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Three-Dimensional Blind Deconvolution of SPECT Images

Max Mignotte* and Jean Meunier

Abstract—Thanks to its ability to yield functionally rather than anatomi-
cally-based information, the three-dimensional (3-D) SPECT imagery tech-
nique has become a great help in the diagnostic of cerebrovascular dis-
eases. Nevertheless, due to the imaging process, the 3-D single photon emis-
sion computed tomography (SPECT) images are very blurred and, conse-
quently, their interpretation by the clinician is often difficult and subjective.
In order to improve the resolution of these 3-D images and then to facili-
tate their interpretation, we propose herein to extend a recent image blind
deconvolution technique (called the nonnegativity support constraint–re-
cursive inverse filtering deconvolution method) in order to improve both
the spatial and the interslice resolution of SPECT volumes. This technique
requires a preliminary step in order to find the support of the object to
be restored. In this paper, we propose to solve this problem with an un-
supervised 3-D Markovian segmentation technique. This method has been
successfully tested on numerous real and simulated brain SPECT volumes,
yielding very promising restoration results.

Index Terms—Image restoration, Markov random field (MRF) model,
single photon emission computed tomography (SPECT) imagery, three-di-
mensional (3-D) blind deconvolution, unsupervised segmentation.

I. INTRODUCTION

T THREE-DIMENSIONAL SPECT images are obtained by the
detection of radiations (gamma rays) coming from radioactive

isotopes injected in the human body. Contrary to other medical imaging
techniques, such as X-ray, computed tomography (CT), magnetic res-
onance imaging (MRI), etc., this imagery process is able to give func-
tionally rather than anatomically-based information, such as the 3-D
metabolic behavior of human brain, by visualizing the level of blood
flow of a set of cross-sectional images. This study of regional cere-
bral blood flow (rCBF) can aid in the diagnostic of cerebrovascular
diseases (e.g., Alzheimer’s disease, Parkinson’s disease, etc.) by indi-
cating lower, or abnormal higher, 3-D metabolic activity in some brain
regions.

Due to the imaging process, SPECT suffers from poor spatial res-
olution mainly owing to the 3-D scattering of the emitted photons.
Consequently, resulting 3-D SPECT images are blurred and their in-
terpretation by the nuclear physician is often difficult and subjective.
If the object to be visualized is small compared to the source-to-colli-
mator distance, this degradation phenomenon may be considered to be
shift-invariant [1] and, neglecting noise, this one can be modeled by a
3-D convolution process between the true undistorted 3-D image and
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the transfer function of the imaging system (also called the point spread
function or PSF).

In order to improve the spatial resolution of SPECT volumes, some
authors have, thus, investigated the SPECT image deblurring problem
by neglecting the interslice blur and by approximating this transfer
function with a two-dimensional (2-D) symmetric Gaussian function
[2], [3], or by considering ana priori known PSF [4]. In this con-
text, classical Wiener filter techniques [1], [2] or maximum entropy
filter-based deconvolution technique [4] have then been proposed to
achieve this deconvolution procedure and significant resolution im-
provements have been noticed [1], [2], [4]. Nevertheless, let us note that
these methods don’t take into account the interslice blur inherent to this
3-D SPECT imagery process and are sensitive to the assumption made
on the nature of the blurring function. In our applications where little
is known about the PSF, it can turn out to be more relevant to estimate
directly the PSF from the observed input image. This problem of simul-
taneously estimating the PSF (or its inverse) and restoring an unknown
image is called a “blind deconvolution” problem. Recent 2-D deconvo-
lution techniques exist, such as nonnegativity support constraint–recur-
sive inverse filtering (NAS–RIF) algorithm, and can also be efficiently
extended in the 3-D SPECT imagery context. These techniques require
to find, in a preliminary step, the support of the object to be restored. In
this paper, we propose to solve this problem thanks to an unsupervised
3-D Markovian segmentation technique.

This paper is organized as follows. Section II briefly describes the
proposed 3-D extension of the NAS-RIF deconvolution technique. In
Section III, we detail the 3-D unsupervised Markovian segmentation
algorithm allowing to find the exact support of the object to be restored.
Deconvolution experimental results on phantoms, synthetic and real
brain SPECT volumes are given in Section IV. Finally, we conclude in
Section V.

