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DCT-Based Complexity Regularization
for EM Tomographic Reconstruction

Max Mignotte*, Jean Meunier, and Jean-Paul Soucy

Abstract—This paper introduces a simple algorithm for tomographic re-
construction based on the use of a complexity regularization term. The reg-
ularization is formulated in the discrete cosine transform (DCT) domain
by promoting a low-noise reconstruction having a high sparsity in the fre-
quency domain. The resulting algorithm simply alternates between a max-
imum-likelihood (ML) expectation-maximization (EM) update and a de-
creasing sparsity constraint in the DCT domain. Applications to SPECT
reconstruction and comparisons with a classical estimator using the best
available regularization terms are given in order to illustrate the potential
of our reconstruction technique.

Index Terms—Discrete cosine transform (DCT), expectation-maximiza-
tion (EM), reconstruction, SPECT tomography.

I. INTRODUCTION

A major challenge for Bayesian image reconstruction algorithms is
the design of efficient image prior models summarizing the intrinsic
properties of the object being evaluated. This allows to restrict the types
of reconstructions (a priori) defined as acceptable solutions.

Except for wavelet-based regularization methods, little attention has
been given to the use of complexity-based regularization in Bayesian
tomographic reconstruction. Wavelet-based methods exploit the spar-
sity of the wavelet coefficients by using either prefiltering of the ac-
quired raw-data [1], postfiltering of the reconstructed images [2], [3],
or a regularization strategy during the optimization process, using a
maximum a posteriori (MAP) formulation [4]–[6].

In such a framework, the simple discrete cosine transform (DCT)
could also be used to constrain the problem of reconstruction from pro-
jections. As opposed to the widely used wavelet transform, this trans-
form can be used locally, by using a strategy of local filtering on (over-
lapping) individual blocks. Therefore, this local filtering approach also
allows to take into account, indirectly, the nonstationarity property of
the object being reconstructed.

What we propose in this paper is a simple and efficient, DCT-based
reconstruction method which alternates between a maximum-likeli-
hood (ML) EM update and DCT-based filtering, using an easily im-
plemented decreasing thresholding rule. The potential of this recon-
struction technique will be illustrated through a series of examples re-
constructed both with this approach and a more classic estimator using
the best available regularization terms.

II. BAYESIAN TOMOGRAPHIC RECONSTRUCTION

Reconstructing an emission tomography study can be considered in a
statistical framework where we consider a pair of random fields (Y;X),
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where Y is an M -dimensional vector of Poisson-distributed photon
counts and X is an N -dimensional random vector of emission rates.
A particular realization of these random vectors are, respectively, yi,
designating the number of counts received at detector bin i, and xj ,
representing the mean emission rate from voxel j. Let H model a dis-
crete Radon transform, i.e., the M�N system matrix H with elements
Hij proportional to the probability of receiving a count in detector ele-
ment i from voxel j. According to the standard emission tomographic
model in which the sinograms yi are independently Poisson distributed,
the log-likelihood function can be written as [7]

logPY jX(yjx) / �

M

i=1

yi log

N

j=1

Hij xj �

N

j=1

Hijxj

= ��L(y; x): (1)

Combining this log-likelihood distribution with an a priori distribu-
tion of the form PX(x) / expf�

(x)g, for the set of feasible re-
constructions, leads to the following energy minimization problem, the
solution of which is a tomographic reconstruction in the MAP sense,
x̂MAP = argminxf�L(y; x) + 
 
(x)g = argminxfE(x)g. In
order to minimize such an energy function, we use a classical itera-
tive EM one step late (EM-OSL) algorithm [7] (or its variation based
on the use of an ordered subset processing, [8] which speeds up con-
vergence). The resulting EM-OSL update equation is
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where 
(x) is the regularization term used (see Section V for a list of
the regularization terms tested in this paper). The quality of the recon-
structed image will closely depend on this term and its ability to model
the intrinsic properties of the object being evaluated. Another regu-
larization strategy used in our application consists in sequentially and
repeatedly applying the unregularized version of this algorithm (i.e.,

(x) = 0, which is the well-known ML-EM algorithm [9], [10]), and
a denoising step based on complexity. Silverman et al. in [11] proposed
a similar strategy in which the so-called EMS algorithm consisted in al-
ternating a ML-EM-like iteration with a smoothing step (for which a
variety of median and averaging filters were proposed and studied) for
tomographic reconstruction.

