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Three-Dimensional Biplanar Reconstruction of
Scoliotic Rib Cage Using the Estimation of a

Mixture of Probabilistic Prior Models
Said Benameur*, Max Mignotte, François Destrempes, and Jacques A. De Guise

Abstract—In this paper, we present an original method for the
three-dimensional (3-D) reconstruction of the scoliotic rib cage
from a planar and a conventional pair of calibrated radiographic
images (postero-anterior with normal incidence and lateral). To
this end, we first present a robust method for estimating the model
parameters in a mixture of probabilistic principal component ana-
lyzers (PPCA). This method is based on the stochastic expectation
maximization (SEM) algorithm. Parameters of this mixture model
are used to constrain the 3-D biplanar reconstruction problem
of scoliotic rib cage. More precisely, the proposed PPCA mixture
model is exploited for dimensionality reduction and to obtain a set
of probabilistic prior models associated with each detected class of
pathological deformations observed on a representative training
scoliotic rib cage population. By using an appropriate likelihood,
for each considered class-conditional prior model, the proposed
3-D reconstruction is stated as an energy function minimization
problem, which is solved with an exploration/selection algorithm.
The optimal 3-D reconstruction then corresponds to the class
of deformation and parameters leading to the minimal energy.
This 3-D method of reconstruction has been successfully tested
and validated on a database of 20 pairs of biplanar radiographic
images of scoliotic patients, yielding very promising results. As
an alternative to computed tomography-scan 3-D reconstruction
this scheme has the advantage of low radiation for the patient,
and may also be used for diagnosis and evaluation of deformity
of a scoliotic rib cage. The proposed method remains sufficiently
general to be applied to other reconstruction problems for which
a database of objects to be reconstructed is available (with two or
more radiographic views).

Index Terms—Biplanar radiographies, medical imaging, mix-
tures of probabilistic principal component analyzers, reduction
of dimensionality, scoliosis, shape model, stochastic optimization,
3-D reconstruction model, 3-D/2-D registration.
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I. INTRODUCTION

SCOLIOSIS is a three-dimensional (3-D) deformity of the
natural curve of the spinal column which can occur at any

time during a child’s growth. Due to its interaction with the
spinal column, the abnormal curvature of the spine will cause
a complex deformation of the rib cage including rotation and
distortions. If this disease is not treated, a child’s heart and lungs
will not work properly as the twisted rib cage will not allow
them enough space to develop. The rib cage plays also another
important role in the protection of several other internal organs
and of allowing motion of the trunk in respiration as well as
spinal flexion.

In this paper, we are concerned with automatic 3-D recon-
struction methods of scoliotic rib cage from a pair of planar
and conventional calibrated radiographic images (postero-ante-
rior with normal incidence and lateral). This 3-D geometrical
information is useful for the diagnosis (i.e., to quantify a defor-
mity of a scoliotic rib cage), surgical planing, computer assisted
surgery or to quantify the postoperative 3-D changes of a scoli-
otic rib cage [1].

Recent imaging modalities and devices make it possible to
obtain a 3-D reconstruction of surface shape from scanned
anatomic structure, creating detailed and realistic 3-D surface
representations of the scanned anatomic structure and allowing
3-D study of external pathologic deformities. These imaging
devices used different 3-D reconstruction methods. Among
these methods, the 3-D reconstruction methods of tomoden-
sitometric imagery modalities (e.g., computerized tomography
[2], [3], or magnetic resonance [4], [5]) provide accurate 3-D
information of the human anatomy. However, few hospitals
can afford a magnetic resonance system, it is time consuming,
and the presence of metallic implants, once surgery has been
performed, produces artifacts and creates suboptimal images.
Tomodensitometric imagery systems can now be found in every
hospital and many clinics. Nevertheless, the high level of X-ray
dose required to provide full 3-D data or large bone structures
as the rib cage make them less functional. Also, these imaging
modalities and devices require that the patient be in a lying
position, which is incompatible with many diagnostic protocols
evaluating scoliosis. For these above-mentioned reasons, a
3-D reconstruction method of shapes using a limited number
of X-ray radiographic projections and thus ensuring a lower
amount of radiation for the patient, is really interesting.

The 3-D reconstruction problem of (scoliotic) rib cage from
two or several projections has not been widely studied and few
references exist in the literature.

0018-9294/$20.00 © 2005 IEEE



1714 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 10, OCTOBER 2005

Fig. 1. An illustration of adjustment of a distribution. The grey area designates
the distribution of the sample to be estimated and the ellipse represents the level
set of a Gaussian distribution associated to each estimated PCA. (a) and (d)
Adjustment with PCA (not optimal in this latter case), (b) and (c) adjustment
with mixtures of PPCA.