II. 3-D DECONVOLUTION METHOD

A. Introduction

In our application, the degradation of a 3-D SPECT image (i.e., a
SPECT volume) can be represented as the result of a convolution of
the true SPECT volume with a 3-D blurring function (the PSF), plus
an additive term to model the noise from the physical system. If the
imaging system is assumed to be linear and shift invariant, this degra-
dation process can then be expressed by the following linear model:

g(x; y; z) = f(x; y; z) � h(x; y; z) + n(x; y; z)

where
g(x; y; z) the degraded or blurred 3-D image;

f(x; y; z) the undistorted true 3-D image;

h(x; y; z) the PSF of the imaging system;
n(x; y; z) the corrupting noise (assumed additive in our model).

In this notation, the coordinates(x; y) represent the discrete pixel spa-
tial locations,z the slice location and� designates the 3-D discrete
linear convolution operator. The 3-D blind deconvolution problem con-
sists then in determiningf(x; y; z) and h(x; y; z) (or its inverse)
given the blurred observationg(x; y; z).

When the object to be recovered is imaged against a uniform or a
noisy background, a commonly used method for solving the 2-D blind
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deconvolution problem consists in minimizing an error metric that op-
timizes the form of the restored image and the PSF (or its inverse) to fit
the various constraints,a priori known, on the form of the solution; typ-
ically positivity and known support of the object. The steepest descent
or conjugate gradient method are then generally used to achieve op-
timization [5], [6].1 In our application, the true undistorted rCBF map
of a human brain consists of a finite support imaged against a noisy
background due to the Poisson noise phenomenon. In this section, we
propose to find accurately this support thanks to an unsupervised 3-D
Markovian segmentation technique and then to use a 3-D extension of
such deconvolution technique for improving both spatial and interslice
resolution of the SPECT volumes.

B. 3-D Extension of the NAS-RIF Algorithm

In the 3-D SPECT imagery context, the recent NAS-RIF algorithm
[5] can be easily extended in order to take into account both the 2-D
spatial and the interslice blur. We can derive a 3-D extension of this
technique by simply considering a 3-D variable finite impulse response
(FIR) filter u(x; y; z) of dimensionNxu�Nyu�Nzu with the blurred
SPECT volume pixelsg(x; y; z) as input (see Fig. 1). The output of
this filter gives an estimate of each cross-sectional 2-D true image
f̂(x; y; z = k) (with k 2 [1; K] andK representing the number of
transversal slices in the considered SPECT volume). Each resulting es-
timation is passed through a nonlinear filter which uses a nonexpansive
mapping to project the estimated 2-D image into the space representing
the known characteristics of the true image. The difference between
this projected imagêfNL(x; y; z = k) andf̂(x; y; z = k) is used as
the error signal to update the variable filteru(x; y; z). Fig. 1 gives an
overview of the proposed 3-D-extended NAS-RIF deconvolution algo-
rithm. Each cross-sectional 2-D image is assumed to be nonnegative
with known support. The cost function used in the deconvolution pro-
cedure of thekth transversal 2-D image is defined as

Jk =
(x; y)2D

f̂
2(x; y; z = k)

1� sgn f̂(x; y; z = k)

2

+

(x; y)2D

f̂(x; y)� LB

2

+ 

8(x; y; z)

u(x; y; z)� 1

2

wheref̂(x; y; z) = g(x; y; z) � u(x; y; z), and sgn(f) = �1 if
f < 0 and sgn(f) = 1 if f � 0. D[k] is the set of all pixels of
g(x; y; z = k) inside the region of support, andD[k] is the set of all
pixels outside the region of support. The variable in the third term
is nonzero only whenLB is zero, i.e., the background color is black.
The third term is used to constrain the parameter away from the trivial
all-zero global minimum for this situation. The authors have shown in
[5] that the above equation is convex in the 2-D case with respect tou.
This property remains true in the 3-D case so that convergence of the
algorithm to the global minimum is ensured using the conjugate gra-
dient minimization routine [5]. Let us note that a fully 3-D deconvo-
lution scheme would consist in minimizing directly the cost function
J = K

k=1 Jk. Nevertheless, let us also notice thatJk andJ being
convex and the global minimum being ensured in both cases by the
conjugate gradient optimization routine, the estimated solution (i.e.,
the SPECT volume given by minimizingJ and the set of SPECT im-
ages given by minimizing each cost functionJk) are, thus, identical.

