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This paper presents an original method for analyzing, in an un-
supervised way, images supplied by high resolution sonar. We aim
at segmenting the sonar image into three kinds of regions: echo
areas (due to the reflection of the acoustic wave on the object),
shadow areas (corresponding to a lack of acoustic reverberation be-
hind an object lying on the sea-bed), and sea-bottom reverberation
areas. This unsupervised method estimates the parameters of noise
distributions, modeled by a Weibull probability density function
(PDF), and the label field parameters, modeled by a Markov random
field (MRF). For the estimation step, we adopt a maximum likeli-
hood technique for the noise model parameters and a least-squares
method to estimate the MRF prior model. Then, in order to obtain
an accurate segmentation map, we have designed a two-step pro-
cess that finds the shadow and the echo regions separately, using the
previously estimated parameters. First, we introduce a scale-causal
and spatial model called SCM (scale causal multigrid), based on
a multigrid energy minimization strategy, to find the shadow class.
Second, we propose a MRF monoscale model using a priori informa-
tion (at different level of knowledge) based on physical properties
of each region, which allows us to distinguish echo areas from sea-
bottom reverberation. This technique has been successfully applied
to real sonar images and is compatible with automatic processing
of massive amounts of data. c© 1999 Academic Press

Key Words: sonar imagery; unsupervised segmentation; MRF
hierarchical model; Weibull law; noise model estimation.
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In sonar imagery, three kinds of regions have to be identifi
echo, shadow, and sea-bottom reverberation areas. The ec
formation is caused by the reflection of the acoustic wave on
object, while the shadow zone corresponds to a lack of aco
reverberation behind an object. The remaining informatio
called the sea-bottom reverberation area. On the pictures
plied by sonar system, the echo features are generally les
criminant than the shadow shapes for the classification of ob
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a rock, a man-made object, etc.) is generally based on the
traction and the identification of its associated cast shadow
Nevertheless, the echo information may be necessary to d
and then classify objects partially buried in the sea floor. Inde
in this case, the echo features are the only information that
be used to identify the nature of the detected objects. Le
note that a three-class segmentation can also be interesti
other applications, like medical ultrasound imagery [2], or th
dimensional reconstruction of underwater objects [3].

Few studies describe complete approaches allowing su
segmentation of sonar images to be performed automatic
with results that can be efficiently used afterward for object id
tification [4, 5]. Some of them are based on simple, and o
ad-hoc, clustering techniques (such as fuzzyK -means) working
on luminance mean and variance within small windows [6,
In that case, only a coarse grain classification is obtained,
no statistic modeling of the back-scattered acoustic amplit
within the different types of regions is introduced. This lat
aspect induces a lack of robustness for this type of approac
Nevertheless, some studies include more advanced eleme
image formation modeling [8–10]. But to our knowledge, no p
per in the literature proposes an unsupervised 3-classes seg
tation of high resolution sidescan sonar picture entirely ba
on statistic analysis.

The segmentation task of these images is made difficult by
presence of speckle noise [11]. This peculiar noise makes
fective any simpler segmentation schemes. In order to extra
reliable and accurate segmentation map, contextual informa
is important to be taken into account in sonar imagery. This
be done aposteriori, using either morphological filters in orde
to “clean” the classification obtained by a simple clustering te
nique [6, 7]. This can also be donea priori, using MRF models
which are appropriate to specify spatial dependencies bya priori
label field distribution [12]. In the sonar imagery context,
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MRF-based model is used in [8] but this model is supervi
and its monoscale modeling does not ensure a reliable reg
ization procedure.

To ensure efficient regularization of the set of labels wh
the sonar image contains strong speckle noise [13], hierarc
MRF models can be used. Among such models, we can cite
sequential maximum a posteriori (SMAP) algorithm introduc
by Boumanet al., in which each scale is causally depende
on the preceding coarser one [14], or the hierarchical mo
introduced by Katoet al., where a pyramidal structure involv
ing a three-dimensional (3D) neighborhood system and a
Markovian label field is considered [15]. We can also cite
scale-causal multigrid model that we have introduced in [16]
a two-class segmentation of sonar images (shadow, reverbera-
tion).

MRF hierarchical models enable the local characteristic
image content to be modeled more accurately thanks toa priori
specification of spatial and hierarchical dependencies betw
neighboring sites. Nevertheless, these models usually do
exploit a priori knowledge of the spatial relationship betwe
adjacent regions of different nature. In our sonar image cont
such information relative to the interactions between differ
neighboring regions (especially between echo and shadow a
will be exploited in the segmentation procedure.

We propose herein a hybrid approach defined as a two-
process, associating the efficiency of purely hierarchical mo
ing (a scale-causal multigrid model) with the spatial prior ab
relationship between adjacent regions of different nature.
parameter estimation, we adopt an iterative method called
ative conditional estimation (ICE) [17]. It allows simultaneo
estimation of the MRF prior model parameters, according to
least squares estimator (LSQR) described by Derinet al. [18]
(which we have generalized in [19]), and the noise model par
eters, according to Maximum Likelihood (ML) estimators.
this paper, we further investigate the issue of noise modeling
we propose to model the distribution of the luminance (aco
tic amplitude) within the reverberation and the shadow regi
by a Weibull distribution which defines a set of parametriz
probability density functions (PDF). Comparisons with a mo
simplistic noise model previously introduced in [16] is given. F
the segmentation step, we use a two-step process which ex
shadow and echo regions separately, exploiting the previo
estimated parameters. First, we use a scale-causal and s
model SCM (scale causal multigrid) [16] along with a mul
grid energy minimization strategy to separate theshadowclass
from the others (echoandsea-bottom reverberation). Second,
we propose a MRF monoscale model usinga priori information
about the spatial dependency between each region and allo
us to distinguish betweenechoand sea-bottom reverberation
labels.