One of the first 3-D reconstruction technique using two
radiographic projections [namely, postero-anterior with normal
incidence and postero-anterior with 20 angled down
incidence - ] was proposed in [6]. This stereo-radio-
graphic method consists in identifying 11 midline points per
rib on and - . 60 points are interpolated on the
two–dimensional (2-D) curve of the rib on . 3-D points are
obtained by intersection of a projection plane, which is defined
using the interpolated points and the 3-D position of and

- X-ray sources, and the 2-D curve of the same rib on
- using a direct linear transformation (DLT) [7]. This

process is repeated for each of the 60 points of all rib defined on
. This method is then refined by taking into account patient

displacement during stereo-radiography [8]. Nevertheless,
this technique remains limited due to the inherent inaccuracy
produced in identifying 11 points per rib on and -
(leading to reconstruction errors). Locating these features is
widely supervised and, therefore, time consuming (up to two
hours). Moreover, this method does not exploit all informa-
tion contained in the two X-ray radiographic projections, for
instance, the contours of each rib, the geometrical structure or
the statistical knowledge of the possible deformation of the rib
cage to be reconstructed.

Three-dimensional reconstruction methods using a priori
knowledge of the geometric shape of the objects of interest
have been recently proposed. For example, a method similar to
the one reported by Benameur et al. in [9] for the reconstruction
of each vertebra of the spinal column was proposed by Mouren
[10] to reconstruct the 3-D geometry of the rib cage from two
radiographic projections [postero-anterior with normal inci-
dence and lateral ]. This method exploits a global
prior knowledge on the geometrical structure of each rib. To
find this geometrical knowledge while reducing the dimension-
ality of this problem, a principal component analysis (PCA) is
applied to each rib extracted from a training scoliotic rib cage
database. This PCA allows to obtain a geometric prior model
representing a mean shape and containing the typical geomet-
rical deformation modes estimated in the least square sense.
Thereafter, the rib model is deformed according to the rays back
projected from the contour points of the projections taken a

patient. In , a set of 60 points are manually digitized. This
3-D reconstruction is done rib by rib. This method is interesting
but may not be very accurate. First, it is significantly supervised
and operator-dependent; it requires to identify manually and
digitize a set of 60 points in the lateral view. Moreover, the PCA
only defines a linear dimensionality reduction which is a strong
and not necessarily a true assumption in this context (e.g.,
Fig. 1). In order to overcome the problem of supervision and
improve the accuracy of the deformation model, we propose
herein to use a mixture of Probabilistic PCA [11] (PPCA).
In order to estimate the parameters of such a mixture model,
the expectation-maximization (EM) algorithm was already
proposed [11]. Nevertheless, the initial parameter values have a
significant impact on the convergence of this iterative procedure
and on the quality of the final estimation (the EM converges to a
local and not necessary global optimum estimate [12]). In order
to make the procedure more robust, we propose a stochastic
version of the EM-PPCA relying on the Stochastic version
of the EM (SEM) algorithm [13], [14]. The SEM algorithm
has been shown to be computationally less burdensome and
more appropriate than the EM algorithm for the problems of
mixture estimation and missing data [12], [13], [15], [16]. This
SEM-PPCA is efficiently exploited for dimensionality reduc-
tion and to get a set of probabilistic prior models, associated to
each detected class of pathological deformations, observed on
a representative training scoliotic rib cage population. For each
considered class-conditional prior model of pathological defor-
mations, the proposed reconstruction method then consists in
fitting the projections of an instance of the deformation model
with the segmented contours of the corresponding rib cage on
the two radiographic views. This matching problem leads to a
set of optimization problems (one for each detected class of
pathological deformations) which is efficiently solved in our
application with a exploration/selection algorithm. The optimal
3-D reconstruction corresponds to the solution, leading to the
minimal energy, amongst these optimization problems.

MPPCA models remains a standard Finite Normal Mixture
(FNM) problem, which has been exhaustively studied for sev-
eral decades and applied to many fields. Parameter estimation
of FNM via EM algorithm or its variants has also been studied
thoroughly. Lei and Sewchand in [17] has developed a hybrid
algorithm for FNM parameter estimation which uses classifica-
tion maximization (CM) algorithm (a modified -means clus-
tering procedure [17]) to generate the initial parameter estimates
and EM algorithm to produce the final estimates. Lei and Udupa
in [18] also shows that -means clustering procedure is a spe-
cial case of EM algorithm for FNM parameter estimation.

Let us also note that probabilistic PCA (PPCA) has been al-
ready used in shape localization in images [19], object classi-
fication [20] and inference of 3-D structure [21]. Nevertheless,
mixture of PPCA has only been exploited in image compression
[11]. To our knowledge, this work is the first to use mixtures of
probabilistic PCA for the 3-D modeling of a class of complex
shapes and to constrain the reconstruction problem in medical
imagery.

The remainder of this paper is organized as follows. In
Section II, we present the basic concept of a mixture of
probabilistic PCA. Section III is devoted to the stochastic
EM algorithm for estimating all of the model parameters in a
mixture of probabilistic PCA. Sections IV and V describe the
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proposed 3-D reconstruction method and the related sequence
of energy function to be minimized. Section VI presents the
validation protocol of our method. In Section VII, we show
some 3-D reconstruction results and validate the proposed
model.

