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A Hierarchical Statistical Modeling Approach for the
Unsupervised 3-D Biplanar Reconstruction of the
Scoliotic Spine

Said Benameur*, Max Mignotte, Hubert Labelle, and Jacques A. De Guise

Abstract—This paper presents a new and accurate three-dimen-
sional (3-D) reconstruction technique for the scoliotic spine from
a pair of planar and conventional (postero-anterior with normal
incidence and lateral) calibrated radiographic images. The pro-
posed model uses a priori hierarchical global knowledge, both on
the geometric structure of the whole spine and of each vertebra.
More precisely, it relies on the specification of two 3-D statistical
templates. The first, a rough geometric template on which rigid
admissible deformations are defined, is used to ensure a crude reg-
istration of the whole spine. An accurate 3-D reconstruction is then
performed for each vertebra by a second template on which non-
linear admissible global, as well as local deformations, are defined.
Global deformations are modeled using a statistical modal anal-
ysis of the pathological deformations observed on a representative
scoliotic vertebra population. Local deformations are represented
by a first-order Markov process. This unsupervised coarse-to-fine
3-D reconstruction procedure leads to two separate minimization
procedures efficiently solved in our application with evolutionary
stochastic optimization algorithms. In this context, we compare the
results obtained with a classical genetic algorithm (GA) and a re-
cent Exploration Selection (ES) technique. This latter optimization
method with the proposed 3-D reconstruction model, is tested on
several pairs of biplanar radiographic images with scoliotic defor-
mities. The experiments reported in this paper demonstrate that
the discussed method is comparable in terms of accuracy with the
classical computed-tomography-scan technique while being unsu-
pervised and while requiring only two radiographic images and a
lower amount of radiation for the patient.
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I. INTRODUCTION

N the past few years, there has been a great deal of re-

search in reconstructing three-dimensional (3-D) shapes of
anatomical structures from radiographic images. In medical
imagery, this 3-D reconstruction problem remains a necessary
step to obtain qualitative information, such as the detection of
pathological deformations, as well as for quantitative measure-
ments needed for surgical planning and follow-up evaluation.
In this paper, we are concerned with computer vision methods
for 3-D reconstruction of the scoliotic spine, from two X-ray
radiographic images.

Scoliosis is a complex 3-D deformity of the natural curve
of the spinal column, including rotations and vertebral de-
formations. The classical evaluation obtained by the spinal
projections on the two-dimensional (2-D) radiographic planar
images does not give a full and accurate interpretation of
scoliotic deformities [1]. To analyze the 3-D characteristics of
these deformations, several 3-D reconstruction methods have
been developed. Among these methods, the 3-D reconstruction
methods of tomodensitometric imagery modalities (e.g., com-
puterized tomography [2], [3], or magnetic resonance [4], [5])
provide accurate 3-D information of the human anatomy or 4D
information including time as one more degree of freedom.
However, few hospitals can afford a magnetic resonance system,
it is time-consuming, and the presence of nonferromagnetic
metallic implants, once surgery has been performed, produces
artifacts and creates suboptimal images. Tomodensitometric
imagery systems have also another drawback, the high level
of X-ray dose required to provide full 3-D data or large bone
structures as the spine make them less functional. Also, these
medical imaging techniques require that the patient be in a
lying position, which is incompatible with many diagnostic
protocols evaluating scoliosis.

For these abovementioned reasons, a 3-D reconstruction
method of shapes using a limited number of X-ray radiographic
projections and, thus ensuring a lower amount of radiation for
the patient, is really interesting. Surprisingly, this problem has
not been widely studied in the statistical framework, and few
references exist in the computer vision and medical imagery
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literature [6]—[8]. Among the proposed algorithmic techniques,
we can cite the 3-D reconstruction method from silhouettes,
proposed by Martin and Aggarwal in [9]. Their method allows
to reconstruct polygonal 3-D objects by back-projecting the
silhouettes. A method for extracting 3-D geometry of bones
from two orthogonal X-ray radiographic projections is also
proposed by Caponetti and Fanelli in [10]. The initial estima-
tion of the 3-D bone structure, produced by back-projecting
profile points, is then refined by using a B-spline interpolation.
In [11], Benjamin generates surface information using common
points, present in different projections, and the tracks between
the points, extracted from about ten projection images.

Due to the ill-posed nature of this reconstruction problem,
a right and accurate estimation of the 3-D geometrical struc-
ture of the shape cannot be found without constraints. In this
way, methods using simple a priori knowledge on the geomet-
rical structure of the object to be reconstructed and, thus, ex-
pressed as the solution of a regularized inverse problem, have
been proposed. Terzopoulos ef al. propose in [12] a method al-
lowing to recover the 3-D shape from the 2-D profiles of an
object using, as geometric prior constraint, a deformable tube
coupled to a deformable spine. The deformation is controlled
by physically based internal and external forces. Bardinet et al.
present in [13] a method that consists in matching a parametric
deformable model to unstructured 3-D data. More precisely, a
super-quadric model is fitted to a given point set, and the gen-
erated super-quadric model is deformed locally using free-form
deformations. In [14], Nikkhade et al. present 3-D reconstruc-
tion method of femurs from two orthogonal X-ray radiographic
projections. They separate the femur into three subparts; each
of them assumed to be round. They fit cubic parametric surface
patches to the subparts and then assemble them to a complete
model. Kita develops in [15] a method allowing to analyze X-ray
radiographic projections of the stomach using a deformable 3-D
model. Their a priori model is a tube which is first initialized
using only one projection. Afterward, the model is deformed
using the other projections. Nevertheless, in these methods, the
geometric a priori constraint does not model the set of admis-
sible deformation (or in the case of scoliosis, the pathological
variability) of the anatomical structure to be reconstructed. Con-
sequently, the 3-D reconstructed shape estimation does not nec-
essarily correspond to the reality.

In order to rightly constrain the ill-posed nature of this
problem, a solution consists in supervising the 3-D reconstruc-
tion technique. In this sense, a 3-D multiplanar radiography
reconstruction method using a direct linear transformation
(DLT) [16] is presented by Dansereau and Stokes in [17]. They
rely on manual stereo-digitization of six anatomical landmarks
(on each X-ray radiographic image) of the vertebrae to produce
3-D coordinates. Adding the kriging technique using the 3-D
reconstructed points as control points yields good visualization
of the vertebral geometry [18]. There is a need for more land-
marks to obtain a better description of all the vertebrae. In the
same way, a nonstereo corresponding points technique is also
described by Mitton et al. in [19] to improve the accuracy of
the 3-D reconstruction by identifying more anatomical land-
marks on the X-ray projections. This method is then based on
deformation of an elastic deformable mesh that respects stereo

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 12, DECEMBER 2005

corresponding and nonstereo corresponding points available
in different X-ray radiographic projections. In addition to the
supervision, the methods proposed by Dansereau et al., Mitton
et al. and Delorme et al. are limited due to the inherent inac-
curacy produced in identifying anatomical landmarks (leading
to reconstruction errors). Marcil et al. have studied in [20] an
effect of the displacement of the patient between the X-ray
exposures in the 3-D stereoradiographic of scoliotic spines
and rib cages. Besides, they do not exploit all the information
contained in the two X-ray radiographic projections (e.g., the
contours of each vertebra) or the statistical knowledge of the
possible deformation of the object to be reconstructed. Lavallée
et al. [21] describe an algorithm which minimizes the 3-D
distances between the rays (corresponding to the points on
the contour) and the closest point on the surface of the object.
A 3-D distance map is precomputed that stores the distance
from any point in the neighborhood of the object to the closest
point on the surface. Lavallée developed an octree-spline
technique to speed up the construction of the distance map,
which otherwise would be prohibitively slow. The primary
disadvantage of octree-spline is the time it takes to build the
octree. In addition, the octree-spline representation of a data
set is highly dependent on the initial position and orientation
of the data; two data sets that differ only by a small translation
or rotation may have substantially different octree-spline repre-
sentations. The iterative closest point (ICP) [22] starts with two
meshes and an initial estimation for their relative rigid-body
transformation, and iteratively refines the transformation by
repeatedly generating pairs of the closest points on the meshes
and minimizing an error metric. ICP has a disadvantage that a
correct registration is not guaranteed. Since it is a deterministic
minimization method, the algorithm is likely to fall into a local
minimum. Consequently, combining octree-spline with ICP
algorithm for 3-D reconstruction of scoliotic spine requires a
good initial estimate of the position and orientation of each
vertebra in a radiographic environment.