This paper is organized as follows. In Section 2, we de
the parameter estimation step and demonstrate its applic

on both synthetic pictures and real sonar images. Section 3
scribes the segmentation step and the proposed model. Seg
E ET AL.
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tation results on both real and synthetic scenes are presen
Section 4. Section 5 contains concluding remarks.

2. ESTIMATION OF PARAMETERS

2.1. Problem Statement

In the unsupervised three-class Markovian segmentation c
we have to estimate the noise model parameters (i.e., the n
distribution parameters associated to each region of the s
image) and thea priori parameters of the Markov model.

In our case, estimation of noise distribution parameter
difficult because of the very small number (or sometimes
absence) of pixels associated to the echo region and by the
of knowledge about the form of the appropriate conditional no
distribution describing the luminance within the echo region.
these reasons, we cannot estimate efficiently and simultaneo
the noise distribution parameters of each region. To circumv
these difficulties and in order to obtain a reliable and pro
noise model estimation ensuring an accurate segmentation
an alternate approach is to decompose the segmentation st
a two-step process:

• In a first step, thesea-bottom reverberationand theecho
(due to the reverberation of the acoustic wave on the obj
classes are not distinguished from a single class; thereverbera-
tionclass, which is considered as capturing both types of regi
An unsupervised hierarchical Markovian segmentation into
classes (shadowandreverberation) is performed exploiting an
ICE [17] estimation procedure which is presented in this s
tion, along with the hierarchical Markovian modeling describ
in [16].
• In a second step, we perform a supervised Markovian s

mentation of the region corresponding to the reverberated si
into two classes. This allows us to distinguish echo areas f
sea-bottom reverberation area (see Section 3.2.2). In this ste
search for the echo associated to each shadow region. The
diagram of this unsupervised three-class segmentation sch
is shown in Fig. 1.

In the context of a two-class segmentation, we adopt the
procedure to estimate the noise model and the MRF prior m
parameters simultaneously. This procedure is described in
In a previous study, this estimation procedure was applie
sonar imagery in the case of a rough noise model [19]; for
noise model, we resorted to a Gaussian law to model the lu
nance distribution within shadow regions and a Rayleigh
to model the speckle noise phenomenon. Speckle noise m
eling based on a Rayleigh law is generally suitable when
length of detectable sea-floor elements (i.e., sea-floor rou
ness) is much larger than the acoustic wavelength [20] (wh
is the common case with high-frequency imaging sonar). In
same vein, the Gaussian law seems to be an appropriate mo
describe the luminance within the shadow region, if we cons

de-

men-
that noise within such a region is essentially of electronic nature.
Nevertheless, this noise model can be too simple to cope with
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THREE-CLASS MARKOVIAN SEG

FIG. 1. Unsupervised three-class segmentation scheme.

all situations. In order to take into account the minor lobes
the acoustic antenna bringing back-scattered signal within
shadow region and the different sea-floor types likely to oc
in sonar images, we investigate in this paper a more gen
noise model. A more appropriate probability density funct
(PDF) based on the Weibull distributions mixture is used to
scribe the luminance distribution within each region of the so
image.

The ICE procedure is quite general and can be adapte
different kinds of conditional noise distributions [17]. The on
condition is to get an estimator with good asymptotic proper
(consistency properties) for completely observed data. As sh
in the following, this method can be used efficiently to estim
a mixture of Weibull distributions, i.e., the Weibull distributio
parameters associated to each region (shadow and reverber
of the sonar image.

2.2. Iterative Conditional Estimation

Consider a couple of random fieldsZ= (X,Y), whereY=
{Ys, s∈ S} represents the field of observations located on a lat
Sof N sitess, andX={Xs, s∈ S} the label field. EachYs takes
its value in3obs={0, . . . ,255}, and eachXs in {e0= shadow, e1=
reverberation}. The distribution of (X,Y) is defined by the prior
distributionPX(x), assumed to be stationary and Markovian, a
by sitewise likelihoodsPYs/Xs(ys/xs), assumed to be Weibu
PDFs:

PX,Y(x, y) = PX(x)
∏

s

PYs/Xs(ys/xs)︸ ︷︷ ︸
PY/X (y/x)

. (1)

The observableY is called theincomplete data, and Z the

complete data. Let us note that prior distributionPX(x) de-
pends on a parameter vector8x, while the conditional likelihood
MENTATION OF SONAR IMAGES 193

of
the
ur
ral
n
e-
ar

to
y
es
wn
te

tion)

ice

d

PY/X(y/x) depends on parameter vector8y. Joint and posterior
distributionsPX,Y(x, y) andPX/Y(x/y)∝ PX(x)PY/X(y/x) thus
depends on8= (8x,8y).

In the unsupervised Markovian segmentation case, we hav
estimate, in a first step (estimation step), parameter vectors8x

and8y. To this end, we resort to the ICE procedure as mention
above [17]. This method relies on two estimators8̂x(X) and
8̂y(X,Y) appropriate to completely observed data case. Wh
X is unobservable, this procedure starts from an initial parame
set8[0] (not too far from the optimal parameters) and generat
a sequence of parameter vectors8[1],8[2], . . . , 8[k] hopefully
leading to the optimal parameters (limk→∞8[k] =8optimal). To
this end,8[k+1]

x and8[k+1]
y at step (k+ 1) are chosen as con-

ditional expectations of̂8x and8̂y givenY= y, computed ac-
cording to the current values8[k]

x and8[k]
y . These are the best

approximations of8x and8y in terms of the mean squared
error [17]. By lettingEk denote the expectation relative to pa
rameters8[k] = (8[k]

x ,8
[k]
y ), this iterative procedure is defined a

follows:

• Consider an initial parameter set8[0] = (8[0]
x ,8

[0]
y ).