II. PROBABILISTIC MODEL FOR DIMENSIONALITY REDUCTION

PCA is a well-established model for dimensionality reduc-
tion. Nevertheless, one limiting disadvantage of this technique
is the absence of an associated probability density model or gen-
erative model [11]. PPCA overcomes this problem.

A. Probabilistic PCA

Tipping and Bishop have developed the PPCA model [11],
[22] by reformulating PCA as a maximum-likelihood (ML) so-
lution of a specific form of variable model. Let and be two
random vectors related by

where is a matrix that represents the principal subspace
of . The assumption is that as well as

are zero mean Gaussian distributed random vectors
( denotes the identity matrix and represents the
normal distribution). Consequently, the random vector is also
normally distributed according to

(1)

The variable represents the full data, whereas represents the
reduced data (the dimension of is significantly smaller than
the dimension of ).

Let be a independent identically distributed
(i.i.d.) observation sample issued from , be the
eigenvalues of the covariance matrix, in decreasing order, of
this sample, be the diagonal matrix with entries ,
and be the matrix with columns equal to the corre-
sponding eigenvectors, normalized so that they have euclidean
norm equal to 1. From [11], a ML estimation of is
given by

(2)

Note that in the PCA, one would take , but this choice
is not optimal in the sense of the ML for the PPCA model. The
diagonal matrix gives an appropriate weight
to each column vector of the matrix .

The conditional probability distribution of given , is ex-
pressed by [11]

where . Hence, the ML recon-
structed data point is taken as

In that case, the reduction map is defined by

in order to minimize the average reconstruction error (optimal
in the least square sense)

These reconstruction and reduction maps were adopted in [23].
We summarize the PPCA algorithm in Algorithm 1.

B. Mixtures of Probabilistic Principal Component Analysis

The probabilistic formulation of PCA offers a graceful exten-
sion to model complex data structures with a mixture of local
PPCA models. A mixture of PPCA (MPPCA) is a distribution
of the form [11]

(3)

where designates the number of components of the
mixture and is the th component’s mixing propor-
tion. This mixture depends on a vector of parameters

. In order to reduce di-
mensionality, the following strategies can be adopted; we
compute for each mixture component , the reconstruction
point and take the one nearest to as the one that maximizes
the distribution (optimality in the ML sense).

III. ESTIMATION OF A MIXTURE OF PPCA

In order to estimate parameter vector , we resort to the SEM
algorithm [13]. The SEM algorithm is an iterative algorithm
where at each iteration the parameters of the mixture are esti-
mated in the ML sense. This iterative procedure requires initial
parameters which can be given by a -means clustering proce-
dure [24] (in doing so, we assume as first approximation that the
considered clusters are spherical with equal volumes). The ob-
tained spherical partitions allow to obtain a rough estimation of
the mixture parameters which are then used to initialize the SEM
clustering and estimation procedure. See Algorithm 1, PPCA al-
gorithm, at the top of the next page.

A. -Means Algorithm

The -means algorithm consists of the following steps. To
initialize clusters, choose shapes at random from the
training base. For each shape selected in the training base,
assign this shape to a class such that the Euclidean distance
from this shape to the center of that cluster is minimal. For each
cluster, recalculate the means of the cluster based on the shapes
that belong to that cluster. This second step is running until the
center of each class becomes steady.

B. Stochastic EM Algorithm

Let be an upper bound on the number of classes and
be a chosen threshold. In the context of the estimation of

a MPPCA, the SEM algorithm can be outlined as follows, (the
superscript denoting the iteration number).

Initialization
We initialize the SEM algorithm by the ML parameters es-

timated on the full data obtained by a -means [24] partition
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Algorithm 1: PPCA algorithm.

of into classes. For every observation ,
the probability of its belonging to the class ,

can then be defined. This terminates the initializa-
tion phase.

An iteration of SEM then consists of three steps.
Step S (Stochastic)
For each , we sample from the set of classes

an element according to the distributions
. This

selection defines a partition of the sample

.
Step M (Maximization)
The SEM algorithm supposes that every belonging to

for each , is realized according to the distribution
defined by [see (1)], the density corresponding
to class . Let be the number of rib cages in the training base
and be the th component’s mixing proportion at iteration

. The parameters of the mixture are estimated for the

full data in the ML sense upon setting
( stands for the cardinal or the number of component
of ) and estimating on each class according to [see
(2)]. If , we eliminate the class in the mixture.1

Step E (Estimation)
For each , we define the next distribution

by
the posterior distribution based on the current parameter

Return to Step S until a fixed maximum number of iterations has
been reached.

1There are many other unsupervised ways to estimate the number of classes
K , e.g., by using information theoretic criteria [Akaike information criterion
(AIC) or maximum description lenght (MDL)] [17], [18], [25], [26].
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C. Time Complexity of Stochastic EM Algorithm

The time complexity of -means is proportional to the
number of clusters to be found. More precisely, the

-means time complexity is where is the number
of rib cages, is the dimensionality of each rib cage, and is
the number of iterations required. The time complexity of the

-means empirically grows linearly with , , and [27].
Consequently, the time complexity of the initialization step of
SEM is .

