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Statistical Background Subtraction Using Spatial Cues
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Abstract—Most statistical background subtraction techniques
are based on the analysis of temporal color/intensity distribution.
However, learning statistics on a series of time frames can be
problematic, especially when no frame absent of moving objects is
available or when the available memory is not sufficient to store
the series of frames needed for learning. In this letter, we propose
a spatial variation to the traditional temporal framework. The pro-
posed framework allows statistical motion detection with methods
trained on one background frame instead of a series of frames as is
usually the case. Our framework includes two spatial background
subtraction approaches suitable for different applications. The
first approach is meant for scenes having a nonstatic background
due to noise, camera jitter or animation in the scene (e.g.,waving
trees, fluttering leaves). This approach models each pixel with two
PDFs: one unimodal PDF and one multimodal PDF, both trained
on one background frame. In this way, the method can handle
backgrounds with static and nonstatic areas. The second spatial
approach is designed to use as little processing time and memory
as possible. Based on the assumption that neighboring pixels often
share similar temporal distribution, this second approach models
the background with one global mixture of Gaussians.

Index Terms—Background detection, motion detection.

I. INTRODUCTION

MOTION detection methods are used to locate the pres-
ence (or absence) of motion in a given animated scene.

A specific class of motion detection methods is the one meant
for video surveillance [1], traffic monitoring [2], and various
commercial applications [3] using a static camera. Because the
background is constant in time, a class of solutions that enjoys
tremendous popularity is the family of background subtraction
methods [4]. These methods are based on the assumption
that the animated objects to be segmented have different vi-
sual characteristics than the static background. As the name
suggests, the most intuitive background subtraction method
involves one background image and an animated sequence
containing moving objects [4]. In this case, motion is detected
by simply thresholding the intensity/color difference between
a frame at time and the background image [5], [6]. Although
the threshold can be estimated on the fly [7], [8] and locally
adapted [9], these methods are sensitive to phenomena that
violate the basic assumptions of background subtraction. For
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instance, noise induced by a low-quality camera or jitter caused
by an unstable camera are typical situations that can’t be han-
dled properly by simplistic background subtraction methods.
There are also numerous situations in which some background
objects are not perfectly static and induce local false positives.
This is the case, for instance, when a tree is shaken by the wind
or when the background includes animated texture such as
wavy water. Another common source of background variations
is when the global illumination is not constant in time and
alters the appearance of the background. Such variation can
be gradual, for example, when a cloud occludes the sun, or
sudden, when a light is turned on or off.

For all these scenarios, a more elaborate background sub-
traction strategy is required. In this perspective, many authors
propose modeling each background pixel with a probability
density function (PDF) learned over a series of training frames.
In this case, the motion detection problem often becomes a
PDF-thresholding problem. For instance, to account for noise,
some authors [10], [11] use a Gaussian distribution for each
pixel. Also, to account for unstable backgrounds, multimodal
PDF models have been proposed such as a mixture of Gaus-
sians (MoG) [2], [12], [13], kernel-based methods [1], [14],
and predictive methods [15], [16]. Let us also mention that
several block-based methods [17], codebook methods [18], and
statistical Markovian methods [19], to name a few, have been
proposed.

The main limitation of most traditional statistical solutions
is their need for a series of training frames absent of moving
objects. Without these training frames, a nontrivial outlier de-
tection method needs to be implemented [12]. Another limita-
tion of these methods is the amount of memory some require.
For example, in [2], every training frame needs to be stored in
memory to estimate the MoG parameters and, for some non-
parametric methods [1], [14] many frames need to be kept in
memory during runtime which may be costly memory-wise.

In this letter, we investigate a framework that uses one back-
ground frame to train statistical models (be they parametric or
not). Our aim for such a framework is fourfold:

1) reduce the number of frames (thus the amount of memory)
needed during the training period;

2) reduce the amount of memory required during the detec-
tion phase;

3) better deal with sequences having no training frames absent
of moving objects;

4) investigate how speed and memory can be improved in the
context of statistical background subtraction.

