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This paper presents an original method for analyzing, in an un-
supervised way, images supplied by high resolution sonar. We aim
at segmenting the sonar image into three kinds of regions: echo
areas (due to the reflection of the acoustic wave on the object),
shadow areas (corresponding to a lack of acoustic reverberation be-
hind an object lying on the sea-bed), and sea-bottom reverberation
areas. This unsupervised method estimates the parameters of noise
distributions, modeled by a Weibull probability density function
(PDF), and the label field parameters, modeled by a Markov random
field (MRF). For the estimation step, we adopt a maximum likeli-
hood technique for the noise model parameters and a least-squares
method to estimate the MRF prior model. Then, in order to obtain
an accurate segmentation map, we have designed a two-step pro-
cess that finds the shadow and the echo regions separately, using the
previously estimated parameters. First, we introduce a scale-causal
and spatial model called SCM (scale causal multigrid), based on
a multigrid energy minimization strategy, to find the shadow class.
Second, we propose a MRF monoscale model using a priori informa-
tion (at different level of knowledge) based on physical properties
of each region, which allows us to distinguish echo areas from sea-
bottom reverberation. This technique has been successfully applied
to real sonar images and is compatible with automatic processing
of massive amounts of data. @ 1999 Academic Press

Key Words: sonar imagery; unsupervised segmentation; MRF
hierarchical model; Weibull law; noise model estimation.

1. INTRODUCTION

lying on the sea bed. For this reason, the detection of each o
ject located on the sea bottom and its classification (as a wrec
a rock, a man-made object, etc.) is generally based on the e
traction and the identification of its associated cast shadow [1
Nevertheless, the echo information may be necessary to dete
and then classify objects partially buried in the sea floor. Indeec
in this case, the echo features are the only information that ce
be used to identify the nature of the detected objects. Let u
note that a three-class segmentation can also be interesting
other applications, like medical ultrasound imagery [2], or three
dimensional reconstruction of underwater objects [3].

Few studies describe complete approaches allowing such
segmentation of sonar images to be performed automaticall
with results that can be efficiently used afterward for objectiden
tification [4, 5]. Some of them are based on simple, and oftel
ad-hoc, clustering techniques (such as fugzyneans) working
on luminance mean and variance within small windows [6, 7]
In that case, only a coarse grain classification is obtained, ar
no statistic modeling of the back-scattered acoustic amplitud
within the different types of regions is introduced. This latter
aspect induces a lack of robustness for this type of approache
Nevertheless, some studies include more advanced element
image formation modeling [8—10]. But to our knowledge, no pa-
per in the literature proposes an unsupervised 3-classes segm
tation of high resolution sidescan sonar picture entirely base
on statistic analysis.

The segmentation task of these images is made difficult by th
presence of speckle noise [11]. This peculiar noise makes ine

In sonar imagery, three kinds of regions have to be identifief@gctive any simpler segmentation schemes. In order to extract
echo, shadow, and sea-bottom reverberation areas. The echodliable and accurate segmentation map, contextual informatic
formation is caused by the reflection of the acoustic wave on tisamportant to be taken into account in sonar imagery. This ca
object, while the shadow zone corresponds to a lack of acoudii done gosteriori using either morphological filters in order
reverberation behind an object. The remaining information tig “clean” the classification obtained by a simple clustering tech
called the sea-bottom reverberation area. On the pictures soijgue [6, 7]. This can also be doagoriori, using MRF models
plied by sonar system, the echo features are generally less dikich are appropriate to specify spatial dependenciegdviori
criminant than the shadow shapes for the classification of objelgbel field distribution [12]. In the sonar imagery context, a
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MRF-based model is used in [8] but this model is supervisddtion results on both real and synthetic scenes are presente
and its monoscale modeling does not ensure a reliable regulection 4. Section 5 contains concluding remarks.
ization procedure.
To ensure efficient regularization of the set of labels when 2. ESTIMATION OF PARAMETERS
the sonar image contains strong speckle noise [13], hierarchical
MRF models can be used. Among such models, we can cite thé. Problem Statement

sequential maximum a posteriori (SMAP) algorithm introduced |, the ynsupervised three-class Markovian segmentation ca

by Boumanet al, in which each scale is causally dependente haye to estimate the noise model parameters (i.e., the nc

on the preceding coarser one [14], or the hierarchical moqgLintion parameters associated to each region of the sor
introduced by Kataet al., where a pyramidal structure '”VOlV'image) and the priori parameters of the Markov model.

ing a three-dimensional (3D) neighborhood system and @ 3D, case, estimation of noise distribution parameters

Markovian label field is considered [15]. We can also cite th@¢icuit because of the very small number (or sometimes th

scale-causal multigrid model that we have introduced in [16] fgf,sence) of pixels associated to the echo region and by the Iz
a two-class segmentation of sonar imageeagiow, reverbera- ¢ nowledge about the form of the appropriate conditional nois

tion). distribution describing the luminance within the echo region. Fc

MREF hierarchical models enable the local characteristics ¢fese reasons, we cannot estimate efficiently and simultaneou
image content to be modeled more accurately thanBsptiori  the nojse distribution parameters of each region. To circumve
specification of spatial and hierarchical dependencies betwggBse difficulties and in order to obtain a reliable and prope
neighboring sites. Nevertheless, these models usually do Rgfse model estimation ensuring an accurate segmentation m

exploit a priori knowledge of the spatial relationship betweegp siternate approach is to decompose the segmentation stag
adjacent regions of different nature. In our sonar image contextyyo-step process:

such information relative to the interactions between different ) _
neighboring regions (especially between echo and shadow areag) In 2 first step, theseabottom reverberatiorand theecho.
will be exploited in the segmentation procedure. (due to the reverberation of the acoustic wave on the objec
We propose herein a hybrid approach defined as a tvvo-sféﬁsses are n_ot cﬁstmgwshed from a smgle classr,amrbera—.
process, associating the efficiency of purely hierarchical mod&pnclass, Wh_'Ch 1S 90n5|dgred as capturing both types of.reglor
ing (a scale-causal multigrid model) with the spatial prior abof Unsupervised hierarchical Markovian segmentation into tw
relationship between adjacent regions of different nature. FgpSSes$hadowandreverberation) is performed exploiting an
parameter estimation, we adopt an iterative method called it§rE [17] estimation procedure which is presented in this se
ative conditional estimation (ICE) [17]. It allows simultaneouf®N: @long with the hierarchical Markovian modeling describe
estimation of the MRF prior model parameters, according to tHe[16]- ) )
least squares estimator (LSQR) described by Derial.[18] ~ ® N @second step, we perform a supervised Markovian se
(which we have generalized in [19]), and the noise model param_entatlon ofthe region correspondln_g t_o thg reverberated sigr
eters, according to Maximum Likelihood (ML) estimators. jinto two classes. Th|s_allows us to dIStIUgUISh echo areas fro
this paper, we further investigate the issue of noise modeling afefPottom reverberationarea (see Section 3.2.2). Inthis step,
we propose to model the distribution of the luminance (acou%?amh forthe.echo assoqlated to each shadow region. The bl
tic amplitude) within the reverberation and the shadow regiofi@gram of this unsupervised three-class segmentation sche
by a Weibull distribution which defines a set of parametrizég Shown in Fig. 1.
probability density functions (PDF). Comparisons with a more |n the context of a two-class segmentation, we adopt the IC
simplistic noise model previously introduced in [16] is given. Fosrocedure to estimate the noise model and the MRF prior moc
the segmentation step, we use a two-step process which extragi&meters simultaneously. This procedure is described in [1
shadow and echo regions separately, exploiting the previouglya previous study, this estimation procedure was applied
estimated parameters. First, we use a scale-causal and spggighr imagery in the case of a rough noise model [19]; for th
model SCM (scale causal multigrid) [16] along with a multinoise model, we resorted to a Gaussian law to model the lun
grid energy minimization strategy to separateshadowclass nance distribution within shadow regions and a Rayleigh la
from the othersdchoandseabottom reverberation Second, to model the speckle noise phenomenon. Speckle noise mc
we propose a MRF monoscale model usingiori information  eling based on a Rayleigh law is generally suitable when tt
about the spatial dependency between each region and allowigyth of detectable sea-floor elements (i.e., sea-floor roug
us to distinguish betweeechoand seabottom reverberation ness) is much larger than the acoustic wavelength [20] (whic
labels. is the common case with high-frequency imaging sonar). In tt
This paper is organized as follows. In Section 2, we detaihme vein, the Gaussian law seems to be an appropriate mode
the parameter estimation step and demonstrate its applicatil@scribe the luminance within the shadow region, if we consid
on both synthetic pictures and real sonar images. Section 3 theat noise within such a region is essentially of electronic natur
scribes the segmentation step and the proposed model. Segrvertheless, this noise model can be too simple to cope wi
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{First stage Py, x(y/x) depends on parameter vectly. Joint and posterior
i i distributionsPx v (X, y) andPx,y(x/y) o< Px(X) Py, x(y/X) thus
Parameter estimation step | depends o = (@, @y).
i In the unsupervised Markovian segmentation case, we have
‘ estimate, in a first step (estimation step), parameter vedtprs
and®,. To this end, we resortto the ICE procedure as mentione
Two-class segmentation step | above [17]. This method relies on two estimatdrg(X) and
(shadow / reverberation) ; dy (X, Y) appropriate to completely observed data case. Whe
Xisunobservable, this procedure starts from an initial paramet
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" set®l% (not too far from the optimal parameters) and generate
‘Second stage & T a sequence of parameter vectdrdl, o, .. &K hopefully
: ; leading to the optimal parameters (limy, @ = ®optima). TO
Three-class segmentation step this end, ! and o+ at step k+ 1) are chosen as con-
i.e, two-class segmentation of the ditional expectations ob, and &)y givenY =y, computed ac-
reverberated region (sea-bottom /echo) cording to the current valuesf and ®{). These are the best

approximations ofb, and &y in terms of the mean squared
error [17]. By lettingEy denote the expectation relative to pa-
FIG.1. Unsupervised three-class segmentation scheme. rameterspK = (oK, q)[yk]), this iterative procedure is defined as
follows:

. . . . i initi ] — (pl0] lO0]
all situations. In order to take into account the minor lobes of ® Cok”?‘?e'f an initial param(iter sel’ = (oY), o).
o ®k+1is computed frompM andY =y by

the acoustic antenna bringing back-scattered signal within the
shadow region and the different sea-floor types likely to occur )
in sonar images, we investigate in this paper a more general Ol = B [Du(X) | Y =] (2)
noise model. A more appropriate probability density function kt1] _ A .