1This class of methods has appeared more reliable in the SPECT image 2-D
deconvolution context than the one called “grouped coordinate descent” that
alternates between restoration of the image and PSF [7].

Fig. 1. Three-dimensional extension of the NAS–RIF deconvolution
algorithm.

Fig. 2. Image histogram of the picture reported inFig. 4 (solid curve) and
estimated probability density mixture obtained with the iterative conditional
estimation (ICE) procedure (dotted and dashed curves).

Fig. 3. Estimated parameters for the SPECT volume reported in Fig. 4.�

stands for the proportion of the three classes within the SPECT image.� are
the exponential law parameter.� and� are the Gaussian law parameters.

III. SUPPORTDETERMINATION METHOD

A. Introduction

In the 2-D case, the support can be roughly approximated by the
smallest rectangle containing the entire object [5]. In order to automat-
ically determine this rectangular frame, some of the proposed methods
are based on hold-out methods [5], or inspired by the constraint as-
sessment algorithm proposed in [8]. These methods are reliable for as-
sessing the optimal 2-D rectangular support but cannot be easily ex-
tended in order to define a more accurate segmentation.

To this end, an alternative approach consists in exploiting the re-
sult of a 3-D unsupervised Markovian segmentation. Nevertheless, the
problem of “unsupervised” Markovian segmentation is quite complex;
the main difficulty is that the estimation of model parameters is re-
quired for the segmentation, while the segmentation result is needed
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Fig. 4. Example of an unsupervised 3-D Markovian segmentation of a brain SPECT volume using the iterated conditional modes (ICM) deterministic relaxation
technique and based on the parameters estimated by the ICE procedure. (top): Real brain SPECT volume (four central transversal slices) and (bottom) three-class
Markovian segmentations.

Fig. 5. Examples of human brain SPECT volume deconvolution given by the 3-D-extended version of the NAS–RIF algorithm combined with the Markovian
segmentation-based support finding algorithm. (top) Five consecutive real cross-sectional SPECT slices and (bottom) deconvolution results.

for model parameter estimation. In order to solve this problem, a simple
and reliable approach consists in having a two-step process. First, a pa-
rameter estimation step in which we have to estimate the MRF model
parameter (i.e., the parameters of the grey level statistical distribution
associated to each class of the SPECT volume). Then, a second step
devoted to the segmentation itself based on the values of the estimated
parameters.

B. 3-D Unsupervised Markovian Segmentation

We consider a couple of random fieldsZ = (X; G), whereG =
fGs; s 2 Sg represents the field of observations located on the 3-D
latticeS consisting ofK latticesSk of N sitess (associated to the
N pixels of each transversal slice of the SPECT volume), andX =
fXs; s 2 Sg the label field (related to theK �N class labelsXs of
a segmented SPECT volume). Each aforementioned label is associated
to a specific brain anatomical tissue or region of the SPECT volume;
the cerebrospinal fluid “CSF” area designates the region that is nor-
mally due to the lack of radiations. In this distribution mixture param-
eter estimation and segmentation problems, this region designates the
brain region filled with cerebrospinal fluid (without blood flow and,

thus, without radiation) and also the area outside the brain region. The
“white matter” and “grey matter” (brightest region) are associated to a
low and a higher level of blood flow, respectively [9]. EachGs takes its
value inf0; � � � ; 255g (256 grey levels), and eachXs in fe1 = “CSF”,
e2 = “white matter”, ande3 = “grey matter”}.

In the following, the parameters in upper-case letter designate
the random variables whereas the lower-case letters represent the
realizations of these concerned random variables. The distribution of
(X; G) is defined, first, by prior distributionPX(x), supposed to be
Markovian and second, by the site-wise conditional data likelihoods
PG =X (gs=xs) whose shape and parameter vector�(x ) depends on
the concerned class labelxs (gs designates the grey level intensity
associated to the sites). In order to take into account the Poisson
noise phenomenon inherent to the SPECT imaging process in the
“CSF” area, we modelPG =X (gs=e1), by a exponential law [3]
with parameter�, namely; (1=�) exp [�(gs=�)]. To describe the
brightness within the “white matter” and the “grey matter” regions, we
model the conditional density function for these two regions by two
different Gaussian laws [3]. Finally, we assume independence between
each random variableGs givenXs. The observableG is called the
“incomplete data” whereasZ constitutes the “complete data”.
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Fig. 6. Examples of human brain SPECT volume deconvolution given by the 3-D-extended version of the NAS-RIF algorithm combined with the Markovian
segmentation-based support finding algorithm. (top) Five consecutive real cross-sectional SPECT slices and (bottom) deconvolution results.