• 8[k+1] is computed from8[k] andY= y by

8[k+1]
x = Ek[8̂x(X) | Y = y] (2)

8[k+1]
y = Ek[8̂y(X,Y) | Y = y]. (3)

The computation of these expectations is impossible in practi
but we can approach Eqs. (2) and (3), thanks to the law of la
numbers, by

8[k+1]
x = 1

n

[
8̂x
(
x(1)
)+ · · · + 8̂x

(
x(n)
)]

(4)

8[k+1]
y = 1

n

[
8̂y
(
x(1), y

)+ · · · + 8̂y
(
x(n), y

)]
, (5)

wherex(i ), i = 1, . . . ,n are realizations ofX drawn according
to the posterior distributionPX/Y,8(x/y,8[k] ). As explained be-
low, for complete data-based estimator8̂y(X,Y), we use a max-
imum likelihood (ML) estimator for the noise model paramete
whereas8̂x is the least-squares (LSQR) estimator described
Derinet al. [18]. Finally, in order to use the ICE procedure, w
need:

• An initial value8[0] not too far from the optimal para-
meters.
• A way of simulating realizations ofX according to the

posterior distributionPX/Y,8. To this end, we use the Gibbs
sampler algorithm [21].

2.3. Estimation of the Noise Model Parameters
for Complete Data
The Weibull Probability Density Function is an appropriate
distribution to describe the luminancey within the reverberation
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and the shadow regions. This PDF offers degrees of free
which allows a large variety of quite different distributions
be captured. Thus, this PDF is well adapted to sonar im
where the speckle distribution is not exactly known and m
vary according to experimental conditions. Experiments h
demonstrated that this distribution models the speckle n
phenomenon more accurately than a Rayleigh distribution
achieves the best fit to real data (the Weibull PDF is used in o
applications such as high resolution radars [22]; experimen
Section 2.4 will show its efficiency).

The Weibull PDF is a two-parameter distribution, of whi
the Rayleigh and the exponential distributions are special c
It turns out that, for our application, we have to introduce ano
parameter to shift this distribution, in order to take into acco
the different processes forming the final sonar image (autom
control of gain, coding, reduction of the dynamic, offset, e
[23]. We propose to consider the expression

WY(y; min,C, α) = C

α

(
(y−min)

α

)C−1

exp

(
− (y−min)C

αC

)
,

(6)

with y> min, α >0, andC> 0.α andC are the scale and sha
parameters, respectively. Figure 2 represents different We
laws for several values of the shape parameterC. In this exam-
ple,α= 1 and min= 0. For the special casesC= 1 andC= 2,
the PDF corresponds to an exponential and a Rayleigh law
spectively. LetY= (Y1,Y2, . . . ,YM ) beM random variables, in
dependent and identically distributed according asingleWeibull

lawWY(.;8y), andy= (y1, y2, . . . , yM ) a realization ofY. The
Maximum Likelihood (M

Denoting nowỹi = (yi − m̂inML ) and setting to zero the par-
leads to solving the
L) estimate of8y= (min,C, α) con- tial derivative [∂ lnL(8y)/∂α]= 0 (which
FIG. 2. Plot of Weibull la
E ET AL.
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sists in finding8̂y, such that

8̂y = arg max
8y

ln PY/8y(y/8y), (7)

where lnPY/8y(y/8y) is the log-likelihood function. Assuming
independence between each random variable, the log-likelih
function can be written

lnL(8y)

= ln PY/8y(y/8y) (8)

= ln

{(
C

αC

)M M∏
i=1

[
(yi −min)c−1 exp

(
− (yi −min)C

αC

)]}
,

(9)

with yi > min∀i, α >0, andC> 0. The maximum value of the
log-likelihood function is used to determine a ML estimator
the unknown parameters8y= (min,C, α). Setting the partial
derivatives of lnL(8y) to zero with respect to each paramet
(i.e., solving the system [∂ lnL(8y)/∂8y]= 0) gives the ML
estimators of thecomplete data(all samples are here known to
arise from the same Weibull distribution). Ifŷmin= mini (yi ), is
the minimum grey level of the sampley, we obtain the following
result:

m̂inML ≈ ŷmin− 1. (10)
ws for several values ofC.
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FIG. 3. (a) Real sonar image of a sandy sea floor. (b) Image histogram and drawing of the Weibull law with ML estimated parameters (see Table 1 for parameter
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system−M + (1/αC
∑M

i=1 ỹC)= 0), we then easily obtain ˆαML :

α̂ML =
(

1

M

M∑
i=1

ỹĈML
i

)1/ĈML

. (11)

Setting∂ lnL(8y)
∂C to zero and using Eq. (11) yields

∑M
i=1

(
ỹĈML

i · ln ỹi
)∑M

i=1 ỹĈML
i

− 1

M

M∑
i=1

ln ỹi = 1

ĈML
. (12)