Methods using statistical a priori knowledge of the geometric
shapes of the objects of interest lead to better constrain the
reconstruction problem. In [23], Fleute and Lavallée propose
a method allowing to reconstruct the 3-D geometry of the
femur using a few orthogonal X-ray radiographic projections.
They apply point distribution models (PDM) [24] to recon-
struct a geometric prior model representing mean shapes and
containing the typical deformation modes in statistical sense.
Thereafter, they deform the model nonrigidly, according to the
rays back-projected from the contour points of the projections
taken from a patient. Benameur et al. propose in [25] a 3-D
statistical reconstruction method, for each individual vertebra,
using a pair of planar and conventional (postero-anterior with
normal incidence and lateral) radiographic images for a patient
in a standing position, and a prior global knowledge of the
geometric structure of each vertebra. The method consists of
fitting the projections of this deformable template with the
preliminary segmented contours of the corresponding vertebra
on the two X-ray radiographic projections. Nevertheless the
above-mentioned technique remains widely supervised and
requires the knowledge of the position of six anatomical points
(namely, the center of the superior and inferior end-plates, the
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upper and lower extremities of both pedicles) to initialize 3-D
reconstruction process of each vertebra of the spine.

To overcome this problem of supervision and improve the
3-D reconstruction and the optimizer related to the energy-based
model presented in [25], we propose in this paper a 3-D statistical
reconstruction method based on the likelihood introduced in [25]
butusing hierarchical global a prioriknowledge on the geometric
structure of both the whole spine and each vertebra. Hierarchical
statistical models have been applied in a fusion of multiresolution
image data [26], segmentation [27], [28], restoration [29] and in
active shape models using the wavelet transform [30]. Bernard
et al. introduce in [28] a hierarchical strategy for segmenting
cervical vertebrae. This hierarchical scheme is comprised of
two levels; shape and appearance models. Appearance model
describes individual structures and forms the lower level, while
the topological or shape model, describing the organization of
anatomical structures, forms the upper level, respectively. This
method is not applied to the 3-D reconstruction problem (using
two or several X-ray views) but only to the segmentation of
cervical vertebrae using a single X-ray view.

To our knowledge, no hierarchical statistical model for 3-D
reconstruction methods have been described in the literature.
More precisely, the hierarchical model we propose relies on the
specification of two 3-D templates. The first, a rough and cubic
approximation geometric template on which rigid admissible
deformations are defined, is used to fit its (postero-anterior and
lateral) projections with the preliminary segmented contours of
each vertebra body of the spine on the two calibrated radio-
graphic views. It ensures crude registration of the whole spine
and gives a rough position and orientation of each vertebra.
Three-dimensional reconstruction is then refined by a second
template which takes into account a priori global knowledge on
the geometric structure of each vertebra. This geometric knowl-
edge is efficiently captured by a statistical deformable template
integrating a set of admissible deformations, expressed by the
first modes of variation in Karhunen—Loeve (KL) expansion, of
the pathological deformations observed on a representative sco-
liotic vertebra population. A global deformation applied to the
model. A local deformation process, which assumed to follow a
first-order Markovian process, is then used to refine the model.
This unsupervised coarse-to-fine 3-D reconstruction procedure
leads to two optimization problems related to two (coarse and
fine) energy-based models. These two optimization problems
are efficiently solved in our application with a recent stochastic
optimization technique based on an Exploration Selection pro-
cedure. Finally, we propose a complete validation of the pro-
posed reconstruction technique.

This paper is organized as follows. Section II presents the
hierarchical prior model used in our coarse-to-fine recon-
struction method. Section III describes silhouette extraction
of the 3-D model. Section IV briefly recalls the likelihood
model and the 3-D/2-D registration strategy introduced in [25].
Section V presents energy function minimization related to
the coarse-to-fine registrations and the stochastic optimization
procedure used to estimate optimal reconstruction. Section VI
presents the validation protocol of 3-D reconstruction method.
In Section VII, we show some 3-D reconstruction results and
validate the proposed model.
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Fig. 1. Crude prior model of the spine. (a) Deformable model of the whole
spine and (b) cubic template representation associated with each vertebra.

II. COARSE-TO-FINE PRIOR MODEL

A. Crude Prior Model of the Spine

To ensure crude registration of the whole spine and to esti-
mate a rough position ¢, scale k£ and orientation « of each ver-
tebra, we first consider a crude a priori geometric model for the
whole spine [31] (justified by the fact that each vertebral body
is nearly parallelepiped in shape and of similar size).

This model relies on a set of cubic templates, roughly
representing each vertebral body and stacked on top of one
another to form the spinal column (e.g., Fig. 1). Each cubic
template (defined by a set of control point vectors of the cubic
representation) associated with each vertebral level has its
scale, orientation and position constrained within a restricted
domain whose center is given by knowledge of the (previously)
estimated parameters of the cubic template which is located
below.

We manually identify the center of the superior and inferior
end-plate of the lowest vertebra of the spine on the two ra-
diographic views. User interaction is limited to simply placing
these points on the two radiographic images (thanks to a graph-
ical user interface). The 3-D coordinates of these landmarks are
obtained by DLT [16]; the corresponding points on the cubic
template being known. We estimate the rigid transformation al-
lowing us to pass from the set of center of the superior and in-
ferior end-plate of cubic template to the set of the reconstructed
center of the superior and inferior end-plate of the lowest ver-
tebra of the spine. Then, we apply this rigid transformation to all
points of the cubic template. Once this is done, we optimize the
rigid transformation, which enables us to readjust the two sets
of center of the superior and inferior end-plate. We re-apply the
rigid deformation to all points of the cubic template. This proce-
dure is repeated until the difference in variation of error between
two successive stages is lower than a given threshold.

The coordinate system used for the following equation is
mentioned on Fig. 1. For example, if the registration of the
whole crude spine is made from bottom to top, then the position
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Fig. 2. Fine prior model of each vertebra. Two deformed shapes obtained by applying three standard deviations of the first three deformation modes to the mean

shape of T'8 vertebra and from the sagital and coronal views.
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where « is the rotation vector (ensuring the rotation in x, y
or z axes). Aty, Aty,, At,, Ak and Ao are given by statis-
tical knowledge on the scoliotic deformation of the spine [32],
[33]. We take for the range of Ak = (Aky, Aky, Ak.), Aa =
(Aay, Aay, Aay), and At = (At,, At,, At,)

(_507 _507 _50) S Aa S (+507 +507 +50)
(=5,=5,—5) <At < (+5,+5, +5).