II. MOTIVATION

Two kinds of background variation may be identified. The
first one is variations due to noise typically induced by a low-
quality camera or by an environmental phenomenon, such as
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Fig. 1. Sample frame (top row), temporal histogram (middle row) and spatial
histogram (bottom row) for three test sequences: “Shaky camera” captured with
unstable camera (left column), “Boat” that includes animated texture modeling
water (middle column) and “Rain” that is an example of severe noise (right
column). The spatial histograms were calculated from 11 � 11 neighborhoods
while the temporal histograms were calculated from 90, 200, and 100 frames,
respectively. Note a good correspondence between spatial and temporal his-
tograms.

rain [see Fig. 1(c)]. In this case, the background is consid-
ered static and the intensity/color of a pixel at site and discrete
time is defined as where is an uncorrelated
noise variable and is the ideal noise-free background color
(or intensity) at site . In this case, the temporal distribution

is considered unimodal with expectation . The second
kind of variations is due to background movements caused, for
example, by an animated texture or by camera jitter. In this
case, the temporal distribution is often multimodal. But
whether the temporal distribution is unimodal or multimodal,
the goal is to estimate at every time instant a label field
(sometimes called a motion mask) containing the motion status
of each site (typically, when is motionless and

otherwise). Since each background pixel is modeled
by PDF , the detection criterion can be formulated as:

if

otherwise.
(1)

where the intensity of examined frame at time and is a
predetermined threshold.

In this letter, the goal is to use the same thresholding pro-
cedure and the same distribution functions proposed in the lit-
erature, but with different training data gathered inside a single
frame instead of a series of frames as is usually the case. The use
of spatial data is motivated by the fact that the color distribution
of a given pixel observed over a certain period of time is also
frequently observed spatially around that same pixel. For ex-
ample, in the case of background movements, considering that
variations are due to local movements, it can be assumed that
the distribution of in time is similar to a spatial distribution
around , i.e., where is a neighbor-
hood centered on . Fig. 1(a)–(b) shows that when a site is lo-
cally animated, the color/intensity distribution observed over a
certain period of time often corresponds to the distribution ob-
served locally around . As shown in Fig. 1(c), the same ob-
servation may also hold for unimodal distribution. In the next
sections, two spatial approaches will be presented. The first

one is designed to be robust to background movements while
the second one minimizes processing complexity and memory
usage during runtime.

III. ROBUST METHOD

As we mentioned previously, background variation may be
unimodal or multimodal. Unfortunately, with only one training
frame, determining whether the distribution of a site in time
is unimodal or multimodal is an ill-posed problem. In order to
overcome this, we use a decision fusion strategy. To this end,
each pixel is modeled by two PDFs: one unimodal PDF (that
we call ) and one multimodal PDF (called ), both being
trained on one background frame (see Section III-A for more
details on training). Having each pixel modeled by two PDFs,
the detection criterion may be formulated as follows:

if OR

otherwise.
(2)

Estimating with this equation turns out to be the same as
blending two label fields resulting from thresholding
and separately. The reader should be aware that this fu-
sion strategy is meant for sequences whose content is unknown
a priori. However, if the scene is known to have either a per-
fectly static background or camera jitter, only or may
be thresholded.

A. Spatial Training

In this section, we present how and can be trained on
data gathered inside a single background training frame .

1) Single Gaussian: As mentioned in Section I, can
be modeled by a single Gaussian distribution

(3)
where for grayscale sequences and for color se-
quences. Note that for color sequences, is a 3 3 variance-
covariance matrix that, as suggested by Stauffer and Grimson
[12], is assumed to be diagonal for efficiency. Since only one
training frame is available in this framework, and are es-
timated with data gathered inside a spatial neighborhood cen-
tered on site . Of course, the spatial data should be drawn from
a unimodal distribution that resembles the one observed tempo-
rally. Although some spatial neighborhoods of a scene have that
kind of unimodal distribution (neighborhood A in Fig. 2), others
are obviously multimodal (neighborhood C in Fig. 2) and cannot
be used for training as is. Thus, to prevent and from being
corrupted by outliers (such as gray pixels of the pavement near
C in Fig. 2), a robust function is used to weigh the influence
of each sample [20]. More specifically, the parameter esti-
mation can be expressed as

