as the
measure of the absolute deviation (L1 norm) of the set of normal-
ized histograms or feature vectors (already computed in Section
2.1) for each overlapping squared fixed-size (Nw) neighborhood
contained within the input image. This measure ranges in [01]
Table 1
Average performance, in term of PRI measure, of several
segmentation (into regions) algorithms (ranked accord-
ing to their maximum PRI score) on the BSD300. Some of
these segmentation schemes have been directly applied
on the BSD300 without training strategy on the training
Berkeley dataset. These segmentation methods are
indicated by an asterisk.

ALGORITHMS PRI[44]

HUMANS (in [46]) 0.875
MDSCCT½TBh¼0:1jKmax¼10� 0.811
–2011– gPb-owt-ucm [2] 0.810
–2010– PRIF [33] 0.801
–2008– ⁄CTex [22] 0.800
–2009– MIS [23] 0.798
–2011– SCKM [34] 0.796
–2008– FCR [32] 0.788
–2004– ⁄FH [16] (in[46]) 0.784
–2011– MD2S [35] 0.784
–2009– HMC [39] 0.783
–2009– ⁄Consensus [20] 0.781
–2009– ⁄Total Var. [15] 0.776
–2009– ⁄A-IFS HRI [37] 0.771
–2001– ⁄JSEG [11] (in[22]) 0.770
–2011– ⁄KM [40] 0.765
–2007– ⁄CTM [46,26] 0.762
–2006– ⁄Av. Diss. [3] (in[2]) 0.760
–2008– ⁄St-SVGMM [41] 0.759
–2011– ⁄SCL [21] 0.758
–2005– ⁄Mscuts [10] (in[15]) 0.756
–2003– ⁄Mean-Shift [9] (in[46]) 0.755
–2008– ⁄NTP [45] 0.752
–2010– ⁄iHMRF [7] 0.752
–2005– ⁄NCuts [10] (in[2]) 0.750
–2006– ⁄SWA [42] (in[2]) 0.750
–2006– ⁄GBMS [6] (in[38]) 0.734
–2000– ⁄NCuts [43] (in[46]) 0.722
–2010– ⁄JND [4] 0.719
–2010– ⁄DCM [38] 0.708
–2009– ⁄[30] 0.703
and an image with several different texture types will result in va-
lue of complexity close to 1 (see Fig. 3). In our application,

K ¼ ceilðKmax � complexity valueÞ ð5Þ

where ceil(x) is a function that rounds x up to the nearest integer
and Kmax = 10 classes in our application since this number seems
to be an upper-bound of the number of classes for a very complex
natural image (with a minimum of 2 classes).

2.3.2. Spatially constrained K-means
As proposed in [35], to further help the K-means clustering pro-

cess to succeed in finding an accurate partition, a simple hard con-
straint enforcing the spatial continuity of each (likely) region is
imposed during the iterative K-means labeling process. To this
end, we preliminary compute an edge (gradient magnitude) map
from our de-textured image. The most likely regions in this edge
map (see Fig. 4) are easily estimated by identifying the sets of
connected pixels whose edge potential is below a given threshold
n thus defining a map of likely homogeneous regions. The hard
constraint enforcing the spatial continuity of each of the K-means
cluster is then simply performed by assigning the majority class
label in each pre-defined homogeneous textural region, for each
iteration of the K-means algorithm (and this constraint is applied
after convergence of the classical K-means clustering). Contrary
to [35], and in order to obtain better results by making this proce-
dure somewhat adaptive for each image, we set, (for each edge
map) the value of n that ensures the maximum number of homo-
geneous regions in this edge map (see Fig. 4).

Finally, a merging step is added to each segmentation map that
simply consists of fusing each small region (i.e., regions whose size
is below Szm = 100 pixels) with the region sharing its longest
boundary. This merging step allows to ‘‘regularize’’ a bit the
Table 2
Average performance, in term of F-measure, of several
segmentation (into contours) algorithms and contour
detectors (in parentheses) on the BSD300. The score
obtained by our algorithm is indicated in bold.

ALGORITHMS F-measure [29]

HUMANS (in [46]) 0.79
MDSCCT 0.63
–2011– gPb-owt-ucm [2] 0.71
–2010– PRIF [33] 0.64
–2003– Mean-Shift [9] (in [2]) 0.63
–2000– NCuts [10] (in [2]) 0.62
–2007– CTM [46] (in [2]) 0.58
–2004– FH [16] (in [2]) 0.58
–1986– [5] (in [2]) 0.58
–2006– SWA [42] (in [2]) 0.56
–2008– FCR [32] 0.56
Quad-Tree (in [2]) 0.37



Fig. 6. Evaluation of our algorithm in terms of F-measure on the BSD300
benchmark in the precision–recall framework (see also Table 2 for comparison
with other algorithms).