A global configuration of the deformable spine model is, thus,
described by 9 rigid transformation parameters for each cubic
template associated with each vertebral level.

B. Fine Prior Model of Each Vertebra

Our a priori knowledge model relies also on the description
of each vertebra by a 3-D deformable template (i.e., a vector
s € R3" of n control points) which incorporates statistical
knowledge about its geometrical structure and its pathological

variability. The deformations of this template are expressed by
the first modes of variation in KL expansion of pathological de-
formations observed on a representative training scoliotic ver-
tebra population [25]. This can be done by using principal com-
ponent analysis (PCA), i.e., by computing the covariance matrix
C of shapes {s;}. The main deformation modes of the template
model s are then described by the eigenvectors ¢ of C, with the
largest eigenvalues A (e.g., Fig. 2).

C. Deformable Template Representation

The shape s of each vertebra of our training database de-
scribed in Section VII-A is represented as a template, that is a
set of points or landmarks!

s = (p17p27"'api7"'apn)T

where p; = (;,;,2;)T are the Cartesian coordinates of each
surface point.

Given a sample s1, . . ., s, of shapes with the same number of
points, we resort to the procedure proposed in [35] to align this
training set. We then apply the PCA to reduce the dimension
to m < 3n. m is defined in such a way that it describes a
certain proportion of possible variations. This gives us nonlinear
deformations of the mean shape 5 and terminates the training
phase.

IThese landmarks are obtained by measuring specific anatomical landmarks
on each vertebra specimen using a pointer of the electromagnetic device, thus
creating a set of approximately 200 points depending on the level measured
with regard to its particular geometry [34] (see Section VII-A). Different points
were acquired in a specific order and recorded in this sequence. All vertebrae of
same vertebral level have the same number of points, and the 3-D coordinates
of points of each vertebra were recorded in a specific order. Each set of points
was then re-localized in a local coordinate system.
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1) Global Deformations: The globally deformed template is
defined by

s = M(k,a)[s + ®b] + T (1)

where the following hold.

» Tand M(k, a) account for rigid deformations of the tem-
plate, (T is a global translation vector, and M (k, ) per-
forms a rotation (in the z, y or z axes) and a scaling by k).
In our application the initial &, « and " for the fine model
are given by the estimation of the k, o and " obtained by
optimization of the crude model.

o & =(¢1,...,dn)is the matrix of the first m eigenvectors
of C' associated with the m largest eigenvalues and b =
(b1,...,bm)T is a vector containing the weights for these
m deformation modes.

A global configuration of the deformable vertebra template is,
thus, described by 7 + m parameters corresponding to rigid
transformations and m modal weights b;. Due to the KL trans-
form, the random variables b; are independent and follow a
normal law of a null mean and variance \;. Thus, the law of
probability of s, the deformed template, can be written as [25]

P(sw)):u(T,k,a)H \/;Tﬂexp <—2b;i> o)

1=1

where U denotes the uniform distribution with appropriate
bounds for the 9 affine transformation parameters (including
the scale factor).2 This low parametric representation for each
vertebra level, along with the crude parametric representation
of the whole spinal column constitutes our global hierarchical a
priori model that will be used to rightly constrain the ill-posed
nature of our proposed coarse-to-fine 3-D reconstruction
method.

By letting E,(s(8)), the a priori energy term related to the
prior distribution [see (3)], can be written as

m
i=1

which is close to the Mahalonobis distance. This prior energy
term penalizes the deviation of the deformed template from the
mean shape (and not the affine transformations). This prior en-
ergy term will be used later in (9).

2) Local Deformations: In our application, the local defor-
mation process allows to take into account firstly, the fact that
our PCA does not model 100% of the scoliotic and natural bio-
logical deformations (between individuals) of our vertebra data-
base, the first m deformation modes are chosen in order to get a
reasonably low parametric representation model) and, secondly,
the fact that our vertebra database could not be big or repre-
sentative enough and consequently could not certainly contain
all the possible scoliotic deformations (30 normal and 30 scoli-
otic for each vertebral level). Inspired by the work of Grenander

I

b3
4 3)

N =

By (s(0)) =

>~

2An interesting alternative would have been to consider a Gaussian prior dis-
tribution for the scale factor, but this a priori assumption would have required,
as a preliminary, estimate the parameters of this Normal law.
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and Keenan on stochastic pattern representation [36], a statis-
tical local deformations process § is now applied to the n con-
trol points or “landmarks” which approximate the geometrical
shape of each vertebra.

These local deformations are modeled as local random pertur-
bations of the shape and can be considered as a refinement of the
global deformations applied to the deformed mean shape, since
the main deformation modes have already been captured by
the preliminary global statistical prior knowledge of each ver-
tebra. The local deformation vector § = (61, 8a,...,8,)T with
8i = (g, 0y,,0,) is described by a first-order Gauss-Markov
process defined on the graph corresponding to the n control
points of the deformable template of each vertebra. If we repre-
sent these local deformations by local random translations (that
are superimposed on the globally deformed shape), the complete
(i.e., globally and locally) deformable model of each vertebra
can be defined by

5= M(k,a)[5 + ®b] + T + 6. @)

Assuming a first-order neighborhood structure on the graph as-
sociated to the n control points of the deformable template, the
probability distribution of the random field § can be written as

P(6) = %exp(—E,,(é))

where ( is a normalization constant, and E,.(8) is the local de-
formation energy term which can be written as

1 1 1
Er(6):§z = > ||6,L-—(sj||2+?||51-,||2 5)
i=1 \ i jéna

where N (i) is the set of first-order neighborhood of point 4,

u?, and 12 are the variance parameters of this local deformation

K3
model. ;17 weighs the interactions between neighboring points.
v? control the amplitude of the local deformations compared to
the globally deformed model. In our application, we consider
;i = pand v; = v, Vi, since the different control points of our
3-D vertebra template are approximatively equally spaced. This

local deformation energy term will be used later in (9).

III. SILHOUETTE EXTRACTION OF THE 3-D MODEL

The 3-D model of vertebrae is represented in the form of a
triangulated mesh. Silhouette occurs when a triangle faces to-
ward the projection source and a neighbor triangle across an
edge faces away from the source. So for two triangles T; and
T; with normals 77; and 7i; and a view vector ¥/, a shared edge
is a silhouette edge if

where “x” and “-” denote, respectively, the vector and scalar
product.

On a surface, the silhouette edge of the vertebra shape are
lines where the direction of projection is tangent to the surface.
As in the case of a not-convex object, the silhouette edges can
be hidden by other parts of the surface. We keep all the edges,
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Fig. 3.

Example of lateral and postero-anterior outlines from a 3-D model.

including those that are occluded. Let us recall that we use semi-
transparent radiographic images [25]. Fig. 3 shows an example
of silhouette from a 3-D model.

IV. LIKELIHOOD MODEL

As proposed in [25], the likelihood model is expressed by a
measure of similarity between the external contour of the (pos-
tero-anterior and the lateral) projections of the 3-D deformed
template and a directional edge potential field estimated on the
two radiographic views. This likelihood energy term is defined
by

1
E; (s(8), Ipa, Iuat) = . Z Upa(z,y)
Ipa

1

NLAT

> Urar(z,y) (6)

Trat

where the summation of the first and second term of Ej is overall
the npa and ny, a1 points of the external contour of the, respec-
tively, lateral (I, 47) and postero-anterior (Ip4) perspective
projections of the deformed template on the two precomputed
edge potential fields of each radiographic image. The 2-D per-
spective projections of the 3-D deformed template, i.e., the lat-
eral and postero-anterior outline is computed with the silhouette
extraction algorithm.