(4)

(5)
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Fig. 2. Sample frame from a sequence captured by a perfectly static camera.
While the temporal intensity distribution of pixelC is unimodal and centered at
intensity 254, the spatial intensity distribution around C is bimodal. Estimating
the Gaussian parameters with (4) and (5) leads to a distribution (in black) cen-
tered on the main mode, uncorrupted by the gray levels of the street.

where , is the variance. As suggested
by Huber [20], we use

if
otherwise (6)

where is a constant and denotes the Euclidean norm.
Clearly, with (6), as intensity/color of pixels in deviate from
those of the central pixel at , their contribution to the mean
and variance estimates diminishes. Note that global illumina-
tion variations can be compensated by updating and at
every time [10], [11] as follows:

(7)

(8)

for all such that , , and is the
so-called learning rate [2].

2) Mixture of Gaussians: A mixture of Gaussians is used
to model multimodal histograms such as those in Fig. 1(a)-(b)

(9)

where is a Gaussian similar to the one of (3), is
the weight of the Gaussian and is the total number of
Gaussians (between 2 and 5 typically). Thus, has

parameters to be estimated: , , and . To do so,
we use the well-known -means algorithm. In our framework,

-means takes as input for each pixel , the back-
ground pixels contained within the square neigh-
borhood . When the algorithm converges, the mean of
every cluster is known and every pixel has been as-
signed a class label . The covariance matrix and
the weight of each class can then be estimated from the
pixels having label . Note that the EM [21] algorithm
could eventually be used to refine these estimates.

As we mentioned for , the MoG parameters can be up-
dated at every frame to account for illumination variations. As
suggested by Stauffer and Grimson [12], at each time frame ,
parameters of the Gaussian that matches the observation can
be updated as follows:

(10)

(11)

(12)

for all such that , , where is 1 for
the Gaussian that matches and 0 for the other models.

3) Nonparametric Density Estimation: An unstructured ap-
proach can also be used to model multimodal distributions. We
propose a kernel-based density estimation inspired by the work
of Elgammal et al. [1]. The density at is estimated using

(13)

where is a kernel function, is the color-space index and
is a background image. As suggested by Elgammal et al. [1], we
implemented with a zero-mean, -variance Gaussian. In
this way, a single global 1-D lookup table with 256 entries can
be pre-calculated to allow speedup during runtime. The table
values are then accessed with the intensity difference

as index. Let us also mention that the background frame
used in can be updated at every time to account for

illumination variations as follows: .

IV. LIGHT AND FAST METHOD

Our light and fast method is based on two assumptions. The
first one stipulates that the background distribution is tempo-
rally stationary, i.e., is independent of in such a way
that (illumination variation
will be addressed later). In other words, the background is as-
sumed to be motionless. The second assumption stipulates that
the background is piecewise temporal ergodic in time i.e., com-
posed of piecewise constant regions for which spatial average
color equals its temporal and also its ensemble average [22].
This means that we assume that the average temporal color/in-
tensity of a pixel is the same as the average color of a uniform
region containing .

Here, we represent the background as a whole with a
Gaussian mixture of the form

(14)

where is a class label, is the
set of Gaussian parameters to be estimated, is the prior
probability of class , and is the background image from
which the mixture is estimated [21]. This equation stipulates that
each pixel is a member of a class with proportion
and likelihood .

