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Iterative Classifiers Combination Model for Change
Detection in Remote Sensing Imagery

Rachid Hedjam, Margaret Kalacska, Max Mignotte, Hossein Ziaei Nafchi, and Mohamed Cheriet

Abstract—In this paper, we propose a new unsupervised change
detection method designed to analyze multispectral remotely
sensed image pairs. It is formulated as a segmentation problem
to discriminate the changed class from the unchanged class in
the difference images. The proposed method is in the category of
the committee machine learning model that utilizes an ensemble
of classifiers (i.e., the set of segmentation results obtained by
several thresholding methods) with a dynamic structure type.
More specifically, in order to obtain the final “change/no-change”
output, the responses of several classifiers are combined by means
of a mechanism that involves the input data (the difference image)
under an iterative Bayesian–Markovian framework. The proposed
method is evaluated and compared to previously published results
using satellite imagery.

Index Terms—Change detection, classifiers combination, image
fusion, multispectral multitemporal image analysis, remote sens-
ing imagery.

I. INTRODUCTION

W ITH the increasing availability of remotely sensed data,
there has been substantial interest in change detection,

locating areas that may have changed in order to monitor the
differences over time [1]–[3].

Change detection involves the analysis of bitemporal images
acquired over a same geographical area at two different dates,
or multitemporal images acquired at multiple dates (i.e., time
series), in order to identify change that occurred over the time
period considered. Change detection is often addressed through
one of two approaches, namely, supervised approach and un-
supervised approach. The former requires a temporal reference
data for the training phase [5], [6], whereas the latter is based on
a direct comparison of the images considered without additional
prior information [2], [7]–[9]. Depending on the final goal of the
application, there are methods for the detection of several types
of changes (i.e., multiple-change detection) [7], [8], [10] and
methods for the detection of one type of change (i.e., binary
change detection, i.e., change or no change) [2], [11].
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The majority of the unsupervised binary change detection
techniques are based on the analysis of a “difference image”
or “change index” generated from two images acquired at two
different times [7] (see Fig. 1). There are different ways to
generate the difference image according to the nature of the
input images [e.g., optical, synthetic aperture radar (SAR) and
longwave hyperspectral]. In the analysis of multispectral im-
agery, one of the most popular ways to compute the difference
image is by change vector analysis [1], in which, for each pair
of corresponding pixels, a “spectral change vector” is computed
as the difference between the feature vectors at the two times.
Then, the pixel values in the difference image are associated
with the modules of the spectral change vectors. The result is
that the gray-level values of the changed pixels are larger than
those of the unchanged pixels [2]. Other techniques such as
image ratioing based on the ratio between bitemporal images
are also often used to generate the difference image as well
[1]. Meanwhile, if the input images are SAR images, which
are affected by multiplicative speckle noise, the log-ratio op-
erator between the bitemporal images is preferred [12]. Binary
change detection techniques aim to discriminate the pixels in
the difference image into regions associated into “changed”
and “unchanged” classes. These techniques are mostly based
on statistical modeling and thresholding [13]–[15], clustering
[16], fusion based [17], [18], and level set based [4], [19].

The method we propose in this paper belongs to the category
of fusion-based methods dealing with the difference image
generated from bitemporal multispectral images. The aim is to
combine (fuse) several binary maps (obtained by performing
simple thresholding techniques on the difference image) in
order to generate a final more accurate binary map, which we
expect to be more accurate than the various input maps indi-
vidually. This is motivated by the challenge of determining an
optimal threshold [13], [18], [20]: the first is the lack of training
samples (ground truth), and therefore, no prior information is
available to accurately guide the thresholding; the second is the
local validity of the thresholds, due to the specific characteris-
tics of the observed image, which makes it difficult to design
generic thresholding algorithms specifically adapted even for
one category of images. The concept of combining classifiers
for the improvement of the performance of individual classifiers
is known in image processing [21] and machine learning fields
[22] as a committee machine or a mixture of experts. In the
context of machine learning, Dietterich [22] has provided an
accessible and informal reasoning, from statistical, computa-
tional, and representational viewpoints, of why ensembles can
improve results. As stated in [23], despite the fact that the clas-
sifiers to be combined are indistinguishable from their training
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Fig. 1. Riyadh data set is a true-color composite image subset to a size of 430 × 401 pixels acquired over the region of Riyadh, Saudi Arabia, by the IKONOS
sensor [4]. (a) Image acquired in February 2006. (b) Image acquired in October 2006. (c) Difference image. (d) Ground truth.