(PDF) based on the Weibull distributions mixture is used to de- oy = By (X V) 1Y =Y. ®)

scribe the luminance distribution within each region of the sonah . . . . .
image. The computation of these expectations is impossible in practic:

The ICE procedure is quite general and can be adaptedbfg we can approach Egs. (2) and (3), thanks to the law of larg

different kinds of conditional noise distributions [17]. The only?UMPers, by

condition is to get an estimator with good asymptotic properties

(consstency propgrt|es) for completely obse_rv.ed data. As §hown cD[Xk+1] _ }[q)x(x(l)) ot d)x(x(n))] (4)
in the following, this method can be used efficiently to estimate n
a mixture of Weibull distributions, i.e., the Weibull distribution ke Lz -
parameters associated to each region (shadow and reverberation) ¥y =, [Py (), y) + - + Dy (X, V)], ®)
of the sonar image.

wherexg), i =1,...,n are realizations oK drawn according
2.2. lterative Conditional Estimation to the posterior distributioRx v« (x/y, ). As explained be-

low, for complete data-based estimadgy(X, Y), we use a max-
gnum likelihood (ML) estimator for the noise model parameter,
w‘%ereasbX is the least-squares (LSQR) estimator described b
Derinet al.[18]. Finally, in order to use the ICE procedure, we
need:

Consider a couple of random fields= (X, Y), whereY =
{Ys, s e S}represents the field of observations located on a latti
Sof N sitess, andX = {Xs, s € S} the label field. Eacls takes
itsvalue inAqps= {0, . .., 255, and eactXsin {eg = shadowe, =
reverberation. The distribution of K, Y) is defined by the prior
distributionPx (x), assumed to be stationary and Markovian, and e An initial value ®[% not too far from the optimal para-
by sitewise likelihoodsPy,,x,(Ys/Xs), assumed to be Weibull meters.

PDFs: e A way of simulating realizations oK according to the
posterior distributionPx,y.¢. To this end, we use the Gibbs
Px.v(X, y) = Px(X) l—[ Py, xs(Ys/Xs) - (1) sampler algorithm [21].
S
Py/x(y/X)

2.3. Estimation of the Noise Model Parameters

The observableY is called theincomplete dataand Z the for Complete Data

complete datalLet us note that prior distributioffy(x) de- The Weibull Probability Density Function is an appropriate
pends on a parameter vectby, while the conditional likelihood distribution to describe the luminangavithin the reverberation
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and the shadow regions. This PDF offers degrees of freedefsts in finding&)y, such that
which allows a large variety of quite different distributions to
be captured. Thus, t_his.PD.F is_ well adapted to sonar images &,y — argmavin Py /o, (y/®y), 7)
where the speckle distribution is not exactly known and may Py
vary according to experimental conditions. Experiments have
demonstrated that this distribution models the speckle no&ere InPy, ¢, (y/ ®y) is the log-likelihood function. Assuming
phenomenon more accurately than a Rayleigh distribution af@ependence between each random variable, the log-likeliho
achieves the best fit to real data (the Weibull PDF is used in otfBpction can be written
applications such as high resolution radars [22]; experiments in
Section 2.4 will show its efficiency). In L(®y)

The We'zibull PDF is a two-parameter d'istribution, of. which _ | Py/a,(y/®y) (8)
the Rayleigh and the exponential distributions are special cases.
Itturns out that, for our application, we have to introduce another c\" [ . (yi — min)®
parameter to shift this distribution, in order to take into account= " a_C) [ [(yi — min) exp(—a—c)} ’
the different processes forming the final sonar image (automatic
control of gain, coding, reduction of the dynamic, offset, etc.) ©)
[23]. We propose to consider the expression

i=1

with y; > minVi, « > 0, andC > 0. The maximum value of the
(y — min)\° (y — min)° log-likelihood function is used tq determine a.ML estimatpr 0
_— Xpl ———=—— ), the unknown parameted, = (min, C, ). Setting the partial

derivatives of InC(®y) to zero with respect to each paramete
(6) (i.e., solving the systemd[in L(Py)/9Py] =0) gives the ML
withy > min, « > 0, andC > 0.« andC are the scale and Shapeestlmators of theomplete datgall samples are here known to

parameters, respectively. Figure 2 represents different Weib?fjlrl\se from the same Weibull distribution). $in = min (i), is

laws for several values of the shape paramétdn this exam- the minimum grey level of the sampjewe obtain the following

ple,a =1 and min=0. For the special cas€&=1 andC =2, result:
the PDF corresponds to an exponential and a Rayleigh law re-

o€

Wy(y; min, C, @) = g( o

spectively. Let = (Y1, Y, ..., Ym) beM random variables, in- MinvL A Ymin — 1. (10)
dependent and identically distributed accordisirgleWeibull e
law Wy (.; ®y), andy = (Y1, Yo, ..., ym) arealization ofy. The Denoting now¥y; = (y; —miny.) and setting to zero the par-

Maximum Likelihood (ML) estimate ofb, = (min, C, «) con- tial derivative p In £(®y)/da] =0 (which leads to solving the

Weibull laws
: : J ! ! !
1.4 — -------------------- b -------------------- ~~~~~~~~~~~~~~~~~ Cil

Expdnential Iavjv

FIG. 2. Plot of Weibull laws for several values @f.
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FIG.3. (a)Real sonarimage of a sandy sea floor. (b) Image histogram and drawing of the Weibull law with ML estimated parameters (see Table 1 for pal
values).

system—M + (1/a® Zile §€) = 0), we then easily obtaimy : images demonstrate that this iterative scheme allows a good a
proximation ofCy,_ to be obtained quickly, which is then used

1 in Eq. (11) to getym .

Mo\ Yom _ .