To compute the edge potential field ¥ associated with each
radiographic view, we first use a Canny edge detector with the
unsupervised technique proposed in [37]. Then, ¥ is defined as

in [38] by
e+

. lcos (v(z, )l (D)

\IJ(.’E,y) =exp | —

where £ = (&, &,) is the displacement to the nearest edge point
in the image, and 7 is a smoothing factor which controls the de-
gree of smoothness of this potential field. v(z,y) is the angle
between the tangent of the nearest edge and the tangent direc-
tion3 of the contour at (z, y) (e.g., Fig. 4). This likelihood energy

3For each point (z, y) on the projected silhouette of the 3-D model, we have
to calculate the nearest edge point (z’, y’) in the image. We then calculate the
tangent vector of the silhouette at point («, y) and its successor, the vector tan-
gent of the nearest edge at point (x', y’) (by a gradient estimation), and the angle
between these two tangents. This definition requires that the projected silhou-
ette agrees with the segmented contours in position and in the tangent direction.
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vector tangent to
the nearest edge at m1

vector tangent to K

the contour at m2 /

segmented”
contours

contours of
model

Fig. 4. Directional component used in the directional edge potential field

Fig. 5. The two projected contours of the shape of cube templates with scale
k and a slightly larger scale k 4 ¢ on the corresponding vertebral body on
postero-anterior and lateral views.

term, as expressed in (6), is exploited for the 3-D reconstruc-
tion of the fine prior model of each vertebra (see Section II-B).
In order to ensure a good reconstruction of each cube template
of the crude prior model of the spine (see Section II-A), which
will be used to initialize this latter fine 3-D reconstruction, we
propose to improve this likelihood measure with the following
heuristic; let sg and s; denote the shape of one cube template
with scale k and a slightly larger scale k + e, respectively. The
considered likelihood energy term is expressed as

E; (s(0),Ipa, Iuat) = Ei (s0(0), Ipa, ILaT)
—FE; (51(0), Ipa, Inat). (8)

The better the correspondence between the (postero-anterior
and lateral) projected contours of the inner cube template
so and the preliminary segmented contours of the two ra-
diographic views (expressed by Ej(so(),Ipa,IrLaT)) and
no correspondence between the projected contours of the
outer cube template s; and the presegmented contour map
(Ei(s1(0), Ipa, ILaT)), the closer this measure will be to the
minimum. Experiments have shown that this heuristic allows
to obtain a better matching when the crude registration is used
on low resolution, low contrast and low signal-to-noise ratio
radiographic images (e.g., Fig. 5).
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V. COARSE-TO-FINE OPTIMIZATION STRATEGY

This unsupervised coarse-to-fine 3-D reconstruction proce-
dure is stated as a double energy function minimization prob-
lems, namely

E (5(6),8) = Ey (s(6), Ioa, Iax) + B (E, ((0)) + E.(6))

&)
where E is the likelihood energy term enforcing data closeness,
(E, + E;) is the prior energy term enforcing regularity in the
Tikhonov sense. 3 is a factor allowing to control the balance
between the two energy components and the rigidity of the de-
formable template.

The energy function to be minimized is complex with several
local minima over the deformation parameter space. A global
search is impossible due to the size of the configuration space.
Let us also add that the quality of the reconstruction is closely
related to the good estimation of the deformation parameters and
consequently to the performance of the optimization procedure.
In our application, we use the stochastic optimization algorithm
recently proposed by Francois in [39]. We use this algorithm be-
cause the adjustment of all internal parameters does not depend
on the function to be minimized. Moreover, the convergence is
asymptotically ensured [39]. Let us add that this optimization
algorithm is also especially well suited to minimize complex
(i.e., nonconvex) energy functions [40]. We compare the perfor-
mance of this algorithm, in Section VII, with a classical genetic
algorithm (GA) [41].

A. Exploration/Selection Algorithm

The E/S algorithm belongs to the class of evolutionary algo-
rithms. This class of algorithm has been successfully applied in
diverse areas such as medical imaging [42] and localization of
shapes [40] to minimize complex energy functions [40]. This
success has initiated the development of various evolutionary
algorithm variants and stimulated the theoretical research about
convergence properties of these algorithms (see [43] for a good
review of evolutionary algorithm in medical imagery).

The E/S algorithm can be summarized as follows (more de-
tails are given in [39]). Let F' be a finite discrete subset of the
Cartesian product of k compact intervals [m;, M;], for 1 < ¢ <
k,and 8 = {6,...,0,} a set of n potential solutions ran-
domly chosen. We define § as the optimal element 6; of 6 such
that E(s(;)) > E(s(f;)), for 1 < j < i, and E(s(f;)) >
E(s(6;)), for 1 < j7 < m. We consider a graph G defined on
F' called the exploration graph. The exploration graph is as-
sumed to be nonoriented and connected. We denote by N'(a) the
neighborhood of the element ¢ € F in the graph G defined by
{b € F: forsome j,|b; — a;| < r(M; —m;),b; =a;,i#j}
where r is a real number in the interval [0,1] called the radius
of exploration.

Each solution of # is regarded as an individual that attempts
a random search on the exploration graph [39]. For b € F, we
fix a positive distribution a, on A/(b). The exploration process
acts independently on each individual, and consists of choosing
a random N according to the positive distribution. We replace
0; by ¥; € N'(6;) \ {A} according to a uniform distribution, for
1 < N otherwise, we change ; by f. This process is run until
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a fixed maximum number of iterations has been reached (see
Algorithm. 1).

Algorithm 1: E/S Optimization Algorithm
E/S Algorithm
E() A real-valued [-variable function,
defined on F, to be minimized
F A finite discrete subset of the
Cartesian product IIi_ {m;, M;} of I
compact intervals

n The size of the population
(greater than D)
r A real number € [0,1] called the

radius of exploration (with r
greater than the ¢ machine)

N(a) The neighborhood of an element
a € F defined by {be F: for some j €
[1,1], |b] - aj|§ T(Mj - mj)vbi =a;,i £ j}

D = The diameter of the exploration

graph endowed with the system of
neighborhood {N(a)}.er

0 0 ={61,...,6,}, an element of F™
= § = argming g E(f;), i.e., the min-
F imal point in # with the lowest
label
P The probability of exploration
k The iteration step
1. Initialization
Random initialization of 60 =
{61,...,0,} e F" k=2
2. Exploration/Selection
repeatA

1) Compute 6; 6= argming, cq F(6;)

2) Draw m according to the binomial
law b(n,p) R

. For i <m, replace 6; by ¥; € N(6;)\ {0}
according to the uniform distribu-
tion (Exploration step) .

. For i > m, replace 6; by # (Selec-
tion step)

3 k=k+1 and p = k~1/P

until a criterion met;

This optimization problem can be divided into three steps. The
first step corresponds to crude reconstruction in which £, = 0
and £,. = 0. In the second step, we refine the crude reconstruc-
tion by a second optimization step which takes into account a
prior global knowledge on the geometric structure of each ver-
tebral level, and which considers the local deformations as neg-
ligible (6; = 0, Vi). Finally, a last refinement of the recon-
struction is performed by using local deformations. These steps
are explained in more detail in Sections V-B, V-C, and V-D,
respectively.