This being said, can be segmented into regions of uniform
color (or intensity) by estimating a label field for which
takes a value in . In other words, it is possible
to assign one class to each pixel in such a way that every
pixel having label has a color that follows the Gaussian dis-
tribution . Since the color of a background pixel is
assumed to be constant in time (more or less a noise factor), its
class label is also assumed to be constant in time. Therefore,
the probability of observing color at time is well approx-
imated by where .
Thus, a consequence of our piecewise-ergodic assumption is
that the spatial noise within a class is assumed to be the same
as the temporal background variation (noise) of the pixels be-
longing to that class, i.e., . In this way,
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our method can model the background with a global mixture of
Gaussians as opposed to Gaussians [10] or

Gaussians [12] where is the total number of pixels.

A. Gaussian Parameter Estimation

In order to obtain a reliable estimate for (Gaussian mix-
ture parameters) and (label field) we use Pieczynski’s Itera-
tive Conditional Estimation (ICE) algorithm [23] since it allows
simultaneous estimation of and . The ICE algorithm can be
outlined as follows.

1) [Initialization Step] The parameters and the label field
are initialized with the -Means [24] algorithm.

.
2) [Stochastic Step] With a Gibbs sampler, a label field

is generated according to the posterior distribution
.

3) [Estimation Step] With a maximum likelihood estimator,
is recomputed based on and . In our implementa-

tion, and are computed with a classical empirical
mean and variance-covariance estimator for each class.

4) If , where is a fixed threshold, then
Stop. Else, and go back to the Stochastic Step.

Here, the posterior distribution is modeled after Bayes’ the-
orem

(15)

Assuming independence of given and

(16)

where is a Gaussian distribution
. As for , we use the simple

Potts model based on a Gibbs distribution of the form
where is a constant and

is an energy function that counts the number of sites
in the neighborhood with a label different than . In our
implementation, we use binary cliques linking site to its eight
spatial neighbors (second-order neighborhood).

B. Detecting Motion

Once the ICE algorithm has converged, we have in hand
both the -class Gaussian mixture parameters modeling the
background and the label field indicating to which class each
pixel has been assigned. Like most already-published motion
detection methods, we assume that the color distribution of the
moving objects is different from the background. In this way,
since each pixel is modeled by a global Gaussian distribu-
tion with parameters , we can expect that

when pixel in image is part of
the background and when pixel is
covered by a moving object. In this way, the detection criterion
may be formulated as

if

otherwise.
(17)

Fig. 3. ROC curves obtained for three sequences shown in Fig. 1.

Alternatively, for computational reasons, the Mahalanobis dis-
tance [10] can also be used as follows:

if

otherwise
(18)

where . To further
reduce processing times, for grayscale sequences, is
pre-calculated and kept in memory in a global look-up table.
Also, because empirically rarely goes above 32, we
pre-calculate and store it in a 2-D array allowing five
bits per pixel. To account for illumination variation, the back-
ground pixels may have their statistics updated at each time
[25].

V. EXPERIMENTAL RESULTS

The tests aim to evaluate the performance of our two spa-
tial methods compared to temporally trained methods. Three
temporal methods have been implemented which, respectively,
model every pixel with one Gaussian, a mixture of 3 Gaussians
and a nonparametric kernel summation. Each of these temporal
methods is trained on 15 to 80 frames depending on the se-
quence. A neighborhood of size between 11 11 and 15
15 has been used for our robust method and a number of classes

between 7 and 10 was used for the light and fast method.
Also, the threshold for every method has been varied to es-
timate the ROC curves of Fig. 3 and tuned to produce the best
possible results for the sequences presented in Figs. 4 and 5.
Also, , , , the learning rate was set to 0
for every sequence (thus exploiting statistics of a single frame),
and a simple 3 3 median filter was used to smooth out every
motion mask .

In order to gauge performance of our approach, sequences
with known ground truth have been used (see Fig. 6). The first
sequence is computer generated and exhibits a boat sailing on a
wavy sea. Since the pixels representing water are multimodal,
we used the kernel-based and MoG approaches to segment
the sequence. The second sequence shows a moving truck
filmed with an unstable camera making the background highly
multimodal. The MoG and the Kernel-based approaches have
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Fig. 4. Results for a 100-frame noisy sequence segmented with one Gaussian per pixel whose parameters have been spatially and temporally trained.