III. PROPOSED REGULARIZATION STRATEGY

In order to regularize the noisy solution obtained after each itera-
tion of the ML-EM algorithm, we a priori restrict the admissible so-
lutions to a class of images with a sparse DCT transform represen-
tation. Using this (regularized) image model, the proposed denoising
approach then consists in applying a frequential filtering based on the
DCT transform of each 8� 8 subimage extracted from the current re-
constructed version of the image. For the filtering operation in the DCT
domain, we have chosen the easily-implemented hard thresholding rule
[12] also classically used in wavelet-based denoising approaches, (cf.
Algorithm 1) where 
T is a threshold level and w is one of the co-
efficients obtained by the DCT transform of the block (of size 8� 8
pixels) extracted from the current image estimate. In order to reduce
blocky artifacts across block boundaries, we adopted a standard ap-
proach where this transform is made translation-invariant, by using the
DCT of all (circularly) translated version of the image (herein assumed
to be toroidal) [13], [14] (this implies computing a set of eight hori-
zontal shifts and eight vertical shifts (= 64) transformed images) which
will then be averaged in the final step of this denoising procedure.

Algorithm 1. DCT-based denoising step.

In order to improve the regularization, and to make it somewhat
adaptive, we also propose to compare the reconstruction results with
a variant consisting in decreasing, during the iterative EM procedure,
the threshold value to a minimal value, following a procedure resem-
bling a cooling threshold schedule. To this end, we use an empirical
geometrically decreasing law for the threshold max(
 � (0:86)n; 
=6)
where n is the number of iterations. This regularization process gives a
stronger sparsity constraint for the first steps (during which the recon-
struction procedure exhibits a very noisy estimate) and a lower sparsity
constraint at the end when the reconstructed estimate is already signif-
icantly denoised and deblurred.

IV. DATA SETS

To test our proposed solution, we have first used a N = 128 �
128 pixel (with 32 different grey level values) simulation of a brain
SPECT slice with a (relatively) realistic spatial distribution of the three
main anatomical tissue types (gray and white matter, cerebro-spinal
fluid) [Fig. 3(a)], obtained by reconstructing projections blurred by a
Gaussian smoothing filter to reproduce the effect of the uncertainty in
the exact location of a detected event, and then corrupted with Poisson
noise [15].

We also tested our technique on actual SPECT1 data, acquired from
a phantom consisting in a large plastic cylinder containing four vials
(of two different sizes) having different concentrations of a radioac-
tive isotope (99mTc) (see Fig. 4 for the radioactivity concentration).
Knowing both the geometry of the phantom and the radioactivity con-
centration within each subcompartment, we have generated a cross-sec-
tional “ground truth” (cf. Fig. 4) which will be compared, after regis-
tration, with the best reconstruction results obtained by the different
reconstruction techniques tested. These best reconstruction results will
be defined as the closest to ground truth reconstruction (in the SNR
sense) amongst the ones obtained from different values of 
, the regu-
larization (2), or the thresholding parameter (Algorithm 1).

1acquired on a triple-head camera (Picker Prism) equipped with low-energy,
high-resolution parallel-holes collimators. The projections over 360 were
simultaneously acquired using a 20% energy window centered on the 140
keV (126–154 keV) photopeak and a Compton window (111–125 keV) (the
Compton projections are subtracted, position by position, from the photopeak
projection (after scaling the Compton images to 40%), before reconstruction).
Acquisition time was 40 s/projection. Each SPECT data set contains 90 pro-
jections (obtained at equally spaced angles over 360 ) on 128 128 matrices
resulting in 1.86-mm isotropic voxels in the reconstructed volume.
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Fig. 1. Signal-to-noise (SNR) results for the synthetic phantom image pre-
sented in Fig. 4 with its degradation model as a function of the regulariza-
tion parameter . Maximal SNR value, respectively, GM: SNR = 11 53 dB
( = 0 14), GGMRF : SNR = 11 64 dB ( = 0 48), MEDIAN
: SNR = 11 55 dB ( = 0 07), ML-UDW : SNR = 11 48 dB ( =

0 11), ML-DCT: SNR = 11 89 dB ( = 0 62), ML-DCT :
SNR = 11 98 dB ( =3 29).

V. SETUP

Algorithm

We initialize each reconstruction method with a reconstructed image
obtained with a classical filtered back projection (FBP) algorithm. As
suggested in [16], we correct the zero-frequency component of the ini-
tial condition with a least-squares estimate directly from the data.

For the denoising step, in order to speed up the procedure (without
degrading the reconstruction results), we use an overlap of three pixels
for the sliding 8� 8 window and a random shift procedure for each
iteration of the algorithm (instead of considering all eight horizontal
and eight vertical shifts).