Table 3
Average performance of our algorithm for different performance measures (lower is
better) on the BSD300. The score obtained by our algorithm and the best score to date
are indicated in bold.

ALGORITHMS VoI GCE BDE

HUMANS 1.10 0.079 4.99
MDSCCT 2.004 0.205 7.951
PRIF [33] 1.970 0.209 8.446
SCKM [34] 2.114 0.230 10.090
MD2S [35] 2.361 0.235 10.368
FCR [32] 2.304 0.211 8.995
CTM [46,26] 2.024 0.188 9.896
Mean-Shift [9](in[46]) 2.477 0.260 9.700
NCuts [43](in[46]) 2.933 0.218 9.604
FH [16](in[46]) 2.665 0.189 9.950
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K-means procedure and to get a slightly better PRI score (see
Section 3).

2.4. Refinement step

Finally, in order to increase the contour accuracy of our segmen-
tation map, we now exploit an over-segmentation obtained by a
K-means clustering technique, applied on the input image and using
as input multidimensional feature descriptor, the color/texture cues
already computed computed in Section 2.1 and with K = Kmax (the
 0
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Fig. 7. From left to right, distribution of the �1 – PRI measure �2 – number and �3 –
upper-bound number of classes already used in Eq. (5)). In order
to succeed in finding a segmentation result with accurate contours,
a hard constraint is finally imposed to our segmentation result, by
simply assigning (as in Section 2.3.2) the majority region label in
each homogeneous textural region defined by this over-segmenta-
tion (see Fig. 5).
3. Experimental Results

3.1. Setup

In these experiments, we have tested our segmentation
algorithms on the Berkeley segmentation database (BSD300) [29]
for which the color images are normalized to have the longest side
equal to 320 pixels. The segmentation results are then supersam-
pled in order to obtain segmentation images with the original
resolution (481 � 321) before the estimation of the performance
metrics. In order to ensure the integrity of the evaluation, the inter-
nal parameters of our segmentation algorithm (called MDSCCT),
namely TBh = 0.1 (Eq. (4)), Kmax = 10 (Eq. (5) and Section 2.4) are
tuned (according to the PRI measure) on the train image set by doing
a local discrete grid search routine, with a fixed step-size, on the
parameter space and in the feasible ranges of parameter values
(namely TBh 2 [0–0.5] [step-size: 0.05], Kmax 2 [5–20] [step-size: 1].
3.2. Results and discussion

Two performance metrics have been computed, namely the PRI
[44] result, given for the entire image database for comparison
with the other segmenters and the F-measure [28] (see Tables 1
and 2). For comparison, we illustrate the results of our segmenta-
tion algorithm by showing the same segmented images (see Figs. 8
and 9) as those shown in the papers [33,35]. The results for the
entire database are available on-line at http address http://
www.iro.umontreal.ca/�mignotte/ResearchMaterial/mdscct. It
may be noted that our segmentation procedures give the best
PRI score among the state-of-the-art segmentation methods
recently proposed in the literature (a score equal to PRI = 0.811,
for example, simply means that, on average, 81.1% of pairs of pixel
labels are correctly classified in the BSD300 segmentation results),
even with a final simple clustering scheme based on a simple
K-means algorithm and a simple texture feature extraction step
based on the values of the local re-quantized texture/color and gra-
dient distributions (Fig. 7 shows respectively the distribution of the
PRI measure and the number and size of regions obtained by our
algorithm MDSCCT½TBh¼0:1jKmax¼10� over the BSD300).