B. Crude Reconstruction

This energy-based model is first used for the registration of
the whole spine with the set of cubic templates presented in
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Section II-A and the likelihood measure presented in (8). In
this crude reconstruction step, there is no prior energy term
(E, = 0 and E, = 0) since we do not use nonlinear and
local deformations. The ill-posed reconstruction problem is
nevertheless constrained by the low parametric representation
of the whole spine and the restricted search space defined for
each cubic template (see Section II-A). After optimization,
this crude registration allows to estimate the rough position
T = (T,,Ty,T.), scale k and orientation o = (g, ty, ;) of
each vertebra.

C. Fine Reconstruction With Global Deformations

This optimization problem is then used with the fine prior
template of each vertebra (see Section II-B and the likelihood
measure proposed in (6). Optimization is made within a range
of values around the rigid parameters roughly estimated by the
first crude reconstruction given in Section V-B. In this section,
we consider the local deformations as negligible (§; = 0, Vi)
and we have to estimate § = (k, «, T, b), i.e., 7+ m parameters
corresponding to rigid transformations and m modal weights
b;. For this fine reconstruction with global deformations, we
take as scaling parameter k the mean value of the three scaling
parameters k., k,, and k. obtained in crude reconstruction
step.

D. Fine Reconstruction With Local Deformations

This last minimization procedure is made with 6 previously
estimated and now fixed to find the optimal local deformation
parameters of the complete model.

The energy function to be minimized is just a final refinement
of the global deformations applied to the mean shape, since the
main deformation modes have been captured by the PCA-based
global prior knowledge of each vertebra. For this section, we
use the following deterministic procedure.

* For each point p; of the vertebra shape model s (s =
(P1,P2s---Diy---,0n)T with p; = (2;9:i2;)T), and until
E(5(0)) is stable.

* The model energy E(5(6)), expressed by (9) is evaluated
for different positions of p; (namely; p; + 6p;, p;, and
p; — Op;) along its normal. The normal is estimated by
computing the average of the normal of all facets to which
the vertex belongs.

* We retain the configuration associated with the lowest
energy.

In order to speed up this local deterministic optimization pro-
cedure, we start with a given and over estimated value for dp;
until E(8, #) become stable and we run the procedure succes-
sively with decreasing values of §p; (e.g., Fig. 6).

In order to speed up this local deterministic optimization pro-
cedure, we start with a given, an overestimated value for op;
until F($, 6) becomes stable and we run the procedure succes-
sively with decreasing values of p; (e.g., Fig. 6).

VI. VALIDATION OF 3-D RECONSTRUCTION

Validation of 3-D reconstruction accuracy is a difficult task
because a scanned spine database is generally not available.
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Fig. 6. Local deformations. (a) normal at the control points, (b) movement of
point pl along its normal.

Visual examination is the most obvious method for evalua-
tion of the 3-D reconstruction accuracy, but can be considered
as an informal and insufficient approach. We have 13 spine
segments* containing altogether 57 (6 lumbar and 51 tho-
racic) vertebrae. These 13 vertebrae segments were scanned
with a CT-scan device. Each CT slice of 1 mm thickness
was taken with a resolution of 512 x 512 pixels and 12 bits
per pixel. The CT scan reconstruction was made by piling
the CT slices of the vertebraes [44] using SliceOmatic soft-
ware. This software allows one to automatically segment the
CT-scan slices and then to correct the automatic segmenta-
tion manually to distinguish the different objects in the initial
image. The accuracy of this technique is evaluated at £1 mm
[45] and it allows a CT scan reconstruction of the vertebrae
containing up to 7000 points. Twelve landmarks (extremities
of pedicles, extremities of the diameter of the spinal canal)
were identified on each vertebra using an interactive graphical
computer tool. These landmarks were then used to calculate
the dimensions of the pedicles and the spinal canal® (width
and depth). The validation technique consists of fitting the
model of our 3-D reconstruction method to the corresponding
scanned vertebra. This 3-D reconstruction method is used to
estimate the mean and the maximum error distance between
the 3-D reconstructed model and the corresponding scanned
model. The results of the comparisons will be expressed as
point to surface, i.e., each point of reconstructed vertebra is
projected onto the surface on the corresponding scanned ver-
tebra and the point-surface euclidean distance is computed.

4Thirteen scoliotic patients of Sainte-Justine Hospital in Montreal, Canada,
participated in this study. Most of the patients were adolescents, ranging
from 11 to 21 years old; all were female. They all had idiopathic thoracic
or thoraco-lumbar scoliosis, with Cobb angles ranging from 3° to 52°.
As the surgical planning for these patients had required computed tomog-
raphy (CT) scans of some strategic vertebrae to obtain 3-D reconstructions,
we analyzed only these vertebrae.

5The CT scan reconstruction was made by piling the segmented CT
slices of the vertebrae using the marching cube algorithm. the marching
cube algorithm is used in volume rendering to reconstruct an isosurface
from a 3-D field of values. The basic principle is to subdivide space into a
series of small cubes. The algorithm then instructs us to “march” through
each of the cubes testing the corner points and replacing the cube with an
appropriate set of triangles. The result is a smooth surface that approximates
the isosurface. The user can change the selected threshold value, making
use of a simple graphical interface. The accuracy was defined by estimating
the errors on shape between the scanned segmented vertebra and the
corresponding model obtained by direct measurement using Fastrack.

6The estimation of these morphometric parameters are useful for the
pedicle insertion during a typical surgical intervention of scoliosis.
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Fig. 7. Morphometric parameters used in our validation protocol.

We also considered the Cobb? angle, related to the curve of the
spinal column (e.g., Fig. 7).

VII. EXPERIMENTAL RESULTS
A. Vertebra Database

The vertebra database, used in our application, includes 1020
thoracic and lumbar vertebrae (30 normal and 30 scoliotic for
each vertebral level, i.e., 5 lumbar and 12 thoracic). These
data were obtained by digitization of the anatomical points on
anatomical specimens selected in the Hamann Todd osteology
collection, Cleveland, OH, and Smithsonian Institution in
Washington, DC [46]% Fastrack (POLHEMUS, A Rockwell
Collins Company) is the name of the electromagnetic device
used to digitize each vertebra by means of a pointer. The
accuracy of this device is evaluated at £0.2 mm [47]. The 3-D
coordinates of the pointer were recorded in a specific reference
system. Let us recall that the digitizing protocol consisted of
measuring specific anatomical landmarks on each vertebra,
thus creating a set of approximately 200 points depending on
the level measured with regard to its particular geometry [34].
Different points were acquired in a specific order and recorded
in this sequence. After the measurements were done, each ver-
tebra was then reconstructed using computer graphics software
developed by our Imaging and Orthpopedics Research labo-
ratory in Montreal, Canada. This computer graphics software
is based on a protocol making it possible to take into account
the topology of a vertebra which describe how the triangles
are connected and the geometry of the vertebra which is the
specification of the precise location of the vertices. Each set of
points was then re-localized in a local coordinate system.®

B. Comparison Protocol

In our application, we use the comparison protocol described
in [25]. Three-dimensional reconstruction models of the verte-
brae contain up to 7000 points per vertebra and will constitute
the ground truth for our validation procedure. First, the valida-
tion procedure consists of fitting the model of 200 points of our
3-D reconstruction method on the scanned and segmented ver-
tebra. To this end, we use 12 landmarks (extremities of pedicles,
extremities of the diameter of the spinal canal) on the recon-
structed model whose position is known, and we estimate the
rigid transformation allowing us to pass from the set of anatom-
ical landmarks of our reconstructed model to the set of corre-

7Cobb angle is used to quantify the scoliosis deformation by evaluating the
spinal curve relatively to the postero-anterior radiographic view.