The stochastic step of the SEM procedure is in fact similar to
the Gibbs sampling step [28]. The time complexity of stochastic
step of SEM is for one cluster (or one class).

The maximization step consists in computing the ML esti-
mates of parameters associated to each cluster, using PPCA
algorithm, based on the data currently classified in the corre-
sponding cluster. It is thus equivalent to estimate the time com-
plexity of PPCA estimations. To this end, we use a singular
value decomposition (SVD) which can be done by using the
Golub-Reinsch algorithm with time complexity

[29]. The parameters of the mixture are then estimated in the
ML sense with time complexity equal to for each
cluster.

The time complexity of the SEM-PPCA algorithm is thus
for iterations of the SEM proce-

dures and clusters.

IV. MIXTURE OF STATISTICAL DEFORMABLE MODELS

The shape of each rib cage of our training database de-
scribed in Section VII-A is defined by a set of control points,
or landmarks,2 which approximate the geometrical shape of the
midline of each rib in . Each rib cage in the training set is
thus represented by the following -dimensional vector

where are the Cartesian coordinates of the th con-
trol point or landmark of the shape.

A. Training Phase

First, we extend into 3-D the method proposed by Cootes in
[30] for aligning the set of 3-D shape samples
of our training database to a common scale, rotation, and transla-
tion. This step is important and allows to eliminate the variations
introduced by affine deformations such as translation, scaling,
and rotation.

To this end, an arbitrary shape is selected as the initial average
shape estimate. All the other shapes are aligned to this average
using a least square minimization. A new average is computed
by a simple mean across the corresponding points, and the pro-
cedure repeats until convergence.

2These landmarks are obtained with the following procedure: from a pair
of stereo-radiographic images (namely, postero-anterior with normal incidence
(I ) and postero-anterior with 20 angled down incidence (I - )) we
manually identify 11 midline points per rib on I and I - . 60 points are
interpolated on the 2-D curve of the rib on I [6]. 3-D points are obtained by
intersection of a projection plane, which is defined using the interpolated points
and the 3-D position of I and I - X-ray sources, and the 2-D curve of
the same rib on I - using a Direct Linear Transformation (DLT) [7]. This
process is repeated for each of the 60 points of all rib defined on I .

Fig. 2. Reduced dimension of clusters as a function of the reconstruction error
using different number of clusters the rib cage database is partitioned into (a) 8,
(b) 10, and (c) 12 clusters.

Any scaling and rotation in 3-D can be expressed as quater-
nion3 where scaling is expressed by the magnitude of the
quaternion and the 3-D rotation is expressed by the direction
of the unit vector and rotation . Quaternion have some

3A quaternion q is defined as the linear combination of a scalar
term q � 0 and three right-handed orthonormal vectors (i, j, and k)
q = q + q i + q j + q k. The magnitude of the quaternion is defined as,
j q j= q + q + q + q , and any unit length quaternion can be written
as, q = cos(') � u + sin(') � u, where u is a unit vector and ' represents a
rotational twist along the unit vector. The Cartesian rotation matrix is given by
[31]

R =

q + q � q � q 2(q q � q q ) 2(q q + q q )

2(q q + q q ) q + q � q � q 2(q q � q q )

2(q q � q q ) 2(q q + q q ) q + q � q � q

:
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Fig. 3. Prior model of each class. Two deformed shapes obtained by applying�1 standard deviation of the first deformation mode associated to each class to the
mean shape (sagital and coronal views).

advantages amongst which simple derivatives and efficient for-
mulations to find rotation matrices directly for point matching
problems [32]. The alignment of two 3-D shape instances is
accomplished using a well-known procedure given in [32] to
optimize for and .

We then apply the MPPCA to estimate the parameters of each
class and to reduce the dimension to (e.g., Fig. 2).
Viewing as a random vector, we
obtain, for each class , an optimal probabilistic
deformable model in the ML sense of the form

with , a matrix, and
, by taking , , and

. This gives us nonlinear defor-
mations of the mean shape of each pathological deformations

detected in our representative learning set, and terminates the
training phase (e.g., Figs. 3 and 4).

In our framework, we use the estimation of the MPPCA with
classes as a preliminary classification step (and not as a com-

pound density estimate) which is exploited in the reconstruction
step.

B. Deformation Parameters

From the training phase, we obtain for each class
, the mean shape , and its nonlinear defor-

mations , where
is the matrix of the first eigenvectors associated with the

largest eigenvalues and is a vector
containing the weights for these deformation modes.
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Fig. 4. Prior model of each class. Two deformed shapes obtained by applying�1 standard deviation of the first deformation mode associated to each class to the
mean shape (sagital and coronal views).

In addition, we consider rigid deformations of the tem-
plate given by global translation , scaling

, and rotation around the ,
and , axis (applied point-wise to the template). This yields a

vector of deformation

of dimension . The globally deformed template for class
is then defined by

(4)

where performs a rotation and a scaling by .