. 1 ~CuL 11 Figure 3.a represents a real sonar image of a sandy sea flo

oML = Z Yi : (11) The ML estimated parameters obtained with this scheme al
given in Table 1. Figure 4 shows graphically the convergenc

BM@ ) of the iterative sequendg (p) for the estimation of the shape
TRy

Setting—;=— to zero and using Eq. (11) yields paramete€ . . The quality of the obtained estimates is difficult
to appreciate in the absence of ground-truth values. Neverth

Z ( S §/-) 1 M 1 less, one can visually appreciate on Figure 3.b the good matc

=1 : — Z In§, = —. (12) between the image histogram and the PDF corresponding to

M e M= Ca estimated parameters. Figure 5 presents a synthetic sonar ims

of a sandy sea floor in which the speckle noise distribution is :

We have no ana|ytic expression ﬁKIIL Nevertheless, Eq (12) Weibull PDF with SpeCiﬁed parameter Vectbg, and ML esti-
can easily be solvediteratively according to the following scherffi@tes obtained with our scheme. We can notice that estimat
Expression (12) can be written B¢C . ) = Cw. . Considernow Parameters are close to the ground-truth parameter.
some sequence of the fotd(1), U(2)=F(U(1)),...,U(p) =
F(U(p—1)). If this sequence converges toward a lilithen
this limit | is a solution of the equation= F(l). Inversely, if
the equationF (Cy.) =Cw. has only one solution (in our ap-  Letus recall that this parameter estimation procedure assum
plication, the unigueness of the ML estimatoi®fs obviously that the luminance within shadow regions and within reverber
verified if F(.) is a monotone function), the@y, is also the ation regions follows two different Weibull PDFs. We aim at
convergence value of any convergent sequéh@® defined by estimating the parameters of these two PDFs as well aa the
the recursiotd (p+ 1) = F (U (p)). The convergence of this se-priori parameters of the Markov model. For thgriori model,
quence is then ensured becati4g is proved to be a monotonewe adopt a standard anisotropic Potts model with the 8-connexi
function. Consequentl . is given by the following relation: spatial neighborhood. There are four paramegzrs,, Bz, B4
associated to the horizontal, vertical, and right and left diagone

2.4. Parameter Estimation Procedure for the Incomplete Data

CwL = lim U(p). (13)
p—oo
TABLE 1
To speed up the convergence rate of this iterative estimation ML Estimated Parameters for the Example
procedure, we have to take for the first ter{0) of the sequence Reported in Fig. 3
U(p) a positive value natoo farfrom Cy . In our application,
we takeU (0) = 1, which corresponds to an exponential distribu- &, By 2.78¢,,) 951

tion (see Fig. 2). Experiments on both real and synthetic sonar
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convergence of the iterative series U(n)

8 T T T T T T T ’a
° L
y=F(x) »
=F(X =X 2SI
s L i Y (x) ¥ /x |
4
6 Y 1
%} >
%
5k L -
4 | 4
3+ ]
2t i
1+ B
u() juER u@3) Lu()
0 - 1 1 1
0 1 2 3 4 5 6 7 8

C axe

Up) U0 UQ) U@ U®B) U@ UB) U®6) UF) UB) U©) U@10) UL
Estimate 1.00 5.96 1.79 3.72 2.28 3.12 253 290 2.65 2.82 2.71 2.78

FIG.4. Convergence of the iterative sequetbg)(Cy = lim p—ooU (P)) for the example reported in Fig. 3.

binary cliques, respectively, eter estimation procedure for the incomplete data is outline
below:

Px(X) o exp _Z'BSt(l_ 8(Xs, Xt)) (14) e Parameter initialization: The initial parameter values

S0 have a significant impact on the rapidity of the convergenc

of the ICE procedure and on the quality of the final estimate
where summation is taken over all pairs of neighboring sitds, our application, we use the initialization method described i
Bst = B1, B2, B3, or B4 only depends on the “orientation” of the[19]. This method aims at obtaining a rough two-class segme
clique, ands(.) is the Kronecker delta function. The paramtation based on features extracted in subwindows and cluste!

Specified parameters (®,) and ML estimates (®,)

d, 49(mm) 2.00(0) 70.7(0_,}
o, 49(;;;;) 2'03[(734!,) 71.4(5,ML)

FIG. 5. Synthetic sonar image of a sandy sea floor in which speckle noise distribution is a Weibull PDF with specified papgraet:ML estimates are
obtained with our iterative scheme. In this examfes 2 and the created synthetic noise follows also a Rayleigh law. We can appreciate the quality of the
estimates; estimated parameters are close to the ground-truth parameters.
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TABLE 2
Estimated Parameters for the Picture Reported in Fig. 7.a
(Mixture of Weibull Distributions)

Vonadow 0.08) 15min) 3.29¢) 26.84)
f)i’::eilerberalion 094”) 42(m||'1) 18\?{(:) 40&&)
¢§na| 1Q51) 1&132) —02('33) —qu)

Note.nr stands for the proportion of the two classes within the sonar imag?NeibuII—WeibuII

« andC are respectively the scale and the shape parameters of the Weibull
Bi are thea priori parameters of the Markov model.

according to & -means procedure. Once tkemeans segmen-
tation is obtained, the ML estimator of themplete datés used
to getd!? (see Section 2.3). The initial parameters of the Gib

distribution are obtained using the LSQR estimator describ

in [2] from the ML segmentation based @r{’). Let us denote
ol = (o1, o)), the obtained result.

e ICE procedure: ®k+1 is computed fromd™ in the fol-
lowing way:

B> Using the Gibbs samplen realizationsx(y, . . ., Xn)
are simulated according to the posterior distributi®y, o (x/
y, ®), with the parameter vectap!.