8Age, sex, race, height, weight, cause of death and peculiar dissection findings
of each scoliotic specimen are available.

9To our knowledge, the vertebrae base is the largest database available in the
literature [46].
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sponding anatomical landmarks previously extracted from the
scanned model. Then, we apply this rigid transformation to all
points of the reconstructed vertebra. Once this is done, we opti-
mize the rigid transformation, which enables us to readjust the
two models of vertebra. Optimization consists of finding neigh-
bors on the scanned vertebra to each point of the reconstructed
vertebra and then of estimating and re-applying the rigid de-
formation, allowing us to pass from the set of points of the re-
constructed vertebra to the set of points close to the scanned
vertebra. This procedure is repeated until the difference in varia-
tion of error between two successive stages is lower than a given
threshold.

This comparison was made using the distance (mean, root
mean square (RMS), and maximum) between a point from the
reconsructed vertebra and the surface of the corresponding ver-
tebra obtained with CT-scan, whose accuracy is &1 mm [45].

C. Experimental Results

We have validated our 3-D reconstruction method on 13
scoliotic thoracic spine segments CT and 13 pairs of calibrated
radiographic images (postero-anterior and lateral) associated
to this spine segment (a subset of our database of 30 scoliotic
pairs). We use an efficient way of calculating the eigenvectors
associated with non zero eigenvalues as given in [24]. The
first m (m € {8,9,10}, depending of the vertebra level)
eigenmodes {(\1,¢1),...,(Am,¢m)} are chosen to cover at
least 90% of the population’s variability. For the experiments,
we have chosen § = 0.02 for the weighting factor penalizing
the prior energy term with respect to external energy for
Section V-C and Section V-D, p = 90 and v = 8 for the
variance parameters of the local deformation model. These
different threshold values have been chosen empirically after
a set of experiments from a database of 30 pairs of calibrated
radiographic images of scoliotic spine (by trials and errors after
visual examinations of the postero-anterior and lateral seg-
mented contours) and with an optimization procedure ensuring
the global minimum (i.e., with E/S algorithm). The 13 pairs
of calibrated radiographic images of scoliotic spine associated
to 13 scoliotic spine segments CT used for these validation
experiments are a subset of this database of 30 pairs. These
different parameters (3, p and v) are valid for this imaging
modality. We used the Canny edge detector to estimate the edge
map which is then used for estimation of the edge potential field
on the two radiographic views (used in the likelihood energy
term). In our application, ¢ = 1, mask size is 5 X 5, and the
lower and upper thresholds are given by the semi-automatic
estimation technique!® proposed in [37].

We have implemented the E/S and GAs in C++ and
compared the execution times of these algorithms (e.g.,
Figs. 8 and 9). In our application, parameters of GA are the

10This technique allows to estimate the lower 7; and upper 7, thresholds of
the hysteresis thresholding step of the canny procedure in the following way; We
set 7; = 0.57, and 7, is estimated as being the value of the gradient module for
which the repartition function of the gradient module (computed on the whole
image) reaches a certain threshold value p;, (p, < 1). This procedure allows
to make the canny procedure dependent on only one threshold, p;, which is
closely related to the percentage of edge that will be detected in the image. In
our application, we use p, = 0.8 and this technique and the choice of p;, turned
out to be reliable in our application.
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Fig.9. Evolution of the energy during function minimization for E/S and GAs.

following; population size = 100, crossover rate = 0.80,
mutation rate = 0.01, maximum number of generations =
100. Each of 7 4+ m parameters 6, is quantified on 8 bits. Pa-
rameters of E/S algorithm are the following; population size =
100, diameter of the exploration graph = 32,
maximum number of generations = 100. Figs. 8§ and 9
display the running times of E/S and GAs as a function of the
energy and the evolution of the energy during the optimization
process for E/S and GAs as a function of the number of
iterations, respectively, for a given vertebral level. These figures
shows the E/S and GAs take about 55 and 80 generations (or
28 and 120 s), respectively, to converge to a good estimate
for a given vertebral level (with Linux running on a 2.0 GHz
AMD Atlon PC workstation with 1 GByte of memory). In fact,
the convergence rate can vary significantly depending on the
complexity of the energy function E(s, ) to be minimized (or
the quality of the input radiographic images). Nevertheless, in
all tested cases, we obtain better minima and convergence with
the E/S comparatively to the GA (see Table I). Fig. 10 shows
the projection of the cube template on corresponding vertebral
body on postero-anterior and lateral views obtained for the
extreme values of position ¢, scale vector k and orientation
« of the restricted search space initially defined for the cube
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TABLE 1
EXAMPLE OF MINIMA OBTAINED WITH E/S AND GAS ALGORITHMS
FOR LUMBAR AND THORACIC VERTEBRAE

Optimization Vertebral level
Lumbar Thoracic
E/S E=-089 | E=-0.87
Genetic E=-087 | E=-0.82

©

Fig. 10. Projection of the cube template on corresponding vertebral body on
postero-anterior and lateral views obtained for the extreme values of position ¢,
scale vector k and orientation «. (a) k = (0.8,0.8,0.8), a = (—3,—-3.=3),
andt = (=2,-2,-2); (b)) k = (1.3,1.3,1.3), a« = (3,3,3),and t =
(2,2,2); and (c) final reconstruction of the cube, & = (0.90,0.98,1.22),a =
(0.80,0.17,—1.42),and t = (1.72,0.13,2.28).

template (see Section II-A) and its final reconstruction after
E/S optimization.

Fig. 11 shows the projection of the vertebra template on cor-
responding vertebra on postero-anterior and lateral views ob-
tained for the extreme values of position ¢, scale vector k and
orientation o and the final reconstructed vertebra after GA and
E/S optimization.

Fig. 12 shows the estimated reconstructed L2 vertebra when
local deformations are taken into account to refine the recon-
struction obtained in Fig. 11. The local deformation process can
efficiently adjust the deformable template to the presegmented
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(d)

Fig. 11. Projection of the L2 vertebra template on corresponding
vertebra postero-anterior and lateral views when position ¢, scale
k and orientation o take the least and the greatest values in a
corresponding search interval: (a) & = 0.86, = (—4,—4,—4), and
t = (=3,-3,-3); ) k = 1.30, 0 = (4,4,4),and t = (3,3,3);
(c) final reconstruction of the vertebra, & = 0.96, « = (0.5, —2.5,0.5),
t = (1.1,-1.5,1.0), and b = (-5,10,15,-5,-5,0,0,0,0,5)
with GA optimization; and (d) final reconstruction of the vertebra,
k= 097, a = (0.50,—1.05,0.49), ¢ = (1.03,—1.49,1.00), and
b = (—5.35,8.45,14.69,—7.06,—5.05,11.08,5.43,—0.87,4.10, —6.64)
with E/S optimization.

contours of each radiographic image leading to a better 3-D re-
construction result.

Table II presents (mean, root mean square (RMS), and max-
imum) errors between points from the reconstructed vertebra
and the surface of the corresponding scanned vertebra for dif-
ferent vertebral levels. These errors are, respectively, (1.46 +

Fig. 12. Global and local deformations on L2 vertebra template. (a) Globally
deformed shape £ = —0.79. (b) Globally and locally deformed shape £ =
—0.88.