C. Prior Energy Term

Let be the random variable corresponding to the vector of
deformations parameters. We model the distribution

of by [19]

(5)
where is the uniform distribution with appropriate bounds
for the 9 affine transformation parameters. This probability ex-
presses the fact that the shape to be reconstructed is likely close
to the mean shape. By considering that

(6)
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Fig. 5. Directional component used in the directional edge potential field
	(x; y).

where is a normalization constant, a prior energy term can be
deduced from this low parametric representation

(7)

This energy term, which does not penalize affine transforma-
tions, will be used in our energy-based model to rightly con-
strain our 3-D reconstruction model by penalizing the deviation
of the deformed template from the mean shape.

D. Log-Likelihood Energy Term

In a commonly used energy-based (deformable) model of re-
construction or segmentation, spatial contours (or some spatial
gradient measures derived from the input image) are generally
exploited in the data log-likelihood energy term. This term aims
at expressing a measure of similarity between the deformed tem-
plate and the object present in the image by constraining the de-
formable template to be attracted and aligned to the salient edges
of the object to be detected [9]. Due to the low signal-to-noise
ratio, low resolution and contrast of the radiographic images
used in our application, the sharpness of the contour of each
rib is noticeably reduced and our log-likelihood model cannot
rely efficiently solely on this type of gradient measures. Instead,
we propose a log-likelihood energy term exploiting an edge
potential field [9] along with a statistical region-based homo-
geneity criterion. This measure is based on the computation of
the grey-level variance inside and outside each rib.

To compute the edge potential field associated with
postero-anterior radiographic projection, we first use a Canny
edge detector with the unsupervised technique proposed in
[33]. Then, is defined as in [34] by

(8)

where is the displacement to the nearest edge
point in the image, and is a smoothing factor which con-
trols the degree of smoothness of this potential field. is
the angle between the tangent of the nearest edge and the tan-
gent direction of the contour at (e.g., Fig. 5). To com-
pute the statistical region-based homogeneity criterion asso-

Fig. 6. An example demonstrating the use of statistical homogeneity criterion.

Fig. 7. Schematic example of a 3-D reconstruction of the scoliotic rib cage.

ciated with postero-anterior radiographic projection, we define
the grey-level variance inside and outside for a rib by

(9)

where (respectively, ) designates the variance
of the set of grey-levels located on the external contour of the

projection of the deformed template with a slightly inferior
scale (and, respectively, slightly superior scale ) where

(e.g., Fig. 6). In our application, the log-likelihood
energy term is expressed as

(10)
where and are log-likelihood
energy terms for postero-anterior and lateral images respec-
tively, with, for the postero-anterior image

(11)

In this expression:
• the first summation of is over all the

points of the external contour of the postero-anterior
projection of the deformed template (e.g., Fig. 7)

on a precomputed edge potential field estimated on ;
• the second summation is over all the ribs of a rib cage;
• is a factor allowing to control of the balance between the

contour-based log-likelihood energy term and the region-
based log-likelihood energy term.



BENAMEUR et al.: THREE-DIMENSIONAL BIPLANAR RECONSTRUCTION OF SCOLIOTIC RIB CAGE 1721

This energy term is minimal when the external contour of the
projection of each rib of the deformed template delineates

two homogeneous regions (rib inside and rib outside) separated
by a contour (e.g., Fig. 6).

On a lateral radiographic image , the ribs are hardly
visible and difficult to identify. Moreover, the first rib is oc-
cluded by the second rib, and eleventh and twelfth ribs are
almost completely hidden by the shadow of the abdomen.
We cannot rely efficiently on the contours or the grey-level
homogeneity of each rib as it has been done for .

Instead, we use the log-likelihood term on as a kind
of constraint and we adopt the following strategy. We use the

-mean clustering procedure to segment into two homo-
geneous regions, namely inside and outside the ribcage (with
the class label and for the pixel belonging to the inside
and, respectively, outside class). The log-likelihood energy term
for lateral image is then defined by

(12)

where designates the class label at site , designates the
class label for the pixel belonging to the outside rib cage class
and the summation is overall the points of the external
contour of the lateral projection of the deformed
template on the segmentation of . is the delta dirac
function for which and .

This energy term is minimal when all the points of the ex-
ternal contour of the (laterally) projected deformed template be-
long to the ”inside rib-cage” region.