The PRI performance measure, for only the testing set, and thus
without fear of the possible over-fitting problem, is PRI = 0.792, a
slightly lower score of only 2% compared to the score obtained
on the whole dataset. This is often the case for all segmenters, be-
cause the testing set contains more difficult images to segment. By
comparison, our algorithm without integrating contour cues, i.e.,
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the MD2S algorithm (see [35] and Table 1) allows to obtain
PRI = 0.784 on the entire database and also a slightly lower (of
about 2%) score of PRI = 0.768 on the testing set. Similarly, the
performance score of the PRIF segmentation algorithm (see [33]
and Table 1) is PRI = 0.789 and PRI = 0.801, respectively on the test-
ing set and on the entire database.
Fig. 8. Example of segmentations obtained by our MDSCCT½TBh¼0:1jKmax¼10� algorithm on sev
performance measures and http://www.iro.umontreal.ca/�mignotte/ResearchMaterial/m
We have also tested the performance, in term of F-measure (see
Table 2 and Fig. 6). First, we should remember that this measure is
better appropriate for contour detection methods giving a ‘‘soft’’
edge map since this benchmark measure is able to find, from a soft
edge map, the optimal threshold value ensuring the best F-measure
[27] over the BSD300. Contrary to the PRI performance measure,
eral images of the Berkeley image database (see also Tables 1 and 2 for quantitative
dscct.html for the segmentation results on the entire database).

http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/mdscct.html
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for which we have noticed that this ‘‘best threshold’’ expressed in
terms of Kmax and TBh (i.e., the two internal parameters of the algo-
rithm) is thus Kmax = 10jTBh = 0.1 (see Table 1). In term of F perfor-
mance measure, we will let the algorithm in choosing the optimal
threshold and we will provide a soft contour map, by simply aver-
aging the set of ‘‘hard’’ boundary representations obtained by our
segmentation method with Kmax, the number of classes of the seg-
mentation step, varying in a interval containing an upper and low-
er bound of the number of classes, e.g., Kmax 2 [6:16] (i.e., an
Fig. 9. Example of segmentations obtained by our MDSCCT½TBh¼0:1jKmax¼10� algorithm on sev
performance measures and http://www.iro.umontreal.ca/�mignotte/ResearchMaterial/m
average of 10 different boundary representations obtained by ten
different clusterings with ten different values of the number of
classes). We have obtained F = 0.63@(R = 0.65, P = 0.61) for the
BSD300, which is very competitive compared to the state-of-the
art existing segmentation methods and not too far to the highest
score to date, namely F = 0.71 [2]).

We have also compared our segmentation method with three
other region-based performance metrics, namely; VoI [31], GCE
[29], BDE [18] (for which a lower distance is better), showing that
eral images of the Berkeley image database (see also Tables 1 and 2 for quantitative
dscct.html for the segmentation results on the entire database).

http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/mdscct.html
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our method gives competitive results for some other metrics based
on different criteria and compared to state-of-the arts (see Table 3).
The qualitative meaning of these three metrics are outlined below.

1. The Variation of Information (VoI) metric [31] is based on rela-
tionship between a point and its cluster. It uses mutual informa-
tion metric and entropy to approximate the distance between
two clusterings across the lattice of possible clusterings.

2. The Global Consistency measure (GCE) [29] measures the
extent to which one segmentation map can be viewed as a
refinement of another segmentation. For a perfect match (in
this metric sense) every region in one of the segmentation must
be identical to, or a refinement (i.e., a subset) of a region in the
other segmentation. Segmentation which are related in this
manner are considered to be consistent, since they could repre-
sent the same natural image segmented at different levels of
detail (as the segmented images produced by several human
observers for which a finer level of detail will merge in such a
way that they yield the larger regions proposed by a different
observer at a coarser level).

3. The Boundary Displacement Error (BDE) [18] measures the
average displacement error of one boundary pixels and the clos-
est boundary pixels in the other segmentation.

The experiments show us that our segmentation model tends to
slightly over-segment for some images containing regions2 with
large texture elements or sometimes to merge a part of an animal
(with its texture camouflage) with its natural environment (or more
generally a textured region with the same average color of its back-
ground). This is also shown by the large number of regions for cer-
tain images (see Fig. 7b) and also by the average number of
regions per image, obtained by our method, and equals to 19 on this
BSD300. Consequently, our segmentation procedure should provide
better results if a final grouping at region level (including or not
an a priori on the number and/or the shape of these segmented re-
gions) would be used as post-treatment.

In order to see which step of our algorithm has contributed
most to the final improvements, we have tested the influence
and the efficiency of the refinement step (see Section 2.4) on the
final PRI score. Without the final refinement step, we obtain a
PRI equals to 0.802, a lower score of 1.1% (in terms of pairs of pixel
labels correctly classified in the segmentation result) compared to
our final score of PRI = 0.811. In addition, we have also tested the
influence and the efficiency of the merging step (see Section
2.3.2) on the final PRI score. Without the final merging step (or
equivalently with Szm = 0), we obtain a PRI equals to 0.808, a lower
score of 0.4% compared to our final score of PRI = 0.811. Finally,
without the final refinement step and without the merging step,
we obtain a PRI equals to 0.790.