(a) (b)

(c) (d)

Fig. 7. Examples of human brain SPECT cross-sectional image segmentation
and deconvolutions: (a) original SPECT cross-sectional human brain image,
(b) unsupervised 3-D Markovian segmentation, (c) deconvolution result given
by the 3-D-extended version of the NAS-RIF algorithm (inverse filter size is
3 × 3 × 3), and (d) deconvolution result given by its 2-D version (inverse filter
size is 5 × 5) [both deconvolution methods require the same computational
load and are combined with the proposed Markovian segmentation-based
support-finding algorithm (b)].

1) Estimation Step:In order to determine� = (�(e );�(e );
�(e )), we use the ICE algorithm. This estimation procedure [11]
relies on an estimator̂�(X; G) for completely observed data case.
This iterative method starts from an initial parameter vector�[0] (not
too far from the optimal one) and generates a sequence of parameter
vectors leading to the optimal parameters (in the least squares sense)
with the following iterative scheme:

�[p+1] =
1

n
�̂(x(1); g) + � � �+ �̂(x(n); g)

wherex(i); i = 1; � � � ; n are realizations ofX drawn according to
the posterior distributionPX=G(x=g; �

[p]). In order to decrease the

computational load, we can taken = 1 without altering the quality
of the estimation [12]. Finally, we can use the Gibbs sampler algo-
rithm [13] to simulate realizations ofX according to the posterior dis-
tribution. For the locala priori model of the Gibbs sampler, we adopt
a 3-D isotropic Potts model with a first-order neighborhood [10]. In
this model, there are three parameters denoted�1; �2; �3, called “the
clique parameters” [10], and associated to the horizontal, vertical, and
transverse binary cliques, respectively.2 Given thisa priori model, the
prior distributionPX(x) can be written as

PX(x) = exp �
hs; ti

�st 1� � (xs; xt)

where summation is taken over all pairs of spatial and interlevel neigh-
boring sites and� is the Kronecker delta function. In order to favor
homogeneous regions with no privileged orientation in the Gibbs sam-
pler simulation process, we choose�st = �1 = �2 = �3 = 1. Finally,
�[p+1] is computed from�[p] in the following way.

a) Stochastic step: Using the Gibbs sampler, one realizationx is
simulated according to the posterior distributionPX=G(x=g),
with parameter vector�[p].

b) Estimation step: The parameter vector�[p+1] is estimated with
the maximum likelihood (ML) estimator of the “complete data”
corresponding to each class.

i) If N1 = #fs 2 S: xs = e1g is the number of pixels of
the “CSF” area, the ML estimator̂�(e ) of � is given by
[14]: �̂(x; g) = (1=N1) s2S: x =e gs.

ii) If N2 = #fs 2 S: xs = e2g andN3 = #fs 2
S: xs = e3g pixels are located in the “white matter” and
“grey matter” regions, respectively, the corresponding ML
estimator of each class is given by the empirical mean and
the empirical variance. For instance, for the “white matter”
class, we have for̂�(e )

�̂(x; g) =
1

N2
s2S: x =e

gs

�̂2(x; g) =
1

(N2 � 1)
s2S: x =e

(gs � �̂)2

c) Repeat until convergence is achieved; i.e., if�̂[p+1] 6� �̂[p], we
return to stochastic step.

2Cliques are subsets of sites which are mutual neighbors [10].
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(a) (b) (c) (d)

Fig. 8. Examples of (a), (c) sagittal and (b), (d) coronal sections of the (top) original and (bottom) deconvolved human brain SPECT volumes whose cross-sectional
slices have been presented inFig. 5 for (a) and (b) and inFig. 6 for (c) and (d).