The convergence criterion of the proposed restoration procedure
is defined either as stability of the MAP energy E(x̂), i.e., [E(x̂[n])�
E(x̂[n�1])]=E(x̂[n]) � � where � is a threshold, typically set, in our
application, to 10�4, or as stability of the reconstructed image.

A. Comparisons and Validation Protocol

We have compared amongst themselves the following reconstruc-
tion models [compatible with the penalized ML-EM iterative method
presented in (2)]: the Gaussian Markov prior [17], the generalized
Gaussian MRF prior [16], [18], the Median Prior [19] and finally, our
DCT-based denoising strategy with and without the threshold cooling
schedule. We also compare this strategy with a denoising step using a
hard thresholding of undecimated discrete (redundant nonorthogonal
and shift invariant) wavelet (UDW) [20] coefficients (with three levels
of resolution) which seems to be one of the most promising wavelet
decomposition technique in the context of image denoising for optical
images [21]. The quantitative value we selected to compare the dif-
ferent algorithms is the SNR (and the resulting reconstructed image)
associated with the lowest MAP energy (or the lowest penalized ML
for the strategies using a denoising step).

For the first phantom, we have also done a bias/variance analysis of
each tested reconstruction strategy (see Fig. 2) by adding the weighted
(given by the empirical proportion) bias and variance obtained on each
class of the synthetic phantom. In the obtained bias/variance graphs, the
lower right hand corner of the plots corresponds to weak regularization

Fig. 2. Bias-variance reconstruction performance of each algorithm as a func-
tion of the regularization parameter .

(low bias with high variance), whereas the upper left hand corner cor-
responds to strong regularization (high bias with low variance).

VI. EXPERIMENTAL RESULTS

1) Results on Synthetic Images: Fig. 1 summarizes the different
SNRs obtained on the synthetic phantom as a function of the param-
eter 
 for, respectively, the Gaussian Markov prior (abbrev. GM), the
generalized Gaussian MRF prior with q = 1:1 (GGMRFq=1:1), the
median prior (MEDIAN), the ML-EM iteration using a hard thresh-
olding of undecimated wavelet coefficients and the proposed strategy
(ML-DCT) using a hard thresholding of DCT coefficients or a cooling
threshold schedule (ML-DCT Dec.). In Fig. 3 we give examples of the
best reconstructions (in the SNR sense) obtained with these different
prior models for this synthetic phantom. Quantitative comparison be-
tween these different reconstruction strategies are also given in Fig. 2
in terms of bias-variance tradeoff. Our DCT-based methods outperform
the other reconstruction technique in all cases.

2) Results on a Physical SPECT Phantom: In this experiment, as-
sessment of the results in terms of resolution can be made either by
visual comparison to the ground truth image (cf. Fig. 4) or by com-
paring the different SNR result obtained with the different reconstruc-
tion methods. Once again, we can see that our regularization strategy
performs very competitively, exhibiting low MSE error, high SNR re-
sults, and good reconstruction of shapes.

A. Discussion

As can be seen in Fig. 3, our DCT-based complexity regulariza-
tion strategy allows efficient preservation of the edges of the object
being evaluated and thus good recovery of the very small structures
of the phantom. This edge preserving property is achieved in the fre-
quency domain in a manner similar to that of the EM-UDWT method,
which uses a frequential nonorthogonal redundant wavelet-based de-
noising scheme. However, contrary to the wavelet denoising procedure,
which remains a global denoising process (achieved at each iteration of
the ML-EM algorithm), the proposed DCT-based denoising procedure
uses a semi-global strategy (or, more exactly, a local filtering on over-
lapping individual block of size 8� 8 pixels). This strategy is therefore
robust to nonstationarities of the object to be reconstructed and also
takes into account the nonstationarities of the noise process.

The improvement in term of SNR, MSE, or bias/variance reconstruc-
tion performance is especially visible where the object being evaluated
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Fig. 3. Top left: (a) Original SPECT phantom 128 128 synthetic phantoms
with a quantification of 32 different grey level values (totalizing 7 161 K total
counts). (b) GM: 11.53 dB. (c) GGMRF : 11.64 dB. (d) MEDIAN: 11.55
dB. (e) EM-UDWT: 11.48 dB. (f) EM-DCT : 11.98 dB.

is complex and contains small and/or complex structures (see Fig. 4
versus Fig. 3).

The ability of our algorithm to filter out the residual noise in the
reconstructed image (i.e., to decrease the variance within each structure
of the resulting reconstructed images, see Figs. 2 and 3) is also clearly
demonstrated. This is due to the result of the energy compaction of the
DCT coding.