E. Three-Dimensional Reconstruction

The only supervision required by our proposed reconstruc-
tion method consists in placing manually, using a simple graph-
ical interface, a rectangular bounding box including the whole
rib cage for the and radiographic images. Using the
center of the two rectangular bounding boxes, we estimate the
3-D point coordinates corresponding to these two projected cen-
ters by the direct linear transformation (DLT) [5]. This esti-
mated center is then considered as the center of the 3-D model.
We then use the log-likelihood matching energy defined in Sec-
tion IV-D in order to fit the two projections of an instance of
the deformable model with the two corresponding radiographic
images. (e.g., Fig. 7). This matching problem leads to a set of
optimization problems (one for each detected class of patholog-
ical deformations) which is efficiently solved in our application
with a stochastic optimization algorithm (see Section V). The
optimal 3-D reconstruction corresponds to the solution, leading
to the minimal energy, amongst these optimization problems,
namely

V. OPTIMIZATION STRATEGY

For each considered class-conditional prior model of patho-
logical deformations , the unsupervised 3-D

reconstruction procedure is stated as an energy function mini-
mization problem, namely

(13)

where is the log-likelihood energy term, is the prior en-
ergy term (or regularization term) restricting the deformation of
the prior model . is a factor allowing to control the balance
between the two energy components and the rigidity of the de-
formable template, and are deformation parameters.

The energy function to be minimized is a complex function
with several local extrema over the deformation parameter
space. A global search is usually impossible due to the size
of the configuration space. Instead, we have implemented the
exploration/selection algorithm (E/S).

The E/S algorithm belongs to the class of evolutionary algo-
rithms. This class of algorithm has been successfully applied
in diverse areas such as medical imaging [35], localization of
shapes [19], [23], nonphotorealistic rendering [36], and 3-D re-
construction of the scoliotic spine [9].

The E/S algorithm can be summarized as follows (more de-
tails are given in [37]). Let be a finite discrete subset of the
Cartesian product of compact intervals , for
, and be a set of potential solutions ran-

domly chosen. We define as the minimal element of such
that , for , and

, for . We consider a graph defined on
called the exploration graph. The exploration graph is assumed
to be nonoriented and connected. We denote by the neigh-
borhood of the element in the graph defined by [23]

where is a real number in interval called the radius of ex-
ploration.

Each solution of is regarded as an individual that attempts
a random search on the exploration graph [37]. For , we
fix a positive distribution on . The exploration process
acts independently on each individual, and consists of choosing
a random according to the binomial distribution
where is the size of the population and is the probability
of exploration. We replace by according
to the uniform distribution, for otherwise, we change
by . This process is running until a fixed maximum number of
iterations has been reached.

VI. VALIDATION

The validation of the accuracy of our 3-D reconstruction
method is a difficult task because a scanned rib cage database
is not available.

In our application, our 3-D reconstruction technique is vali-
dated by visual examination and also by comparing the recon-
structed model obtained by our method and by the model re-
sulting from the stereo-radiographic reconstruction technique
developed in [6]. The validation procedure consists in fitting the
model of our 3-D reconstruction method on the model resulting
from the stereo-radiographic technique for the same scoliotic
patient using quaternion based method of Horn [31].
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VII. EXPERIMENTAL RESULTS

A. Rib Cages Database

The training database consists of 532 scoliotic
rib cages. All rib cages have the same number of ribs (11 right
ribs and 11 left ribs). Midline of each rib is composed of 30
points. The 3-D coordinates of midline points of each rib cage
were recorded in a specific order. The positions of the landmarks
of all rib cages within the database are expressed in the same
coordinate system.

The 3-D geometry of each rib cage within our database is
obtained using the 3-D reconstruction technique developed
in [6]. The accuracy of this technique was evaluated using
radio-opaque markers. The mean and standard deviation were
1.01 mm and 0.72 mm [6].

B. Radiographic Images

In our application, we used two radiographic images (i.e., a
postero-anterior with normal incidence and a lateral) acquired
with a Fuji FCR 7501S radiographic imaging system. The
radiographic image illustrates the superposition of the various
structures on the same plan and gives place to semi-trans-
parent images. The matrix size of our radiographic images is
2140 880 pixels (coded on 256 gray levels).

C. Calibration

In our application, the calibration of the radiological envi-
ronment is done using the 3-D coordinates of each steel bead of
calibration object previously measured and their corresponding
2-D observations on each radiographic views (position of each
steel bead of calibration object preliminarily detected on each
radiographic views) in order to solve the equation

for each view. is the X-ray tube distance, and being, re-
spectively, the scale and rotation vectors. are the image
coordinates of a point relative to the principal point.
are the object space coordinates. Once the projection equations
are calculated, the 3-D coordinates of any landmark identified
and matched on more than one digital radiography are obtained
by finding the intersection between each linear transformation
of that particular point.

D. Comparison Protocol

We have validated our 3-D reconstruction method on a testing
database (disjoint of the training database) of 20 pairs of cali-
brated radiographic images from scoliotic patients. We use the
comparison protocol described in [38]. This comparison uses
the distance (mean, and maximum) between a point from the
reconstructed rib cage and the surface of the rib cage obtained
with the stereo-radiographic reconstruction method [6].