We have no analytic expression forĈML . Nevertheless, Eq. (12
can easily be solved iteratively according to the following sch
Expression (12) can be written asF(ĈML )= ĈML . Consider now
some sequence of the formU (1),U (2)= F(U (1)), . . . ,U (p)=
F(U (p− 1)). If this sequence converges toward a limitl , then
this limit l is a solution of the equationl = F(l ). Inversely, if
the equationF(ĈML )= ĈML has only one solution (in our ap
plication, the uniqueness of the ML estimator ofC is obviously
verified if F(.) is a monotone function), then̂CML is also the
convergence value of any convergent sequenceU (p) defined by
the recursionU (p+ 1)= F(U (p)). The convergence of this se
quence is then ensured becauseF(.) is proved to be a monoton
function. Consequently,̂CML is given by the following relation

ĈML = lim
p→∞U (p). (13)

To speed up the convergence rate of this iterative estima
procedure, we have to take for the first termU (0) of the sequence
U (p) a positive value nottoo far from ĈML . In our application,

we takeU (0)= 1, which corresponds to an exponential distrib
tion (see Fig. 2). Experiments on both real and synthetic so
me.

-

-

tion

images demonstrate that this iterative scheme allows a good
proximation ofĈML to be obtained quickly, which is then use
in Eq. (11) to get ˆαML .

Figure 3.a represents a real sonar image of a sandy sea
The ML estimated parameters obtained with this scheme
given in Table 1. Figure 4 shows graphically the converge
of the iterative sequenceU (p) for the estimation of the shap
parameter̂CML . The quality of the obtained estimates is difficu
to appreciate in the absence of ground-truth values. Never
less, one can visually appreciate on Figure 3.b the good m
between the image histogram and the PDF corresponding to
estimated parameters. Figure 5 presents a synthetic sonar i
of a sandy sea floor in which the speckle noise distribution
Weibull PDF with specified parameter vector8y and ML esti-
mates obtained with our scheme. We can notice that estim
parameters are close to the ground-truth parameter.

2.4. Parameter Estimation Procedure for the Incomplete Da

Let us recall that this parameter estimation procedure assu
that the luminance within shadow regions and within reverb
ation regions follows two different Weibull PDFs. We aim
estimating the parameters of these two PDFs as well as ta
priori parameters of the Markov model. For thea priori model,
we adopt a standard anisotropic Potts model with the 8-conne
spatial neighborhood. There are four parametersβ1, β2, β3, β4

associated to the horizontal, vertical, and right and left diago

TABLE 1
ML Estimated Parameters for the Example

Reported in Fig. 3
u-
nar

8̂y 44(m̂in) 2.75(ĈML ) 95(α̂ML )
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FIG. 4. Convergence of the iterative sequenceU (p)(Ĉ

binary cliques, respectively,

PX(x) ∝ exp

{
−
∑
〈s,t〉

βst(1− δ(xs, xt ))

}
(14)

where summation is taken over all pairs of neighboring sit

=β , β , β , or β only depends on the “orientation” of the[19]. This method aims at obtaining a rough two-class segmen-

ered

st 1 2 3 4

clique, andδ(.) is the Kronecker delta function. The param-

FIG. 5. Synthetic sonar image of a sandy sea floor in which speckle noise distribution is a Weibull PDF with specified parameter8y and ML estimates are

tation based on features extracted in subwindows and clust
tained with our iterative scheme. In this example,C= 2 and the created syn
timates; estimated parameters are close to the ground-truth parameters.
L = lim p→∞U (p)) for the example reported in Fig. 3.

s,

eter estimation procedure for the incomplete data is outli
below:

• Parameter initialization : The initial parameter value
have a significant impact on the rapidity of the converge
of the ICE procedure and on the quality of the final estima
In our application, we use the initialization method describe
thetic noise follows also a Rayleigh law. We can appreciate the quality of the ML
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TABLE 2
Estimated Parameters for the Picture Reported in Fig. 7.a

(Mixture of Weibull Distributions)

8final
yshadow

0.06(π ) 15(min) 3.29(C) 26.8(α)

8final
yreverberation

0.94(π ) 42(min) 1.83(C) 40.6(α)

8final
x 1.0(β1) 1.5(β2) −0.2(β3) −0.3(β4)

Note.π stands for the proportion of the two classes within the sonar ima
α andC are respectively the scale and the shape parameters of the Weibul
βi are thea priori parameters of the Markov model.

according to aK -means procedure. Once theK -means segmen
tation is obtained, the ML estimator of thecomplete datais used
to get8[0]

y (see Section 2.3). The initial parameters of the Gib
distribution are obtained using the LSQR estimator descri
in [2] from the ML segmentation based on8[0]

y . Let us denote
8[0] = (8[0]

x ,8
[0]
y ), the obtained result.

• ICE procedure: 8[k+1] is computed from8[k] in the fol-
lowing way:

x Using the Gibbs sampler,n realizationsx(1), . . . , x(n)

are simulated according to the posterior distributionPX/Y,8(x/
y,8[k] ), with the parameter vector8[k] .

x For eachx(i ), i = 1, . . . ,n, the parameter vector8x is
estimated by the algorithm proposed by Derinet al. [18, 19]
and8y with the ML estimator described in Section 2.3: they a
denoted8̂x(x(i )), 8̂y(x(i ), y).

x 8[k+1] is obtained from (̂8x(x(i )), 8̂x(x(i ), y)), 1≤ i ≤ n,
by averaging these estimates (see Eqs. (4) and (5)).