Fig. 2 represents the estimated distribution mixture of the SPECT
volume shown in Fig. 4. The three site-wise conditional data like-
lihoods PG =X (gs=ek), k = 1; 2; 3 (weighted by the estimated
proportion�k of each class) are superimposed to the image histogram.
Corresponding estimates obtained by the estimation procedure
(requiring about ten iterations) are given in Fig. 3.

2) Segmentation Step:Based on the estimates given by the
ICE procedure, we can compute an unsupervised 3-D Markovian
segmentation of SPECT volumes. In this framework, the Markovian
segmentation can be viewed as a statistical labeling problem according
to a global Bayesian formulation in which the posterior distribution
PX=G(x=g) / exp �U(x; g) has to be maximized [10]. The
corresponding posterior energy is

U(x; g) =
s2S

� ln PG =X (gs=xs)

U (x; g)

+
hs; ti

�st(1� �(xs; xt))

U (x)

where
U1 adequacy between observations and labels;
U2 energy of thea priori model.

We use the deterministic ICM algorithm [10] to minimize this global
energy function. For the initialization of this algorithm, we exploit the
segmentation map obtained by a ML segmentation. Fig. 4 displays ex-
amples of unsupervised three-class segmentation, exploiting parame-
ters estimated with the ICE procedure. In this segmentation, the “CSF”,
the “white matter” and the “grey matter” are represented by a dark,
a grey, and a white region, respectively, in order to visually express
the activity level of the blood flow. The supportD is then determined
simply by the set of pixels belonging to the white and grey matter
classes.

IV. EXPERIMENTAL RESULTS

The effectiveness of this 3-D blind deconvolution method was tested
on several SPECT volumes composed of 64 transversal slices of 64 × 64
pixels with 256 grey levels. Those presented in this section are only a
few examples.

Fig. 9. Examples of deconvolution obtained by our 3-D blind deconvolution
approach on some cross-sectional slices of a SPECT phantom. Top: real
cross-sectional SPECT phantom slices. Bottom: deconvolution results.

The initial inverse FIR filter required by the NAS-RIF algorithm is
the Kronecker delta function [5] and the size of this inverse filter is
3 × 3 × 3 pixels. Besides, we have used = 0 because the background
of SPECT images is not completely black. We recall that the object
support determination is based on the result of the 3-D unsupervised
Markovian segmentation (seeSection III). Finally, in order to objec-
tively compare the resolution improvements between the original and
deconvolved SPECT volumes, we have decided to stretch the histogram
of the estimated 3-D volume at convergence (i.e.,f̂�nal(x; y; z)) in
order to get the same mean value as the original input SPECT volume
g(x; y; z). The computational cost for a blind deconvolution cross-
sectional image is about 50 s on a standard SunSparc 2 workstation
(20 s for the support determination of the whole volume and 30 s for
the blind deconvolution of each cross-sectional image).

Figs. 5 and 6 present examples of brain SPECT volume deconvo-
lutions obtained by this 3-D blind deconvolution approach. The algo-
rithm (requiring about 250 iterations) converges to a very good estimate
of the solution withouta priori information on the PSF and allows to
noticeably improve the resolution of the original SPECT volume. For
instance, this restoration procedure allows efficiently to detect small
localized singularities associated with lesion or tumors that may not be
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Fig. 10. Examples of some consecutive cross-sectional slices of the segmented phantom (ground truth).

clearly visible in the original blurred image. Fig. 7(c) and (d) shows
the resolution improvement obtained by the 3-D-extended version of
the NAS-RIF algorithm over its 2-D version for a given cross-sectional
image (both methods are combined with the proposed unsupervised
Markovian segmentation-based support-finding algorithm). The reso-
lution improvement is visible (although difficult to appreciate due to
the diffusive effect of the printer) and can be clearly noticed on a com-
puter screen. Fig. 8 shows examples of sagittal and coronal sections
of the original and deconvolved human brain SPECT volumes whose
cross-sectional slices have been presented in Figs. 5 and 6. The im-
provement of the interslice resolution is also clearly visible.