error (resubstitution), they may have different performance of
generalization. Thus, instead of selecting a single classifier, it
is beneficial to utilize all of them and then use the “average”
of their outputs. It results that the obtained classifier could
not be better than the best single classifier, but we reduce or
eliminate the risk of selecting an inappropriate single classifier.
It is accepted in machine learning to combine classifiers drawn
from the same model family (i.e., homogeneous classifiers) [24]
or from different (heterogeneous) models [25]–[27].

The proposed change detection method is formulated as a
fusion problem of multiple segmentations generated from het-
erogeneous classifiers to discriminate the changed class from
the unchanged class in the difference images. Therefore, since
the single classifiers to combine are heterogeneous, some of
them rely on the hypothesis of distribution and others do not;
our attention is directed to the fusion model which is fed
by their outputs (labels), rather than going into details about
of each of them. Nevertheless, we limited ourselves to study
the influence of the input classifiers all together (the average
precision and their diversity) on the accuracy of the estimated
change/no-change segmentation. Our fusion decision model is
in the category of the committee machine learning model that
utilizes an ensemble of classifiers (i.e., the set of segmenta-
tion results) with a dynamic structure type. In this class of
committee machines, the responses of several classifiers are
combined by means of a mechanism that involves the input data
(or original image), contrary to the static structure-type-based
mixture of experts, which only uses the set of segmentation
maps, as the case in [18]. In other words, in order to empower
the fusion accuracy, we propose a new iterative strategy of
combining the results of different thresholding algorithms while
taking into account the statistical characteristic of the input
difference image. Henceforth, let us use the term segmentation
(i.e., into two classes, namely, “change” and “no-change”)
instead of thresholding result. The proposed method is based
on the following hypothesis: the estimated segmentation is
assumed to be more accurate than all other input segmentations
individually, and more accurate input segmentations lead to
a better estimated segmentation. Motivated by that, a new
iterative scheme of segmentation is proposed. It consists of
three iterative steps. The first step consists in stacking the input
segmentations provided by different algorithms; in the second
step, a new segmentation is estimated from the difference image
and the input segmentation set, and the third step is to update the
input segmentations. In the update step, the input segmentation

Fig. 2. Proposed iterative model of “change/no-change” segmentation method.
The step’s numbers are between “<” and “>.” The sign “:=” means “replaced
by.” “[]” means “empty.”

that contributes the least to the segmentation process will be
replaced by the new estimated one. The three steps are carried
out iteratively until a stopping criterion is reached, as illustrated
in Fig. 2. The contribution of each input segmentation can
be defined by its specificity and sensitivity by evaluating it
to the estimated segmentation. More details will be given in
Section II.

The remainder of this paper is organized as follows.
Section II describes the mathematical formulation of the pro-
posed iterative fusion model; the description of the data sets
used for the evaluation of the proposed method and the experi-
ment output and evaluation are given in Section III, and finally,
our discussion and conclusion are provided in Section IV.