If the sequence8[k] becomes steady, the ICE procedure
ended and one proceeds to the actual two-class hierarchica
mentation using the estimated parameters [16]. We calibrate
weight of the “stochastic” aspect of the ICE procedure by cho
ingn, the number of realizations ofX simulated according to the
ICE
posterior distributionPX/Y,8. Whenn increases, the “stochas-
tic” aspect of the algorithm decreases. The intentional choice of

mating the image histogram. The estimates obtained by the
procedure (Weibull model) are given in Table 2.
FIG. 6. Image histogram of the picture reported in Fig. 7.a and estimate
distributions. (b) Mixture of different distributions (Gaussian law for theshadowc
MENTATION OF SONAR IMAGES 197
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TABLE 3
Kolmogorov Distance and χ2 Error Made by Approximating

the Image Histogram (Reported in Fig. 6) by the Probability Den-
sity Mixtures Corresponding to the Estimation Based on Different
Noise Models)

Noise model Kolmogorov distance χ2 error

Gauss–Rayleigh 0.08 19,781
Weibull–Weibull 0.06 16,301

a small value forn (n= 1 in our application) can increase it
computation cost efficiency [24].

We can compare the quality and the aptness of this noise m
based on Weibull laws over the one previously investiga
[19, 23, 25]. In this preceding study, we have considered a ro
noise model in which the speckle phenomenon is taken into
count by a Rayleigh law and the luminancey within shadow
regions is described by a Gaussian law. The left part of Fig.
represents a real sonar image of a sandy sea floor with the
shadow of a man-made object (a cylinder). Figure 6 shows the
timated distribution mixture and the histogram of this sonar i
age for the different noise models. The quality of the estimati
based on the Weibull model over the Gauss–Rayleigh mod
difficult to appreciate visually in the absence of ground-truth v
ues. We can roughly perform such an evaluation by compa
the image histogram (dashed curves) with the probability d
sity mixture corresponding to the estimated parameters (do
curves). We can see that the histogram is closer to the mix
densities based on the Weibull model, especially for therever-
berationclass. Experiments show that the estimate based on
model are also better according to the Kolmogorov distance
χ2 criterion [26], than estimates based on the Gauss–Rayl
models. Table 3 gives the error, in the Kolmogorov distance
χ2 criterion sense, made by these two noise models in appr
d probability density mixture with the ICE procedure. (a) Mixture of two Weibull
lass and a shifted Rayleigh law for thereverberationclass) [16].
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FIG. 7. (a) Real sonar image of a sandy sea floor with the shadow of a m
made object. SCM two-class segmentation results obtained with a (b) mix
of Weibull distributions; (c) mixture of different distributions (Gaussian law f
theshadowclass and a shifted Rayleigh law for thereverberationclass) [16].

3. SEGMENTATION

3.1. Two-Class Segmentation Step

In this first segmentation step, we use the hierarchical tw
class segmentation (SCM method) introduced in [16]. In ord
to make this hierarchical Markovian segmentationunsupervised,
we exploit both the parameters of the mixture-based data mo
and those of the prior Potts model given by the ICE procedu
This two-class segmentation combines a standard coarse-to
multigrid method [27] with a scale-causal model and a multig
energy minimization strategy. This model allows us to mo
precisely model the local and global characteristics of ima
ng
content at different scales. Experiments and comparisons with
other related hierarchical approaches (given in [16]) have proved

tion of the echo information when the picture contains stro
speckle noise, a solution consists in taking into accounta priori
FIG. 8. (a) Real sonar image involving object and rock shadows. SCM tw
mixture of different distributions (Gaussian law for theshadowclass and a shifte
ET AL.

an-
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r

o-
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del
re.
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id
re
ge

that this scheme is well suited to automatic extraction of shado
from a large variety of sonar images.

Figures 7 and 8 display examples of unsupervised two-cl
segmentation, exploiting parameters estimated with the ICE p
cedure, for different noise models. Let us recall that in this se
mentation step, thesea-bottom reverberationand theecho(or
the reverberation on the object) classes are merged in a si
class: thereverberationclass. In Fig. 7, segmentation result
obtained with two different noise models are comparable. N
ertheless, in Fig. 8, we observe that the Gauss–Rayleigh mo
does not permit elimination of speckle noise effects induci
reverberation-mislabeled pixels within the cast shadow reg
of the rock. The proposed noise modeling is appealing since it
lows luminance in reverberation areas to be captured with m
flexibility: the Weibull model offers a more general framewor
than the Rayleigh law (which is a particular case of Weibu
modeling). Thus it allows a better fit to the data (cf. Table 3
The cost of this augmented model lies in the shape param
that we now have to estimate. Moreover, the extracted cast sh
ows of manufactured objects (see Figs. 7, 8, and 9) exhibit
desired, regular geometric shapes (in contrast to the cast s
ows of rocks) without artifacts (i.e., mislabeled pixels within th
cast shadow regions, as observed with a more simplistic no
model), which is in excellent agreement with the ground tru
provided by an expert. This accuracy in extracting and prese
ing the borders of the cast shadows is very appealing in
prospect of a further classification step [28]. We therefore
believe that this new noise modeling is worth the pain.

3.2. Three-Class Segmentation Step

3.2.1. Problem statement.In order to ensure proper detec
o-class segmentation results obtained with a (b) mixture of Weibull distributions; (c)
d Rayleigh law for thereverberationclass) [16].
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FIG. 9. (a) Synthetic sonar image of a sandy sea floor with a sphere lying
the sea-bed. (b) SCM two-class segmentation results.

information about the physical formation of the echo and
corporating it into the MRF model. In sonar imagery, objec
lying on the sea floor create cast shadows corresponding to
regions acoustically obscured by the objects and also ec
corresponding to the signals back-scattered by the objects.
spatial dependency between these two areas can be incorpo
into the MRF model. In the same vein, similar approaches
ploiting a priori information relative to the interaction or spatia
dependency between neighboring regions have been prop
and applied in image restoration [29] and in the classificat
problem [30].