D> For eachx;),i =1,...,n, the parameter vectaby is
estimated by the algorithm proposed by Deeginal. [18, 19]
and®, with the ML estimator described in Section 2.3: they a
denotedd, (X)), Py(Xi), ¥)- A R

> @lk+lisobtained from®y (X)), Px (X, ¥)), 1 <i <n,
by averaging these estimates (see Egs. (4) and (5)).

If the sequenceb¥ becomes steady, the ICE procedure
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TABLE 3
Kolmogorov Distance and x? Error Made by Approximating
the Image Histogram (Reported in Fig. 6) by the Probability Den-
sity Mixtures Corresponding to the Estimation Based on Different
Noise Models)

Noise model Kolmogorov distance x? error
Gauss—Rayleigh 0.08 19,781
0.06 16,301

law.

a small value fom (n=1 in our application) can increase its
computation cost efficiency [24].

We can compare the quality and the aptness of this noise mod
&ased on Weibull laws over the one previously investigate
QOQ, 23, 25]. In this preceding study, we have considered a roug
noise model in which the speckle phenomenon is taken into a
count by a Rayleigh law and the luminangewithin shadow
regions is described by a Gaussian law. The left part of Fig. 7.
represents a real sonar image of a sandy sea floor with the c:
shadow of aman-made object (a cylinder). Figure 6 showsthe e
timated distribution mixture and the histogram of this sonar im-
age for the different noise models. The quality of the estimation
based on the Weibull model over the Gauss—Rayleigh model
difficult to appreciate visually in the absence of ground-truth val-
des. We can roughly perform such an evaluation by comparin
tehe image histogram (dashed curves) with the probability der
sity mixture corresponding to the estimated parameters (dotte
curves). We can see that the histogram is closer to the mixtul
densities based on the Weibull model, especially forrdver-
iBerationclass. Experiments show that the estimate based on th

ended and one proceeds to the actual two-class hierarchical sagelel are also better according to the Kolmogorov distance, ¢
mentation using the estimated parameters [16]. We calibrate ffecriterion [26], than estimates based on the Gauss—Rayleic
weight of the “stochastic” aspect of the ICE procedure by choasiodels. Table 3 gives the error, in the Kolmogorov distance an
ingn, the number of realizations of simulated according to the x 2 criterion sense, made by these two noise models in approx
posterior distributionPyx,y,+. Whenn increases, the “stochas-mating the image histogram. The estimates obtained by the IC
tic” aspect of the algorithm decreases. The intentional choicembcedure (Weibull model) are given in Table 2.

Histogram Histogram
0.02 7 0.02 T
histogram — histogram —
Fo shadow law ----- S Gaussianilaw -----
reverberation law ----- ! Rayleighilaw -----
2 0015 2 0.015 2 3
[ ] "
el o b .
[ [ M
o [=% ,
001 P P 0‘01 . OO O
[] <]
8 4 8 b
Q o (v
5 3 \
S 0.005 // \\—\ S 0.005 // \\‘
0 -~ S 0
0 50 100 150 200 250 0 50 100 150 200 250
grey level grey level
(a) (b)

FIG. 6. Image histogram of the picture reported in Fig. 7.a and estimated probability density mixture with the ICE procedure. (a) Mixture of two We
distributions. (b) Mixture of different distributions (Gaussian law for shadowclass and a shifted Rayleigh law for tfeverberationclass) [16].
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that this scheme is well suited to automatic extraction of shado
from a large variety of sonar images.
Figures 7 and 8 display examples of unsupervised two-cla
- - segmentation, exploiting parameters estimated with the ICE pr
| cedure, for different noise models. Let us recall that in this se
mentation step, theeabottom reverberatiomnd theecho(or
the reverberation on the object) classes are merged in a sin
- S class: thereverberationclass. In Fig. 7, segmentation results
obtained with two different noise models are comparable. Ne
ertheless, in Fig. 8, we observe that the Gauss—Rayleigh mo
does not permit elimination of speckle noise effects inducin
reverberation-mislabeled pixels within the cast shadow regic
(a) (b) (c) of the rock. The proposed noise modeling is appealing since it ¢

FIG.7. (a) Real sonar image of a sandy sea floor with the shadow of a m%ows luminance in reverberation areas to be captured with ma

made object. SCM two-class segmentation results obtained with a (b) mixtuF%Xib“ity: the Weibull model offers a more general framework
of Weibull distributions; (c) mixture of different distributions (Gaussian law fothan the Rayleigh law (which is a particular case of Weibul
theshadowclass and a shifted Rayleigh law for theverberatiorclass) [16].  modeling). Thus it allows a better fit to the data (cf. Table 3)
The cost of this augmented model lies in the shape parame
that we now have to estimate. Moreover, the extracted cast shi

3. SEGMENTATION ows of manufactured objects (see Figs. 7, 8, and 9) exhibit,
. desired, regular geometric shapes (in contrast to the cast sh
3.1. Two-Class Segmentation Step ows of rocks) without artifacts (i.e., mislabeled pixels within the