Fig. 5. Results for a 200-frame sequence with no frame absen of moving ob-
jects. A median filter was used to produce the background frame B.

been used again. The third sequence [Fig. 6(c)] with known
groundtruth, contains fixed background, strongly corrupted by
rain. For this sequence, three methods have been used to detect
motion: our light and fast method, our robust method with one
Gaussian, and a single-Gaussian temporal method similar to
Wren et al.’s [10]. Note that for this sequence, only the uni-
modal PDF has been used for the robust methods. For these
three sequences, ROC curves [21] have been generated and,
as it can be seen, the difference between the spatially trained
methods and the temporally trained methods is small. Note that
for the Shaky camera and Rain sequences, the percentages of
false positives and true positives have been obtained based on
hand-segmented ground truth images.

We also segmented a sequence having no training
frame without moving objects (see Fig. 5). The back-
ground frame used to learn the Gaussian parame-
ters was computed with a basic five-frame median filter:

. The reader should note
that, aside from the median filter, no outlier-detection method
has been used.

To evaluate the computational complexity, we ran the
methods on color and grayscale sequences of different sizes.
Here, the MoG mixes two Gaussians, the temporal kernel-based
method uses 30 training frames, and our light and fast method
uses 8 classes. As it can be seen in Table I, our light and
fast method is significantly faster, especially for grayscale
sequences for which look-up tables have been used to store

TABLE I
TABLES SHOWING RESPECTIVELY THE FRAME RATE AND THE MINIMUM

AMOUNT OF MEMORY NEEDED TO MODEL THE BACKGROUND

in memory (these processing rates include the
3 3 median filtering). Also, the minimum amount of memory
required to model the background is significantly smaller for
our light and fast method than for the other ones. Every pro-
gram has been executed on a 2.2-GHz AMD Athlon processor.

VI. CONCLUSION

In this letter, a novel spatial framework for the background
subtraction problem has been presented. Our framework is
based on the idea that, for many applications, the temporal
intensity/color distribution observed over a pixel corresponds to
the statistical distribution observed spatially around that same
pixel.

Our framework offers three main advantages. First, the sta-
tistical parameters can be learned with one background frame
instead of a series of frames as is usually the case for single-
Gaussian and the MoG model. This has the advantage of re-
quiring less memory and being more flexible in the presence of
sequences having no training frames without moving objects.
Second, as opposed to the kernel-based method, only one frame
(instead of ) is kept in memory at runtime. This again is a
major advantage memory-wise. Last, but not least, our frame-
work maintains the conceptual simplicity and strength of the
background subtraction methods it is based on. The detection
function, the adaptation to global illumination variations and the
statistical learning phase are implemented in a way that is very
similar to the one originally proposed in the temporal frame-
work. In spite of these advantages, our framework does have
one limitation. As we mentioned previously, our approach is
based on the assumption that the temporal distribution of a pixel



JODOIN et al.: STATISTICAL BACKGROUND SUBTRACTION USING SPATIAL CUES 1763

Fig. 6. (a) 20-frame synthetic sequence of a boat sailing on a wavy sea and (b) 90-frame sequence shot with an unstable camera. In each case, the MoG and the
kernel-based method have been used. Both were trained either temporally or spatially. (c) Results for a 100-frame sequence corrupted by rain segmented with one
Gaussian per pixel. The numbers in the lower right corner indicate the average percentage of false positives and true positives. These sequences are shown in Fig. 1.

can be approximated by a spatial distribution. Although this
assumption is true for many real-life scenarios, it nonetheless
fails to recognize “temporal textures” arising from a tempo-
rally periodic event such as a blinking light. To compensate for
this limitation, a specific updating scheme such as the one from
(10)–(12), would need to be implemented.

In summary, we have shown that results obtained with our
framework, on sequences with noise, camera jitter and animated
background are, for all practical purposes, similar to the ones
obtained with temporal methods.
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