In this section, we propose to incorporatea priori information
about the way echoes physically appear. The adopted m
exploitsa priori information at different levels, pixel and region
to extract echoes from sea-bottom reverberation regions.
will first introduce the notation and the three-class segmenta
strategy. Experimental results on real scenes are then prese

3.2.2. Three-class segmentation strategy.Let x̂[1] be the la-
bel field obtained after the two-class segmentation stage b
on hierarchical Markovian modeling [16]. Labelx̂[1]

s belongs to
{e0, e1}. Based onx[1] , we now consider pixel subsetsS′(S′ ⊂ S)
such asS′ = {s∈ S: x̂[1]

s = e1}. This set has now to be segmente
into two classes, such as to extract reverberated signals. LetX[2]

be the corresponding random binary process:∀s∈ S′, X[2]
s takes

values in{e1= sea-bottom reverberation, e2= echo}. The seg-
mentation will make use of restricted datay[1] ={ys, s∈ S′}. The
distribution of (X[2],Y[1] ) is defined, first, byPX[2]/X[1] (x[2]/x̂[1] ),
the distribution ofX[2] assumed to be stationary and Markovia

and second, by the sitewise likelihoodsPY[1]

s /X[2]
s

(y[1]
s /x

[2]
s ),1 de-

pending on the class labelx[2] .

1 Conditional sitewise data likelihoods of interest should actually rea
P

Y[1]
s /X[1]

s ,X[2]
s

(y[1]
s /x̂[1]

s , x[2]
s ). By abuse of notation, we omit the conditioning

with respect tôx[1]
s = e1, which is implied bys∈ S′.

ho
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We now search forx[2] such as

x̂[2] = arg max
x[2]

PX[2]/X[1] ,Y[1]

(
x[2]

/
x̂[1], y[1]

)
. (15)

Using Bayes’ rule and after elimination ofPY[1]/X[1] (y[1]/x̂[1] ),
which does not depend onx[2] , the previous expression can b
written as

x̂[2] = arg max
x[2]

PX[2] ,Y[1]/X[1]

(
x[2], y[1]

/
x̂[1]

)
(16)

= arg max
x[2]

PY[1]/X[1] ,X[2]

(
y[1]
/

x̂[1], x[2]
)·PX[2]/X[1]

(
x[2]
/

x̂[1]
)
.

(17)

In accordance with the Hammersley and Clifford theore
PX[2]/X[1] (x[2]/x[1] ) is defined as a Gibbs distribution,

PX[2]/X[1]

(
x[2]

/
x̂[1]

) 4= 1

Z
exp

(−U2
(
x[2], x̂[1]

))
, (18)

whereU2(x[2], x̂[1] ) stands for the energy function andZ is the
normalizing constant. DenotingPY[1]/X[2] ,X[1] (y[1]/x[2], x̂[1] )=
1
Z′ exp(−U1(y[1], x[2], x̂[1] )), Eq. (16) can be defined in term
of an energy function that has to be minimized,

x̂[2] = arg min
x[2]

{
U1
(
y[1], x[2], x̂[1]

)+U2
(
x[2], x̂[1]

)}
, (19)

whereU1(y[1], x[2], x̂[1] ) expresses the adequacy between obs
vations and labels{e1, e2} andU2 is the energy term correspond
ing to thea priori model.

• Let us consider the data-driven termU1(y[1], x[2], x̂[1] ). In
order to take into account the speckle noise phenomenon
have used in Section 2.3 a shifted Weibull lawW(.;8y) to de-
scribe the luminanceY within reverberation regions. Due to
the slight number of pixels belonging to theechoclass, they
cannot corrupt this modeling strongly. So we can efficiently a
proximate the distribution of luminance within the sea-botto
reverberation region by the same distribution. Thus, we defi

PY[1]
s yX[2]

s

(
y[1]

s

/
e1
)= C

α

(
(ys −min)

α

)C−1

exp

(
− (ys −min)C

αC

)
(20)

with y> min, α >0, andC> 0. The label fieldX[1] disappears
becauseY[1] is defined only onS′; i.e., the dependence fromX[1]

in S′ brings no more information.8y= (min,C, α) is estimated
with the ICE procedure described in Section 2.2.

We know that the reflection of the acoustic wave on the obj
returns a high-amplitude signal and we have noa priori knowl-
edge about the distribution of the gray levels within the ec
region. The high amplitude signal at concerned pixel locatio
often induces a saturation of the reception captor of the so
and consequently a maximal gray level for most of the pix

within these echo regions. Sites with gray levelymax (ymaxdesig-
nating the maximal gray level on the sonar image) are therefore
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FIG. 10. Probability density function associated with the echo law.

likely to belong to theechoclass. Thus we empirically mode
the conditional density function of theechoclass by the simple
law

PY[1]
s yX[2]

s

(
y[1]

s

/
e2
) = 2

γ
3(ys − ymax)U(ymax− ys) (21)

whereU(.) is the Heaviside function,3(.) stands for the trian-
gular function,ymax corresponds to the maximal grey level o
the sonar image due to signal quantification, and 2/γ is a nor-
malizing constant to ensure that the above function integrate
1. This modeling can also be justified by the fact that the e
signal more often induces, a saturation of the reception ca
of the sonar and consequently a maximal gray level for mos
them. Figure 10 shows the plot of this law forymax= 255. Given
these sitewise data likelihoods, the data energy term is expre
as