It is worth mentioning that, since our MDS-based data/fusion
reduction model (used as pre-processing step for a final segmenta-
tion step) essentially exploits the notion of pair of (texture/gradi-
ent based) feature vectors (and not pair of class-labels) existing
in the image; high level knowledge about the semantic meaning
of the objects that compose the image (e.g., semantic labels or
cooccurence or domain-specific knowledge between labels) thus
cannot be integrated in our approach. Nevertheless, our MDS-
based de-texturing approach can easily include mid-level features
such as (reflection, bilateral, etc.) symmetry cues (of objects pres-
ent in the image) which can significantly help the segmentation
task. This can be done, for example, by favoring homogeneity (with
a low ws,t value, see Eq. (1)) for pair of sites (s, t) sharing the same
2 We recall that a region (or a segment) is a set of connected pixels belonging to the
same class.
(preliminarily detected) axis of symmetry. In addition, a prior
knowledge about the size of the segmented regions can be inte-
grated in our model. For example, in order to limit the size of the
segmented regions, we could weight ws,t inversely proportionally
to the length of the line segment existing between the sites s
and t (thus favoring a class inhomogeneity between distant pairs
of sites).

3.3. Comparison of the MDSCCT versus MD2S algorithm

We can easily compare the segmentation results given by our
algorithm compared to its simple version, without contour cues
[35], called MD2S, since we herein show the same set of segmented
images in Figs. 8 and 9. In addition, let us recall that the results for
the entire database can be visually compared with the segmenta-
tion result given by the MD2S algorithm at http address: http://
www.iro.umontreal.ca/�mignotte/ResearchMaterial/.

It is also interesting to compare the average number of regions
per image obtained by our method (19 regions on average) com-
pared to the MD2S segmentation method for which we obtain 21
regions on this BSD300. This also demonstrates, to a certain extend,
the ‘‘regularizing’’ effect of the non-local constraints based on con-
tour cues. Table 3 also shows us that the BDE error (among other
performance measures) is significantly lower in our model com-
pared to the MD2S model which is certainly due both to our refine-
ment step and the ‘‘regularizing’’ effect of the contour cues based
constraints. We can also add that the worst PRI score obtained
by our segmentation model is PRI = 0.396 (image number
210088). This score is significantly higher than the worst PRI score
obtained by the MD2S segmentation method for which we obtain
PRI = 0.313 (image number 130034). This also demonstrates that
the take into account of contour cues is also useful to solve some
very difficult segmentation problems. In addition, the standard
deviation of the PRI performance measures is lower for our algo-
rithm (rPRI = 0.115) compared to the MD2S segmentation method
(for which we obtain rPRI = 0.117).

3.4. Algorithm

The segmentation procedure takes about one minute (on aver-
age; 50 s for the dimensionality reduction and approximately
10 s for the clustering per image) for an i7 � 930 Intel CPU,
2.8 GHz, 5611 bogomips and for a non-optimized code running
on Linux. Source code (in C++ language) of our algorithm (with
the set of segmented images and detected contours) are publicly
available at the following http address http://www.iro.umontre-
al.ca/�mignotte/ResearchMaterial/mdscct.html in order to make
possible comparisons with future segmentation algorithms or dif-
ferent performance measures.
4. Conclusion

In this paper, we have presented a new and efficient strategy for
the integration of inhomogeneous texture and edge-based cues in a
segmentation problem. The proposed scheme relies mainly on an
original spatially constrained non-linear dimensionality reduction
technique able to efficiently fuse region and edge cues in a data
pre-processing step. This ‘‘de-texturing’’ process and the sets of
color/texture and edge-based adaptive spatial continuity con-
straints allows us to simplify the image segmentation problem
and consequently to increase its robustness. This segmentation
framework provides competitive performance comparatively to
the state-of-the-art existing methods. In addition, this method re-
mains perfectible by using a more elaborated color clustering
algorithm (with eventually a final grouping at region level as

http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/
http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/
http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/
http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/mdscct.html
http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/mdscct.html
http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/mdscct.html


990 M. Mignotte / Computer Vision and Image Understanding 116 (2012) 981–990
post-treatment) or a better soft edge map and general enough to be
applied to various digital image and computer vision applications
(e.g., hyperspectral imagery, motion detection, 3-D segmentation,
etc.).
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