E. Experimental Results

Fig. 2(a)–(c) shows reduced dimension of clusters as a func-
tion of the reconstruction error using different number of clus-
ters when the rib cage training database is partitioned into

, 10, and 12 clusters respectively. In our application, we note

TABLE I
REDUCED DIMENSION FOR EACH DETECTED CLASS (CLUSTER) OF

THE PPCA MIXTURE

that the criteria of component elimination presented in Sec-
tion III-B does not allow to change the upper bound of the
number of classes given to -means for . We also
note that for a fixed , the reduced dimension of each cluster
decreases when the reconstruction error increases. The reduced
dimensions, associated to each different class (for a reconstruc-
tion error ensuring less than error4) is presented in
Table I. Figs. 8 and 11 show two examples of 3-D reconstruction
of rib cage of two scoliotic patients, for each detected class of
pathological deformations. Figs. 9 and 12 show the optimal 3-D
reconstruction corresponding to Figs. 8 and 11 respectively.

The 12 deformation classes of the rib cage learned on the
training dataset are shown in Fig. 4. For the experiments, we
have chosen for the weighting factor penalizing the
prior energy term with respect to the log-likelihood energy term,
and for the weighting factor allowing to control the bal-
ance between the two log-likelihood energies (contour-based
and region-based).

We have used the Canny edge detector to estimate the edge
map which is then used for the estimation of the edge potential
fields on postero-anterior view (used in the log-likelihood en-
ergy term). In our application, , the mask size is 5 5, and
the lower and upper thresholds are given by the unsupervised
estimation technique proposed in [33]. For the E/S algorithm,
we fix the size of population to 100 and the number of iterations
to 100.

The 3-D reconstruction of a scoliotic rib cage takes about
6 min on a 2.0-GHz PC workstation running Linux. We have
validated our 3-D reconstruction method on a database of 20
pairs of calibrated radiographic images (postero-anterior and
lateral) of scoliotic patients. The mean, and maximum errors be-
tween points from the reconstructed rib cage and the surface of
the rib cage obtained with stereo-radiographic are, respectively,

mm, and mm.

4Let us clarify that it is not a geometrical reconstruction error. If V is the
sum of the eigenvalues, then the numberm of eigenvalues to be selected is such
that

�

V
� (1� %):
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Fig. 8. Projections of reconstructed scoliotic rib cage on postero-anterior and lateral images for each detected class of pathological deformations with energy
value corresponding. The optimal 3-D reconstruction corresponds to the class 6.

VIII. DISCUSSION AND CONCLUSION

In this paper, we have presented a new technique for the
3-D reconstruction of scoliotic rib cage from two radiographic
projections and . This method efficiently exploits
the es-timation of a mixture of PPCA for both dimensionality

reduction and to constrain the 3-D reconstruction problem.
The proposed 3-D reconstruction problem is viewed as a set
of optimization problems, each one associated and constrained
by a specific class of pathological deformations observed on
a representative training scoliotic rib cage population and effi-
ciently detected by the MPPCA method. Our 3-D reconstruction
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Fig. 9. Optimal 3-D reconstruction corresponds to the class 6 in Fig. 8.
(a) Projections of reconstructed scoliotic rib cage on postero-anterior image.
(b) Projections of reconstructed scoliotic rib cage on lateral image. (c) and
(d) Visualization of the reconstructed scoliotic rib cage from the coronal and
sagital view.

Fig. 10. Visual comparison between the 3-D reconstruction using our
method and reference stereo-radiographic corresponds to the class 6 in Fig. 8.
(a) Visualization of the two reconstructed rib cages from the coronal view.
(b) Visualization of the two reconstructed rib cages from the sagital view.

method has the advantage of minimizing the X-ray dose (only
two radiographic images) and the time needed for digitization
and supervision required when compared to that of other re-
construction methods. The results obtained in our experiments
are quite encouraging and indicate that accurate unsupervised
3-D reconstruction is technically feasible. This is an important
improvement compared to the method presented by Mouren
[10] or [6].

Let us note that there are several classification systems of
spinal deformities [39], but these systems could not be applied
for the classification of the rib cage deformities. In our appli-
cation, the number of deformation classes (i.e., the number

of components in the mixture of PPCA) is chosen empirically,
namely , by inspection of the rib cage database and also
by the good reconstruction results (in term of accuracy) that we
are able to obtain. An extension of this work would be to auto-
matically estimate the number of class of the deformation mix-
ture by using information theoretic criteria (AIC or MDL) [17],
[18], [25], [26].

This method has been validated on a sample of 7 isolated ribs,
by comparing the model obtained from stereo-radiographic
method and those obtained with radio-opaque markers. The
mean and standard deviation were 1.01 and 0.72 mm. It has also
been validated on a sample of 24 ribs by two digitalizations of
the different costal lines. The mean difference between the two
3-D models obtained was 1.22 mm and standard deviation was
1.04 mm. In our validation, we have used this supervised 3-D
reconstruction method (whose procedure is summarized in the
introduction) as reference for the validation of our reconstruc-
tion model. Figs. 10 and 13 show visual comparison between
3-D reconstruction using our method and reference stereo-
radiographic. The mean, and maximum errors of our method
are, respectively, mm, and mm.