U1
(
x[2], y[1], x̂[1]

) = −∑
s∈S′

ln PY[1]
s yX[2]

s

(
y[1]

s

/
x[2]

s

)
. (22)

• Let us now considerU2(x[2], x̂[1] ), the energy term corre
sponding to thea priori model. We adopt an 8-connexity spati
neighborhood in whichβ1, β2, β3, β4 represent thea priori pa-
rameters associated to the horizontal, vertical, and right and
diagonal binary cliques respectively andβ5 stands for the unary
clique parameter (cf. Fig. 11). This energy allows us to expr
constraints on the desired solution. In our application, we w
to favor homogeneous regions. To do that, we use an an
tropic Potts model that associates to the binary clique〈s, t〉, the
FIG. 11. One-site and two-site cliques for the 2nd order neighborhood, a
associated parameters.
E ET AL.
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FIG. 12. Elementary potential fieldψs0(r ) (with σ = 1) created by a sites0

labeledshadowin the two-class segmentationx̂[1] .

potential

βst
(
1− δ(x[2]

s , x[2]
t

))
, (23)

whereβst=β1=β2=β3=β4, depending on the orientations o
the clique. Potential of the singleton clique with parameterβ5

is defined in order to disadvantage the choice of theecholabel
for a site that is too far away from a shadow region. To defi
this potential, we introduce a potential field9x̂[1] (t), t ∈ S, as
follows. Each sites0 labeledshadowin x̂[1] creates an elementary
potential fieldψs0(r ) such as

ψs0(r ) = 1

r
exp

(
− r

σ

)
, (24)

wherer (r 6= 0) is the distance to the pixels0 andσ is a standard
deviation parameter controlling the interaction distance betw
echo and shadow regions. Figure 12 shows an example of thi
ementary potential field. The set of pixels labeledshadowin x̂[1]

create a global potential field9x̂[1] (t), combining the different
elementary potential fieldsψs0(r ) as follows,

9x̂[1] (t) = inf

 ∑
s∈S:x̂[1]

s =e0

ψs(d(s, t)), 1

 , (25)

whered(s, t) is the distance between pixelss andt . The unary
potential with parameterβ5 is ass to disadvantage the choice
theecholabele2 for a site too far away from a shadow region
Its form is given by

−β5 ln9x̂[1] (s) · δ(x[2]
s , e2

)
. (26)

The corresponding energy term induces an area within wh
theecholabel will not be discouraged. Figure 13 displays an e
ample of the potential field, computed for different values of t
ndparameterσ from the segmented image presented in Fig. 13.b.
Finally, the global energy function to be minimized is defined
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spatial dependency between echo and shadow regions (β5= 0). (d) Proposed
THREE-CLASS MARKOVIAN SEG

FIG. 13. (a) Real sonar image involving object and rock shadows. (b) T
class segmentation results (x̂[1] ). (c) Magnitude of the potential field9x̂[1] (t)
combining the different elementary potential fieldsψs0(r ) created by each site
s0 labeledshadowin the two-class segmentationx̂[1] (withσ = 2). (d) Magnitude
of the potential field withσ = 4.

as follows:

U
(
x[2], x̂[1], y[1]

)
= −

∑
s∈S′

ln PY[1]
s yX[2]

s

(
y[1]
/

x[2]
s

)
︸ ︷︷ ︸

U1sy[1] ,x[2] ,x̂[1]d

+
∑
〈s,t〉⊂S′

βst
(
1− δ(x[2]

s , x[2]
t

))
︸ ︷︷ ︸

U21sx[2] ,x̂[1]d

+
∑
s∈S′
−β5 ln9x̂[1] (s) · δ(x[2]

s , e2
)

︸ ︷︷ ︸
U22sx[1] ,x[2] ,x̂[1]d

.

We use the deterministic relaxation algorithm ICM [12] to mi
imize this global energy function. For the initialization of th
algorithm, we exploit the segmentation map obtained by a
segmentation.

4. EXPERIMENTAL RESULTS

For the three-class segmentation step, we use the following
rameters:β1=β2=β3=β4=β5= 1 for thea priori parameter
associated to the binary clique (the Potts model is here isotro
and the unary clique respectively, andσ = 2 for the standard de

viation parameter controlling the interaction distance betwe
the echo and shadow regions (see Eq. (24)).
MENTATION OF SONAR IMAGES 201
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Sonar images presented herein are provided by a side-
sonar (namely, the DUBM41, whose frequency is arou
500 KHz). The size of these pictures is 256 by 256 pixels c
responding to a sea floor surface of 25 by 25 m.

We observed that the final segmentation results are not
sensitive to the value of theσ parameter (within the range
[1, . . . ,4]). If this parameter is low (below 1, for example), th
elementary potential field created by each site labeledshadowin
x̂[1] is too sharp. As a result, the area within which theecholabel
will not be discouraged is too small and, consequently, theecho
region can be not entirely determined. Conversely, a large v
for σ could let appear in the segmentation results false alar
i.e., smallechoareas due to the speckle noise. On one ha
this parameter could be estimated optimally and automatic
if the depth of the sea floor and the mean size of the obje
to be visualized were known; but on the other hand obser
robustness forσ ∈ [1, 4] did not drive us to consider such a
estimate.