In this first segmentation step, we use the hierarchical twg@St Shadow regions, as observed with a more simplistic noi
class segmentation (SCM method) introduced in [16]. In ordBt2d€l), which is in excellent agreement with the ground trut
to make this hierarchical Markovian segmentatiosupervised Provided by an expert. This accuracy in extracting and preser
we exploit both the parameters of the mixture-based data molit§] the borders of the cast shadows is very appealing in t
and those of the prior Potts model given by the ICE procedulf0SPect of a further classification step [28]. We therefore d
This two-class segmentation combines a standard coarse-to-RREEVe that this new noise modeling is worth the pain.
multigrid method [27] with a scale-causal model and a multigri
energy minimization strategy. This model allows us to mofr
precisely model the local and global characteristics of image3.2.1. Problem statement.In order to ensure proper detec-
content at different scales. Experiments and comparisons wiim of the echo information when the picture contains stron
otherrelated hierarchical approaches (given in [16]) have provggleckle noise, a solution consists in taking into accayrori

.2. Three-Class Segmentation Step

~‘
kl

(b) (c)

FIG. 8. (a) Real sonar image involving object and rock shadows. SCM two-class segmentation results obtained with a (b) mixture of Weibull distributic
mixture of different distributions (Gaussian law for tsigadowclass and a shifted Rayleigh law for tfeverberationclass) [16].
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We now search fox!? such as

sl2l — arg I’T?Zé]iXPX[Z]/X[l],Yu] (X[Z]/)'Z[I] , y[ll)_ (15)
X

— Using Bayes’ rule and after elimination Bfu , xm (yit! /%),
: which does not depend of¥], the previous expression can be
written as
w2l — arg rﬂz?xpx[z],yu]/x[l] (X[Z]’ y[ll/k[l]) (16)
——— — arg M (/. ) P (1 f5)
X
17)

In accordance with the Hammersley and Clifford theorem
Pxia xu (X2 /x[1) is defined as a Gibbs distribution,

(a) (b)

FIG.9. (a) Synthetic sonar image of a sandy sea floor with a sphere lying on Pxe1/xu (X[Z] /)A([l]) =N % exp(_Uz(X[ZI, )A([l]))’ (18)
the sea-bed. (b) SCM two-class segmentation results.

whereU,(x[@, %) stands for the energy function aidis the
information about the physical formation of the echo and imormalizing constant. Denotin@yu  xi, x (ylt /x| gy =
corporating it into the MRF model. In sonar imagery, objectg. exp(—Us(y, x@ k1)), Eq. (16) can be defined in terms
lying on the sea floor create cast shadows corresponding to éngn energy function that has to be minimized,
regions acoustically obscured by the objects and also echoes
corresponding to the signals back-scattered by the objects. Thex?l = arg min{ Ul(y[ll, x4, 2[11) + Uz(xlz], 2[1])}, (19)
spatial dependency between these two areas can be incorporated X2

into the MRF model. In the same vein, similar approaches X ereU- (vill 2 gl the ad betw b
ploiting a priori information relative to the interaction or spatia ereUy(y*, X, X*7) expresses the adequacy between obse:

dependency between neighboring regions have been propo\é%t- ns and Iabe_lml’ €2} andUz is the energy term correspona-
g to thea priori model.

and applied in image restoration [29] and in the classificatioN
problem [30]. e Let us consider the data-driven teta(y!, x12, I, In

In this section, we propose to incorporatgriori information  order to take into account the speckle noise phenomenon, v
about the way echoes physically appear. The adopted modale used in Section 2.3 a shifted Weibull [a(.; ®y) to de-
exploitsa priori information at different levels, pixel and region,scribe the luminanc& within reverberation regions. Due to
to extract echoes from sea-bottom reverberation regions. Ye slight number of pixels belonging to tleehoclass, they
will first introduce the notation and the three-class segmentatioannot corrupt this modeling strongly. So we can efficiently ap
strategy. Experimental results on real scenes are then presergaskimate the distribution of luminance within the sea-bottom

3.2.2. Three-class segmentation strategyet X4 be the la- reverberation region by the same distribution. Thus, we define

bel field obtained after the two-class segmentation stage based 0 C /(ys — min)\°* (ys — min)®
on hierarchical Markovian modeling [16]. Labd belongs to Py /x@ (s /€1) = — <—> exp(—a—c>
{€p, €1}. Based orx™M, we now consider pixel subse8S c S)
suchasS = {se S: %!l = g }. This set has now to be segmented (20)
into two classes, such as to extract reverberated signalX®et \yith y> min, @ > 0, andC > 0. The label fieldX!¥! disappears
be the corresponding random binary procss: S, X takes - pecauserl™l is defined only o1 i.e., the dependence froxf!
values in{e, = sea-bottom reverberatioe, = echd. The seg- iy g prings no more informationb, = (min, C, ) is estimated
mentation will make use of restricted datdl = {ys, s€ S}. The yith the ICE procedure described in Section 2.2.
distribution of (21, Y} is defined, first, by xw (X2 /14), e know that the reflection of the acoustic wave on the objec
the distribution 0fX!?! assumed to be stationary and Markovianeturns a high-amplitude signal and we haveargiori knowl-
and s-econd, by the sitewise likelihooBigs e (Y51 /xE), de-  gdge about the distribution of the gray levels within the ech
pending on the class labef!. region. The high amplitude signal at concerned pixel location
often induces a saturation of the reception captor of the son:
1 Conditional sitewise data likelihoods of interest should actually rea%nd_consequemly a _maX'm‘jiI gfa}’ level for most of the_plxels
Py il @l (/58 x[21). By abuse of notation, we omit the conditioningWithin these echo regions. Sites with gray leyigl (Ymax desig-
with respect t’lY = e;, which is implied bys € S. nating the maximal gray level on the sonar image) are therefor

o o
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echo law Elementary potential field
0.02 !
iecho law ——
= i
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8 0.005 / ............... |
(o]
0
0 50 100 150 200 250 FIG. 12. Elementary potential fieltfs,(r) (with o = 1) created by a sitey

grey level labeledshadowin the two-class segmentatié#t!.