The effectiveness of this deconvolution technique is also tested on
a real SPECT phantom (i.e., a physical Plexiglas head phantom filled
with radioactive material and measured by a SPECT system) for which
the ground truth of this segmented phantom is exactly known and, thus,
for which the performance of our proposed method can then be objec-
tively judged. Fig. 9 presents examples of brain SPECT volume decon-
volutions obtained by our 3-D blind deconvolution approach on this
SPECT phantom. We can easily notice that this SPECT volume is less
noisy and less blurred than the real human brain SPECT volumes pre-
viously presented and processed (due to several factors such as a dif-
ferent dose of radioactive isotopes contained in each uniform region
of this SPECT phantom, a longer acquisition time, the stillness of this
simulated brain during the SPECT process, reduced attenuation, etc.)
Nevertheless, once again, the resolution improvement remains visible.

In order to fully assess the success of this restoration procedure, we
use the specific evaluation criteria proposed in [4], based on the esti-
mation of the three following measures:

1) First, the average contrast of the image, defined byC = (1�
m2=m3), wherem2 andm3 are the mean of the pixel value
in the “white matter” and “grey matter” area, respectively.

2) Second, the image mottleM2 in the “white matter” region,
characterized by taking the ratio of the standard deviation�2
of pixel values in this area to the meanm2.

3) Third, the image mottleM3 in the “grey matter” area.

These two last parameters allow to measure the amplification of
the noise and/or measure the presence of undesirable artifacts that can
be created by the deconvolution procedure in a uniform region of the
real SPECT phantom (thus with ideally uniform radioactive activity).
Due to the difference of proportion of pixels belonging to each brain
anatomical tissue, we consider the total mottle measure given byM =
�2M2 + �3M3, with �2 and�3 designates the proportion of pixel be-
longing to the “white matter” and “gray matter” area, respectively. A
reliable SPECT image restoration technique will then allow to enhance
the contrast of the image with little increase in mottle, i.e., without
amplifying too much the noise and/or without creating false artificial
features (technically, an increase by a factor of 1.1–1.2 of the original
mottle of the image remains acceptable if the contrast enhancement is
significantly increased [4]). Due to the difference of thickness between
the cross-sectional slices of the real and segmented phantom, these

(a) (b) (c)

Fig. 11. Example of deconvolution results on some cross-sectional slices of a
synthetic SPECT volume: (a) ground truth of the segmented synthetic slices, (b)
synthetic SPECT slices, and (c) deconvolution results.

above mentioned measures are estimated on the whole 3-D phantom
after this one has been registered [15] on the ground truth of the seg-
mented phantom volume (see Fig. 10 where some consecutive slices
of the segmented phantom are shown). Our proposed restoration tech-
nique allows a contrast enhancement from 9% to 21% between the orig-
inal and deconvolved SPECT phantom along with an acceptable ampli-
fication of the mottle of this 3-D image by a factor of 1.18 (from 17% to
20%). This represents a significant improvement in image quality with
a very small penalty and attest the validity of our restoration method.
Let us add that the registration process [15] induces most probably ar-
tificial features and our real restoration results are most likely better.

Finally, we have also tested our 3-D deconvolution technique on
some cross-sectional slices of a synthetic SPECT volume. In order to
simulate at best the typical characteristics of real human brain SPECT
images, we have re-created three homogeneous regions and added the
corresponding noise for each ones, according to the grey level statistical
distribution already estimated on a real human brain SPECT volume
(see the distribution mixture presented in Fig. 2 and parameters given in
Fig. 3). We have also added a 3-D Gaussian blur in order to simulate the
3-D scattering of the emitted photons. Fig. 11 shows the ground truth of
the segmented synthetic slices, the synthetic SPECT slices and finally
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the deconvolution results obtained by our restoration method. The res-
olution improvement is visible and the proposed procedure allow effi-
ciently to recover high frequencies of the undistorted (nonconvolved)
image.

V. CONCLUSION

In this paper, we have shown that a 3-D extension of the NAS-RIF
deconvolution procedure noticeably improves the resolution of human
brain 3-D SPECT images and can be a great help to facilitate their in-
terpretation by the nuclear physician. We have also shown that this 3-D
blind deconvolution technique gives superior performance than its 2-D
version and can efficiently exploit the result of a 3-D unsupervised Mar-
kovian segmentation in order to find the exact support of the object to
be restored. This segmentation allows to accurately fit the finite-sup-
port constraint of this optimization strategy-based deconvolution tech-
nique. Finally, this 3-D blind deconvolution technique combined with
the unsupervised segmentation leads to a restoration procedure that is
completely data driven and really compatible with an automatic pro-
cessing of massive amounts of 3-D SPECT data.
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