We compare the result obtained for a real sonar image w
(1) a classical ML segmentation, (2) our segmentation mo
withouta priori information on the spatial dependency betwe
echo and shadow regions (by settingβ5= 0), and finally, (3) our
scheme. Figure 14.a shows a real sonar image involving ob

FIG. 14. (a) Real sonar image involving object and rock shadows. (b) M
segmentation. (c) proposed MRF model withouta priori information on the
enMRF model witha priori information on the spatial dependency between echo
and shadow regions.



202 MIGNOTTE ET AL.
FIG. 15. (a) Synthetic shadow shape of a sphere lying on a sea-bed (obtained with a ray tracing procedure). (b) Synthetic sonar image (with synthetic speckle
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noise) of a sphere lying on a sandy sea-bed. (c) Three-class segmentation

and rock shadows and Figs. 14.b, 14.c, and 14.d present the
mentation results obtained with these three approaches. C
pared to a ML segmentation, a segmentation model integra
the a priori energy term allows the spatial coherence of
obtained partitions to be ensured, i.e., it favors homogeneou
gions (see Figs. 14.c and 14.d). Nevertheless, without thea priori
term expressing the spatial dependency between echo
shadow areas, the segmentation scheme does not permit
eliminatly the speckle noise effect, inducing false small ec
areas (see Fig. 14.c). We can notice that our approach lea
better result and can remove efficiently undesired echos indu
by speckle noise effects (see Fig. 14.d).

Due to the “stochastic” aspect of the ICE iterative estim
tion procedure, the resulting estimates are less sensitive to
initial parameter values than those obtained by other esti
tion algorithms of the distribution mixture parameters (like t
well-known Expectation Maximization (EM) algorithm, for ex

ample). There is no theoritical proof of convergence for ICEiments demonstrate that the recovered segmentations are close

algorithm; nevertheless good behavior is generally noticed. Ato the ideal one.
FIG. 16. (a) Synthetic shadow shape of a metallic core lying on a sea-be
speckle noise) of a metallic core lying on a sandy sea-bed. (c) Three-class
results obtained with the proposed scheme.
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bad initialization can lead the ICE procedure to discard wron
one class, the shadow class in our application (by estima
as zero the proportion of this class and by considering wron
that all the pixels of the image belong to a single class, wh
is only true for the sonar image of a sandy sea-floor). But
initialization method we used [18] seems to be good enoug
avoid this problem. It allows to get a good convergence of
ICE procedure in all tested cases (300 images in the data b

Experiments have been carried out on both synthetic and
sonar images. Figures 15.b and 16.b present synthetic sona
ages (with synthetic speckle noise) of a sphere and a met
core (or a metallic tire) lying on a sandy sea floor. In these t
examples, the echo shape and the acoustic cast shadow of
objects are obtained by a ray tracing procedure. Figures 15.c
16.c present the three-class segmentation results obtained
our approaches. These results can be compared to the gro
truth segmentations given in Figs. 15.a and 16.a. These ex
d (obtained with a ray tracing procedure). (b) Synthetic sonar image (with synthetic
segmentation results obtained with the proposed scheme.
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THREE-CLASS MARKOVIAN SEG

We present now three-class segmentation results obtaine
real sonar images. Figures 17.a, 17.c, and 17.e display t
metallic manmade objects (two cylinders and a trolley) lying
the sea bed. In these two examples, the echo features are
criminant and easily identifiable. Figures 18.a and 18.c disp
sonar images showing respectively a tire and a cylindrical m
ufactured object lying on a sandy sea floor. In these examp
due to the nature of the object, echo regions are not very la
Experiments indicate that the obtained segmentation map
close to the expected results. The echo and shadow region
well segmented and the proposed algorithm exhibits good
bustness against speckle noise. Boundaries of each object

FIG. 17. (a, c, e) Real sonar images involving a sandy sea floor and a m

made object (two cylinders and a trolley). (b, d, f) Three-class segmentat
results obtained with the proposed scheme.
MENTATION OF SONAR IMAGES 203
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FIG. 18. (a, c) Real sonar images of a sandy sea floor with the cast sha
of a tire in (a) and the cast shadow of a cylindrical manufactured object in
(b, d) Three-class segmentation results obtained with the proposed algorit

been well preserved and numerous false alarms correspon
to spurious small shadow and echo areas due to speckle n
have been correctly eliminated.

Nevertheless, we can notice on some sonar image segm
tions the presence of some echo points “behind” the cast sha
shapes of some objects lying on the sea floor. These artif
could be easily discarded by ordering the spatial relations
between echoes and shadows, i.e., by exploiting thea priori
(approximate) information about the sonar position, which
not available on our data base. Thus, in our model this inter
ing a priori information is not taken into account because it
not available.

5. CONCLUSION

We have described an unsupervised three-class segmen
method, based on an estimation step and a segmentation
which seems well adapted and efficient for sonar image segm
tation issues. The estimation step offers an appropriate est
tion of the model parameters, and takes into account the dive
of the laws in the distribution mixture of sonar images by mod
ing each noise distribution with a Weibull PDF. In order to obta
ionan accurate segmentation map in spite of the presence of speckle
noise, the proposed segmentation is articulated in two stages and
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exploits the previously estimated parameters. In the first, a sc
causal and spatial model is used to separate theshadowclass
from the others (echoandsea-bottom reverberation). Then, in
the second stage, a MRF-based monoscale scheme integr
a priori information at different levels of representation (pix
and region) allows the echo regions to be distinguished from
sea-bottom reverberation ones. This scheme is computation
simple and well suited to automatic three-class segmentatio
a large variety of sonar images. This method has been valid
on a number of real sonar images. Obtained results demons
the efficiency and the robustness of this scheme.
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