FIG. 10. Probability density function associated with the echo law.
potential
likely to belong to theechoclass. Thus we empirically model

[21 yl[2]
the conditional density function of thechoclass by the simple ﬂs‘(l - S(XS Xt ))
law

(23)

wheregs: = B1 = B2 = B3 = B4, depending on the orientations of
2 the clique. Potential of the singleton cliqgue with paramegter
[1] S _ _
Py /xa (Y5 /€2) = y AlYs = YmadU (Ymax = ¥) - (P1) s defined in order to disadvantage the choice ofetigolabel
for a site that is too far away from a shadow region. To defin
wherel{(.) is the Heaviside functionA(.) stands for the trian- this potential, we introduce a po_teptlial fielgku(t), t € S, as
gu'ar function,ymax Corresponds to the maximal grey level OI{OHOWS.. EaCh SI'[SO labeledshadown X[ ] createsan elementary
the sonar image due to signal quantification, ajid B a nor- Potential fieldy,(r) such as
malizing constant to ensure that the above function integrates to
1. This modeling can also be justified by the fact that the echo 1
signal more often induces, a saturation of the reception captor Vs (r) = —expl —— ).
of the sonar and consequently a maximal gray level for most of
them. F_|gur_e 10 shoyvs t_he plotof this law e = 255'. Given wherer (r #0) is the distance to the pixe} ando is a standard
these sitewise data likelihoods, the data energy termis expresged . ; . : )
as eviation parameter controlling the interaction distance betwe:
echo and shadow regions. Figure 12 shows an example of this
ementary potential field. The set of pixels labesbéddowin X1
2 1] o[l 1 2
Uy (B, yH 80) = — Z In Py /e /X (22) create a global potential fieM¥;m (t), combining the different
ses elementary potential fieldgs, (r) as follows,

(24)

e Let us now considet,(x, k1), the energy term corre-
sponding to tha priori model. We adopt an 8-connexity spatial
neighborhood in whicl8y, B2, B3, B4 represent tha priori pa-
rameters associated to the horizontal, vertical, and right and left
diagonal binary cliques respectively aglstands for the unary
clique parameter (cf. Fig. 11). This energy allows us to expreggered(s, t) is the distance between pixedsndt. The unary
constraints on the desired solution. In our application, we wap@tential with parametefs is ass to disadvantage the choice o
to favor homogeneous regions. To do that, we use an ani$ae echolabele; for a site too far away from a shadow region.
tropic Potts model that associates to the binary cligug), the Its form is given by

Wg(t) =inf{ > y(d(s. ). 1t . (25)

seS: )“(Q] =€

—Bs In g (s) - S(XE], ez) (26)

ED E| I:|j Elj |:| The corresponding energy term induces an area within whi
B B B B Bs

theecholabel will not be discouraged. Figure 13 displays an ex
ample of the potential field, computed for different values of th

FIG. 11. One-site and two-site cliques for the 2nd order neighborhood, alﬂf‘rame':eb from the Segmente_d image pre_sgnt_ed il’! Fig. _13-|
associated parameters. Finally, the global energy function to be minimized is define
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(c)

(d)

(a) Real sonar image involving object and rock shadows. (b) Two

FIG. 13.
class segmentation result&{). (c) Magnitude of the potential fieldguy (t)
combining the different elementary potential fielflg (r) created by each site
5o labeledshadovin the two-class segmentatigH! (with o = 2). (d) Magnitude
of the potential field withe =4.

as follows:
U (x, g4, yl)
= =2 InPya/a(YH /X + 0 Ba(l-s(x, )
hd (sOcS

Us(y1) X, &13)

+ Y —Bsnwzu(s) - 8(xP. &) .

seS

Upy(x121,%011)

Uop(xM, x121, %111)
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Sonar images presented herein are provided by a side-sc
sonar (namely, the DUBM41, whose frequency is arounc
500 KHz). The size of these pictures is 256 by 256 pixels cor
responding to a sea floor surface of 25 by 25 m.

We observed that the final segmentation results are not vel
sensitive to the value of the parameter (within the range
[1,...,4]). If this parameter is low (below 1, for example), the
elementary potential field created by each site labsthediown
%1 is too sharp. As a result, the area within whichéicolabel
will not be discouraged is too small and, consequentlyeti®
region can be not entirely determined. Conversely, a large valt
for o could let appear in the segmentation results false alarm
i.e., smallechoareas due to the speckle noise. On one hanc
this parameter could be estimated optimally and automaticall
if the depth of the sea floor and the mean size of the object
to be visualized were known; but on the other hand observe
robustness fot €[1, 4] did not drive us to consider such an
estimate.

We compare the result obtained for a real sonar image wit
(1) a classical ML segmentation, (2) our segmentation mode
withouta priori information on the spatial dependency betweer
echo and shadow regions (by settjfig= 0), and finally, (3) our
scheme. Figure 14.a shows a real sonar image involving obje

We use the deterministic relaxation algorithm ICM [12] to min-i§& .
imize this global energy function. For the initialization of thisj§
algorithm, we exploit the segmentation map obtained by a M

segmentation.