1.47) mm, (1.87 + 0.23) mm, and (5.35 % 0.93) mm for lumbar
vertebrae, and (1.30 £ 1.32) mm, (1.66 + 0.25) mm, and (4.64
4 0.84) mm for thoracic vertebrae. We also calculated these er-
rors without local deformations. These errors are then (1.58 +
1.32) mm, (1.92 £ 0.31) mm, and (5.82 =+ 0.63) mm for lumbar
vertebrae, and (1.46 £ 1.23) mm, (1.71 £ 0.35) mm, and (5.07
4 0.71) mm for thoracic vertebrae.

Table III presents width, height, and depth of spinal pedicles
and canal differences between the reconstructed model resulting
from our 3-D reconstruction method and the model resulting
from CT-scan. The elements of the table denote the mean of NV
absolute values of the difference between the measure of mor-
phometric parameter on reconstructed vertebra and the corre-
sponding measure on scanned vertebra. Table IV presents the
Cobb angle of projections of vertebral end-plates of these recon-
structed vertebra segments with the corresponding end-plates
of these reconstructed vertebrae manually calculated by an ex-
pert from Sainte-Justine Hospital (Montréal, Canada) on a pos-
tero-anterior X-ray image.

Figs. 13—-15 show a few examples of 3-D reconstruction of
vertebra segments of some scoliotic spines.

To compare these results with those presented in [31], we
note that the precision of the 3-D/2-D registration method pre-
sented in [31] remains better than the precision of the 3-D recon-
struction method described in this paper (see Table VIII). This
is due to the fact that the method presented in [31] is widely
supervised and requires the knowledge of the position of six
anatomical points (namely, the center of the superior and in-
ferior end-plates, the upper and lower extremities of both pedi-
cles) to initialize the 3-D reconstruction process of each vertebra
of the spine i.e., the knowledge of the position of 102 anatom-
ical points for the 3-D reconstruction of the vertebra segment
(L5/.../T1) while the proposed 3-D reconstruction method only
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TABLE 1I
RESULTS ON POINT-TO-SURFACE COMPARISONS OF 57 SCOLIOTIC VERTEBRAE. N DENOTES THE TOTAL NUMBER OF VERTEBRAE AT DIFFERENT
VERTEBRAL LEVELS. ALL DATA ARE SHOWN AS MEAN &+ STANDARD DEVIATION

Vertebral level | N Mean error (mm) | Root mean square (mm) | Maximum error (mm)

Thoracic
T6 3 1.174+1.22 1.484+0.13 4.27+0.55
T7 6 1.32+1.38 1.68+0.33 5.00%1.06
T8 9 1.28+1.28 1.64+0.23 4.66+0.60
T9 10 1.334+1.34 1.70+0.23 4.79+0.75
T10 9 1.234+1.28 1.59+0.14 4.4140.80
T11 9 1.30+1.31 1.63+0.31 4.4340.95
T12 5 1.3041.25 1.661+0.41 4.20+1.04

Lumbar
L1 2 1.334+1.27 1.674+0.33 4.5740.84
L2 1 1.7041.60 2.1540.00 5.7040.00
L3 2 1.30£1.30 1.75+£0.35 5.20+1.70
LS 1 1.50+1.70 1.93+0.25 5.95+1.20

TABLE III

RESULTS ON COMPARISONS OF 57 SCOLIOTIC VERTEBRAE. N DENOTES THE TOTAL NUMBER OF VERTEBRAE AT DIFFERENT VERTEBRAL LEVELS. ALL DATA ARE
SHOWN AS MEAN £ STANDARD DEVIATION

Vertebral level | N Pedicle Canal

width (mm) | height (mm) | depth (mm) | depth (mm) | width (mm)

Thoracic
T6 3 1.9040.96 2.3740.74 0.361+0.26 1.5540.65 1.154+0.79
T7 6 1.74+1.09 1.414+1.00 0.76+0.71 2.87£1.17 0.56+0.78
T8 9 1.58+0.88 1.45+1.03 0.651+0.46 1.4540.78 1.55+£1.23
T9 10 1.5540.83 1.444+0.91 0.691+0.76 1.62+1.11 1.66+1.28
T10 9 1.3240.91 0.631+0.66 0.49+0.50 1.0740.76 1.96+1.25
T11 9 1.3940.51 1.03+0.93 0.571+0.43 1.2240.97 1.52+1.14
T12 5 2.05+1.69 0.611+0.36 1.07+1.11 1.51+0.88 1.98+1.35

Lumbar
L1 2 1.88+1.02 1.50+1.32 1.1140.58 1.0640.88 2.43+145
L2 1 0.7640.00 1.33+0.00 1.3440.00 1.91£0.00 1.55+0.00
L3 2 2.0940.63 0.7840.88 1.48+0.70 0.5740.15 1.78+1.02
LS 1 2.34+0.17 1.7840.79 0.3240.30 0.9840.78 1.79+0.21

TABLE 1V
COBB ANGLE OF PROJECTIONS OF VERTEBRAL END-PLATES OF THESE RECONSTRUCTED VERTEBRA SEGMENT WITH THE CORRESPONDING END-PLATES OF
THESE RECONSTRUCTED VERTEBRAE MANUALLY CALCULATED BY AN EXPERT FROM SAINTE-JUSTINE HOSPITAL (MONTREAL, CANADA)
ON A POSTERO-ANTERIOR X-RAY IMAGE

Vertebra segment | No Patient Cobb angle
Projections of Postero-anterior
vertebra segment (deg) | X-ray image (deg)
T10 - T12 1 3 3
T10 - T12 2 11 13
T11 -TI12 3 15 14
T6 - T11 4 45 43
T6 - T11 5 40 42
T7 - T12 6 46 43
T7 - T10 7 39 42
T7 - T11 8 50 52
T8 - T11 9 38 36
T6 - T9 10 33 32
T7 - T9 11 40 42
T7 - T9 12 34 32
T8 - T9 13 31 29
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Fig. 13. Three-dimensional reconstruction of vertebra segment (L1/L2/L3/
L4/L5) of a given scoliotic spine. (a) Postero-anterior image, (b) lateral image,
(c) and (d) visualization of the reconstructed cube segment (L1/L2/L3/L4/L5)
from the coronal and sagittal views. (e) and (f) Visualization of reconstructed
vertebra segment (L1/L.2/L.3/L4/L5) from the coronal and sagittal views.

requires two points, namely the superior and inferior end-plates,
of the vertebra segment to be defined. The validation results
presented above show that the accuracy of our 3-D hierar-
chical reconstruction method is comparable to CT-scan 3-D
reconstruction.

Tables V and VI show the results of computing the mean
and maximum error distances 7, standard deviation o, and
confidence interval for samples of size n from the vertebra
database. We assume that the vertebra database is approxi-
mately normal. A 100(1 — «)% confidence interval is [T —

tas2(0/\/n),T + to2(0/y/n)] where t, /s is the upper a/2
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(e) ()
Fig. 14. Three-dimensional reconstruction of vertebra segment (T10/T11/
T12/L1) of a given scoliotic spine. (a) Postero-anterior, (b) lateral image,
(c) and (d) visualization of the reconstructed cube segment (T10/T11/T12/L1)
from the coronal and sagittal views. (e) and (f) Visualization of reconstructed
vertebra segment (T10/T11/T12/L1) from the coronal and sagittal views.

point of the ¢ distribution with degrees of freedom n — 1.
Selecting « = 0.05, we find the value of ¢( 25 with 5 de-
grees of freedom is 2.571 for lumbar vertebrae and 50 degrees
of freedom is 2.00 for thoracic vertebrae, so the 95% confi-
dence interval is 7 & 2.571(c/+/5) for lumbar vertebrae and
T 4 2.00(o/+/50) for thoracic vertebrae.