Compared to our 3-D reconstruction technique, the biplanar
technique proposed in [10] is significantly more supervised and
operator-dependent; it requires to manually identify and digitize
a set of 60 points in the lateral view. Moreover, the PCA used
in [10] only defines a linear dimensionality reduction which is
a strong and not necessarily a true assumption in this context.
This method has been only validated on a sample of 20 pairs of
synthetic images (in which the authors suppose that poissonian
noise in the image is stationary and parameters are known). In
their case, the mean and maximum errors are respectively

mm, and mm.
Let us recall that the stereo-radiographic technique presented

in [6] is also limited due to the inherent inaccuracy produced
in identifying 11 points per rib on and - (leading
to reconstruction errors). Locating these features is widely
supervised and, therefore, time-consuming (up to two hours).
Moreover, this method does not exploit all information con-
tained in the two X-ray radiographic projections, for instance,
the contours of each rib, the geometrical structure or the statis-
tical knowledge of the possible deformation of the rib cage to
be reconstructed.

By comparison, our method answers the above-mentioned
limitations of these techniques. All the experiments are carried
out with the same parameters which are determined empirically
but are reliable and robust for all the tested experiments. For
example, the number of deformation classes (i.e., the number
of components in MPPCA) is learned by the inspection of the
rib cage database and by using the classification process of
the scoliosis pathology used at Hospital Sainte-Justine’s.5 The
weighting factor for penalizing the prior energy term with
respect to the log-likelihood energy term and the weighting
factor for controlling the balance between two log-likelihood
energies (contour-based and region-based) are determined em-
pirically and are valid for this imaging modalitie. Finally, the

53D Scoliosis Computing Laboratory (LIS-3D), Sainte-Justine Mother-Child
University Hospital, Montréal, QC, Canada.
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Fig. 11. Projections of reconstructed scoliotic rib cage on postero-anterior and lateral images for each detected class of pathological deformations with the
corresponding energy value. The optimal 3-D reconstruction corresponds to the class 9.

proposed method requires a training representative database.
Nevertheless, the proposed reconstruction technique remains
unsupervised in the sense that this database is constructed
off-line and not during the 3-D reconstruction step.

Our method offers an accurate representation of the rib cage
from only two radiographic views, whereas the computed to-

mography (CT)-scan requires between 200 and 400 images to
obtain the same 3-D reconstruction with the same accuracy. The
proposed method is thus interesting as for the quantity of data
to be acquired, processed and managed. For example, two dig-
ital Fuji X-Rays require 15 Mbytes (1760 2140 2 bytes)
of storage in comparison to 200 Mbytes (512 512 2 bytes



1726 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 10, OCTOBER 2005

Fig. 12. Optimal 3-D reconstruction corresponding to the class 9 in Fig. 11.
(a) Projections of reconstructed scoliotic rib cage on postero-anterior image.
(b) Projections of reconstructed scoliotic rib cage on lateral image. (c) and (d)
Visualization of the reconstructed scoliotic rib cage from the coronal and sagital
view.

Fig. 13. Visual comparison between 3-D reconstruction using our method
and reference stereo-radiographic (corresponding to the class 9 in Fig. 11).
(a) Visualization of the two reconstructed rib cages from the coronal view.
(b) Visualization of the two reconstructed rib cages from the sagital view.

400 slices) for a CT-scan reconstruction technique. The effec-
tive dose6 in chest CT is about 8 milliseiverts (mSv), around 400
times more than chest digital X-rays dose (chest radiographic
examination: 0.02 mSv) [40]. The absorbed dose with CT can
often approach or exceed the levels known to increase the proba-
bility of cancer as shown in epidemiological studies [40],). With
the generalization of multi-detectors spiral CT,7 patients will be

6Sum of the products of the dose equivalent to the organ or tissue and the
weighting factor for each organ or tissue irradiated [40].

7Radiation dose in multislice cone-beam helical CT depends upon the choice
of several factors. Even though it is possible to perform a helical CT with lower
radiation dose than slice-by-slice CT, in practice the patient gets higher dose
due to the factors chosen (scan volume, mAs, pitch, slice width). An increase
of radiation dose by 10%–30% may occur with multi-slice detector arrays for
multi-slice CT [40].

more and more exposed to radiations and a method that can con-
tribute to keep as lower as possible this amount of radiation is
also quite important and should be considered. This becomes es-
pecially important when we deal with young scoliotic patients
that will be exposed to multiple diagnostic radiographic exami-
nations during childhood and adolescence [41].

Our proposed scheme thus constitutes an alternative to
CT-scan 3-D reconstruction with the advantage of low irra-
diation and will be of great interest for diagnosis of spinal
deformities, simulation of orthopedic treatments, and for reli-
able geometric models for finite element studies. However, this
reconstruction method is not suitable without improvement for
surgical navigation applications when compared to CT-scan
reconstruction errors of mm, the gold standard for those
applications.

The proposed method remains sufficiently general to be
applied to other medical reconstruction problems (i.e., pelvis,
knee, etc.) for which a database of the anatomical structure is
available (with two or more radiographic views).
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