4. EXPERIMENTAL RESULTS

For the three-class segmentation step, we use the following [

rametersp; = B> = B3 = B4 = Bs = 1 for thea priori parameter

associated to the binary clique (the Potts model is here isotro;ﬁég’r-n“-

and the unary clique respectively, ane= 2 for the standard de-

(a) Real sonar image involving object and rock shadows. (b) ML
[S entation. (c) proposed MRF model withaupriori information on the

spatial dependency between echo and shadow regians @). (d) Proposed

viation parameter controlling the interaction distance betwegikr model witha priori information on the spatial dependency between echo

the echo and shadow regions (see Eqg. (24)).

and shadow regions.
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(b) (c)

FIG. 15. (a) Synthetic shadow shape of a sphere lying on a sea-bed (obtained with a ray tracing procedure). (b) Synthetic sonar image (with synthetic
noise) of a sphere lying on a sandy sea-bed. (c) Three-class segmentation results obtained with the proposed scheme.

(a)

and rock shadows and Figs. 14.b, 14.c, and 14.d present the &egtinitialization can lead the ICE procedure to discard wrongl
mentation results obtained with these three approaches. Came class, the shadow class in our application (by estimatil
pared to a ML segmentation, a segmentation model integrati@g zero the proportion of this class and by considering wrong
the a priori energy term allows the spatial coherence of thihat all the pixels of the image belong to a single class, whic
obtained partitions to be ensured, i.e., it favors homogeneousigseenly true for the sonar image of a sandy sea-floor). But th
gions (see Figs. 14.cand 14.d). Nevertheless, withoatpii@ri  initialization method we used [18] seems to be good enough
term expressing the spatial dependency between echo amdid this problem. It allows to get a good convergence of th
shadow areas, the segmentation scheme does not permit td&H# procedure in all tested cases (300 images in the data bas
eliminatly the speckle noise effect, inducing false small echo Experiments have been carried out on both synthetic and re
areas (see Fig. 14.c). We can notice that our approach leadsdpar images. Figures 15.b and 16.b present synthetic sonar
better result and can remove efficiently undesired echos indu@egks (with synthetic speckle noise) of a sphere and a metal
by speckle noise effects (see Fig. 14.d). core (or a metallic tire) lying on a sandy sea floor. In these tw

Due to the “stochastic” aspect of the ICE iterative estima@&xamples, the echo shape and the acoustic cast shadow of tf
tion procedure, the resulting estimates are less sensitive to digects are obtained by a ray tracing procedure. Figures 15.c
initial parameter values than those obtained by other estim.c present the three-class segmentation results obtained v
tion algorithms of the distribution mixture parameters (like theur approaches. These results can be compared to the grou
well-known Expectation Maximization (EM) algorithm, for ex-truth segmentations given in Figs. 15.a and 16.a. These exp
ample). There is no theoritical proof of convergence for ICEnents demonstrate that the recovered segmentations are cl
algorithm; nevertheless good behavior is generally noticed.téthe ideal one.

- -
(a) (b) (c)

FIG. 16. (a) Synthetic shadow shape of a metallic core lying on a sea-bed (obtained with a ray tracing procedure). (b) Synthetic sonar image (with s
speckle noise) of a metallic core lying on a sandy sea-bed. (c) Three-class segmentation results obtained with the proposed scheme.
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We present now three-class segmentation results obtained i
real sonar images. Figures 17.a, 17.c, and 17.e display thig
metallic manmade objects (two cylinders and a trolley) lying o
the sea bed. In these two examples, the echo features are (¥
criminant and easily identifiable. Figures 18.a and 18.c displejiFss
sonar images showing respectively a tire and a cylindrical ma s
ufactured object lying on a sandy sea floor. In these exampleig®
due to the nature of the object, echo regions are not very larci
Experiments indicate that the obtained segmentation maps &%
close to the expected results. The echo and shadow regions §
well segmented and the proposed algorithm exhibits good ri
bustness against speckle noise. Boundaries of each object h (a)

203

() (d)

FIG. 18. (a, c) Real sonar images of a sandy sea floor with the cast shado
of a tire in (a) and the cast shadow of a cylindrical manufactured object in (c)
(b, d) Three-class segmentation results obtained with the proposed algorithm

been well preserved and numerous false alarms correspondi
to spurious small shadow and echo areas due to speckle no
have been correctly eliminated.

Nevertheless, we can notice on some sonar image segmen
tions the presence of some echo points “behind” the cast shadc
shapes of some objects lying on the sea floor. These artifac
could be easily discarded by ordering the spatial relationshi
between echoes and shadows, i.e., by exploitingathpeiori
(approximate) information about the sonar position, which is
not available on our data base. Thus, in our model this interes
ing a priori information is not taken into account because it is
not available.

5. CONCLUSION

We have described an unsupervised three-class segmentat
method, based on an estimation step and a segmentation st
which seems well adapted and efficient for sonarimage segme
tation issues. The estimation step offers an appropriate estim
tion of the model parameters, and takes into account the diversi
of the laws in the distribution mixture of sonar images by model-

FIG. 17. (a, c, e) Real sonar images involving a sandy sea floor and a méng eachnoise d|Str|bUt|_on with awel_bu” PDF. Inorder to obtain
made object (two cylinders and a trolley). (b, d, ) Three-class segmentati@R accurate segmentation map in spite of the presence of spec

results obtained with the proposed scheme.

noise, the proposed segmentation is articulated in two stages a
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