To test the right hypotheses of the statistical significance of
these local deformations relatively to the global deformations
(with a level of significance @ = 0.05), the Student’s t-test,
namely, T = (y/n/0)7 has to be lower then /s (i.e., |T| <
Lo 2) [48]. Table VII, thus, shows that local deformations give
a significant improvement in the accuracy of reconstruction ex-
cept in the case of lumbar vertebrae (probably due to the low
size of the validation set for the lumbar vertebrae).

The experiments have shown that the results obtained with
local deformations are better than the results obtained without
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(f)

Fig. 15. Three-dimensional reconstruction of vertebra segment (T6/T7/T8/T9/
T10/T11) of a given scoliotic spine. (a) Postero-anterior image, (b) lateral image,
(c) and (d) visualization of the reconstructed cube segment (T6/T7/T8/T9/
T10/T11) from the coronal and sagittal views. (e) and (f) Visualization of
reconstructed vertebra segment (T6/T7/T8/T9/T10/T11) from the coronal and
sagittal views.

local deformations (see Table V and VI). This is due to the fact
that our PCA does not model 100% of the scoliotic deforma-
tions of our vertebra database and that our vertebra database is
not big or representative enough (i.e., 30 normal and 30 scoli-
otic vertebra shapes does certainly not contain all the possible
scoliotic deformations for each vertebral level).

Let us note that the estimated global deformation parameters
after 3-D reconstruction (i.e., parameter vector b, setting the am-
plitude of each deformation mode of the scoliotic deformation)
and the measures of morphometric parameters can also be used
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to quantify the scoliosis, its nature or to analyze the improve-
ment of orthopedic or surgical corrections. Let us also note that
the resulting 3-D reconstructed spine can also be efficiently ex-
ploited as prior knowledge and geometric constraints for the
problem of the rib cage reconstruction. This will be the topic
of our futur research.

VIII. DISCUSSION AND CONCLUSION

We have presented an original coarse-to-fine approach for
the 3-D reconstruction of the scoliotic spine using contours
extracted from biplanar radiographic images and a priori hier-
archical global knowledge both of the geometrical structure of
the whole spine and of the statistical structure of each vertebra.
From an algorithmic point of view, the reconstruction problem
is decomposed in two optimization problems of reduced com-
plexity allowing us to drastically save computational effort
and/or provide accelerated convergence toward an improved
estimate. In our application, these two optimization problems
are efficiently solved with a stochastic optimization procedure
(i.e., with E/S algorithm). This optimization procedure is fast
compared to other minimization techniques such as the gra-
dient-based method and GA. This method has been tested on
a sample of 30 pairs of radiographic images demonstrating its
efficiency and robustness.

Let us recall that this 3-D reconstruction method is used to
estimate the mean and the maximum error distance between the
3-D reconstructed model and the corresponding scanned model.
The results of the comparisons will be expressed as point to
surface, i.e., each point of reconstructed vertebra is projected
onto the surface on the corresponding scanned vertebra and the
point-surface euclidean distance is computed. We also consid-
ered the Cobb angle, related to the curve of the spinal column.

The mean error is (1.46 £+ 1.47)mm for lumbar vertebra and
(1.30 £ 1.32)mm for thoracic vertebra. The maximum error is
(5.35 + 0.93)mm for lumbar vertebra and (4.64 4+ 0.84)mm for
thoracic vertebra for our 3-D reconstruction technique.

Let us also note that there are many other morphometric pa-
rameters to evaluate the quality of the reconstructed scoliotic
spine by using Cobb angle in the frontal view of each curva-
ture, vertebral axial rotation on frontal plane deformity, angle
of plane of maximum curvature, apical vertebra frontal plane,
etc.

The most computationally intense step in our coarse-to-fine
optimization strategy is the fine reconstruction involving local
deformations. In this step, we evaluate the model energy for
different candidate positions (three positions) and for each point
(200 points) of the vertebra shape. This procedure is repeated
several times.

A validation in computer simulations and/or projections from
the CT data could have been performed but we have chosen not
to do so.

The proposed scheme, thus, constitutes an alternative to
CT-scan 3-D reconstruction with the advantage of low irra-
diation and will be of great interest for evaluation of spinal
deformities, simulation of orthopaedic treatments, and for
reliable geometric models for finite element studies. However,
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TABLE V
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THE MEAN ERROR DISTANCES, STANDARD DEVIATION, AND CONFIDENCE INTERVAL OBTAINED FROM THE PROPOSED METHOD WITH AND
WITHOUT LOCAL DEFORMATIONS FOR THE LUMBAR AND THORACIC VERTEBRAE

Proposed method

without local deformation

with local deformation

Lumbar 1.58 1.46
Mean (mm) -
Thoracic 1.46 1.30
Lumb. 1.32 1.47
Standard deviation (mm) o a.r
Thoracic 1.23 1.32
Lumb 0.19,2.97 0.00 , 3.00
Confidence interval (mm) o a.r L I [ !
Thoracic [1.12, 1.80] [0.93 , 1.67]
TABLE VI

THE MAXIMUM ERROR DISTANCES, STANDARD DEVIATION, AND CONFIDENCE INTERVAL OBTAINED FROM THE PROPOSED METHOD WITH AND
WITHOUT LOCAL DEFORMATIONS FOR THE LUMBAR AND THORACIC VERTEBRAE

Proposed method
without local deformation with local deformation
. Lumbar 5.82 5.35
Maximum error (mm) -
Thoracic 5.07 4.64
Lumb: 0.63 0.93
Standard deviation (mm) — a.r
Thoracic 0.71 0.84
. Lumbar [5.16 , 6.48] [4.37 , 6.33]
Confidence interval (mm) -
Thoracic [4.87 , 5.27] [4.40 , 4.88]
TABLE VII
RESULTS OF STUDENT’S ¢-TEST ABOUT STATISTICAL SIGNIFICANCE OF THE LOCAL DEFORMATIONS
T-Test of the size degrees of | T t0.025 Student’s
freedom t-test
Lumbar 6 5 2.43 2.57 No
Mean -
Thoracic 51 50 7.03 2.00 Yes
X Lumbar 6 5 14.09 2.57 Yes
Maximum error -
Thoracic 51 50 39.45 2.00 Yes
TABLE VIII

THE MEAN AND MAXIMUM ERROR DISTANCES OBTAINED FROM THE SUPERVISED METHOD DESCRIBED IN [31] AND THE PROPOSED METHOD (DESCRIBED IN THIS
PAPER) FOR THE LUMBAR AND THORACIC VERTEBRAE. ALL DATA ARE SHOWN AS MEAN £ STANDARD DEVIATION

Mean error (mm) Maximum error (mm)
Lumbar Thoracic Lumbar Thoracic
Supervised method [31] || 0.71+£0.06 | 1.48+0.27 | 3.67 +£0.80 | 6.44 £1.76
Proposed method 1.46 £1.47 | 1.30£1.32 | 535+0.93 | 4.64+£0.84
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