Finally, the decreasing sparsity strategy based on a cooling threshold
schedule, frequently used in stochastic optimization [22], seems to be
well suited to prevent the EM reconstruction procedure from becoming
stuck in local minima. This gives a better chance of finding the best
reconstruction, i.e., the one closest to the emission tomographic model
(1) and with high sparsity property in the DCT domain.

To summarize, the above results from both synthetic and actual
SPECT images clearly show that our approach performs very com-
petitively as compared to, and is actually better than, the best existing
methods. The decreasing sparsity constraint strategy seems particu-
larly well suited to efficiently regularize the iterative EM tomographic
reconstruction process. Moreover, we have shown that better results
are obtained if the denoising step is made by a coefficient thresh-
olding in the DCT2 domain as compared to using a thresholding of

2For the implementation of this step, we have used the very fast 8 8 (FFT2D)
DCT package implemented in C code by Takuya Ooura (functions DDCT8X8S

tested in program SHRTDCT.C) and available online at the address given in [23].

Fig. 4. Top: Cross-sectional view of the phantom showing the concentration
of radioactivity within each of its subcompartments and cross-sectional
“ground truth” (in inverse video) of the ideal SPECT reconstruction. Bottom
left: Physical SPECT Phantom. Bottom right: EM-DCT re-
construction MSE = 313 42 (SNR = 7 70 dB) compared to GM:
MSE = 330 80 (SNR = 7 47 dB), GGMRF : MSE = 339 63

(SNR = 7 35 dB), MEDIAN: MSE = 330 72 (SNR = 7 47 dB),
EM-UDWT: MSE = 332 97 (SNR = 7 44 dB).

undecimated discrete (redundant) wavelet coefficients [20] (similar
conclusions have been arrived at with a soft thresholding operation).

The computational time of the DCT regularization strategy using the
above-mentioned fast DCT is negligible compared to the computational
time of a ML-EM iteration. Notice that the denoising step can be easily
implemented in parallel and that numerous fast very large scale inte-
gration (VLSI) chips exist for computing the DCT more rapidly.

VII. CONCLUSION

This paper has presented a simple algorithm based on a recursive se-
quence of ML-EM update and denoising operations combined with a de-
creasing threshold schedule in the DCT domain. The proposed method
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performs competitively when compared to recently reported Bayesian
reconstruction strategies, while being simple and fast to implement. The
same strategy with other basis functions (such as nonorthogonal redun-
dant wavelets) seems to yield less good results in the specific context of
SPECT tomographic reconstruction from projections.
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Extraction of Fetal Heart-Rate Signal as the Time Event
Series From Evenly Sampled Data Acquired Using

Doppler Ultrasound Technique

Janusz Jezewski*, Tomasz Kupka, and Krzysztof Horoba

Abstract—Analysis of variability of fetal heart rate (FHR) is very im-
portant in prediction of the fetal wellbeing. The beat-to-beat variability is
described quantitatively by the indices originated from invasive fetal elec-
trocardiography which provides the FHR signal in a form of time event
series. Today, monitoring instrumentation is based on Doppler ultrasound
technology. We used two bedside fetal monitors with different processing
methods for heartbeat detection and FHR signal determination: the au-
tocorrelation and cross-correlation techniques. Both monitors provide the
output signal in a form of evenly spaced samples. The goal of this paper
is to present a new method for the FHR signal processing, which enables
extraction of series of consecutive heartbeat intervals from the sampled
signal. The proposed correction algorithms allow recognition and removal
of the FHR signal distortions typical for fetal monitors—invalid and dupli-
cated samples. The correction efficiency has been verified based on the FHR
variability indices calculated for the sampled signal and the corresponding
event series. For both monitors, considerable influence of the signal repre-
sentation on indices values was noted. Concluding, we recommended im-
plementing these algorithms in fetal surveillance system as a preprocessing
stage for the determination of FHR variability indices.

Index Terms—Doppler ultrasound, fetal heart-rate (FHR) variability,
heartbeat events.

I. INTRODUCTION

Cardiotocography is an essential part of the present day perinatal
medicine that allows monitoring of the fetus and evaluation of its state
during pregnancy and labor. This method relies on recording of the
fetal heart-rate signal (FHR) in relation to the uterine contractions and
fetal movement activity. Based on a time interval Ti between two con-
secutive heartbeats, the instantaneous FHRi value is calculated and is
expressed in beats per minute (bpm). At the beginning of the 1970s,
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