II. PROPOSED METHODOLOGY

A. Problem Formulation

Given X1 and X2, i.e., two d-dimensional coregistered/
calibrated multispectral remote sensing images of m pixels
each (we use a vector form for a simple notation) acquired
over the same geographical area at two different dates. Let
XD of dimension d be the multispectral difference image
obtained from X1 and X2 as follows [8]: Xi

D = Xi
1 −Xi

2, i =
1, . . . , d. The final image used for the analysis, which is denoted
by X, is, thus, the modulus image computed from XD as
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Fig. 3. Graphical illustration of the probabilistic model of “change/no-change”
segmentation. (a) Coarse illustration. (b) Compact illustration.

follows: X = [(X1
D)

2
+ (X2

D)
2
+ · · ·+ (Xd

D)
2
]
1/2

. Let B =
{Bj|Bj = {Bij ; i = 1 . . .m; j = 1 . . . s}} be a set of s input
segmentations estimated by performing the different thresh-
olding algorithms on X. Therefore, B can be considered as
a cube of input segmentations of size m×s, in which Bi=
(bi1, . . . , bis) denotes the ith binary vector. The aim of the pro-
posed method is to estimate, from X and B, a new binary
image, i.e., Y = {Yi; i = 1 . . .m}, where each pixel Yi is as-
signed to one of two information classes, i.e.,{1, 0}=”change, ”
”no-change”}. The class “change” represents the changes that
occurred between two acquisition dates of the two multitem-
poral images, and “no-change” represents the unchanged areas.
Fig. 3 graphically illustrates the proposed model.

Let us define the joint probability linking X, Y, and B as
follows:

p(Y,X,B) = p(Y|X,B)p(B|X)p(X)

=
s∏
j

p(Y|X,Bj)
s∏
j

p(Bj |X)p(X)

∝
s∏
j

p(X|Y)p(Y|Bj)

s∏
j

p(Bj |X)p(X)

∝ p(X|Y)p(X)

s∏
j

p(Y|Bj)

s∏
j

p(Bj |X). (1)

Without loss of generality, let us associate a real-valued
weight (λ) to the conditional probability p(X|Y) [28]. Through
this, we want to encourage, with a certain weight, the fidelity of
Y to the difference image X, whereas the estimation process of
Y is made from the input segmentations {Bj , ∀ j}. Hence, (1)
can be developed as follows:

p(Y,X,B) ∝ p(X|Y)λp(X)
s∏
j

p(Y|Bj)
s∏
j

p(Bj |X). (2)

As X is known and {Bj; ∀ j} are already obtained by dif-
ferent thresholding algorithms, the quantity p(X)

∏s
j p(Bj|X)

is a constant. Consequently, (2) can be written as

p(Y,X,B) ∝ p(X|Y)λ
s∏
j

p(Y|Bj)

∝ p(X|Y)λp(Y|B). (3)

What we are looking for is to find out Ŷ, which maximizes
the joint probability p(Y,X,B), or its logarithm, i.e.,

Ŷ = argmax
Y

log p(Y,X,B)

= argmax
Y

log p(X|Y)λp(Y|B)

= argmax
Y

{
log p(X|Y)λ + log p(Y|B)

}

= argmax
Y

{λ log p(X|Y) + log p(Y|B)} (4)

where p(X|Y) stands for the likelihood or conditional proba-
bility of a pixel given the parameters of the class, and p(Y|B)
stands for the posterior probability estimation of Y given the
thresholding maps.

It is of interest to show that the proposed model consists of
estimating the final segmentation “change” and “no-change”
from both the set of thresholding maps {Bj; ∀ j} and the
difference image X with a certain weight.

B. Estimation of p(Y|B)

A new binary image Y can be estimated from a set of
threshold maps B = {Bj}, and it is derived as [29]

p(Y|B) ∝ p(B|Y)p(Y) =
∏
i

⎛
⎝∏

j

p(Bij |Yi)p(Yi)

⎞
⎠ (5)

where p(Yi) is the prior probability of Yi. For a given pixel i,
we have

p(Yi|Bi) ∝
∏
j

p(Bij |Yi)p(Yi) (6)

which is the conditional probability of the pixel i to be assigned
a label Yi (1 or 0). Since the change detection problem is treated
as a binary random variable, thus

p(Yi = 1|Bi) =
p(Yi = 1,Bi)

p(Bi)

=
α

α+ β
= ωi (7)

p(Yi = 0|Bi) = 1− p(Y = 1|Bi)

= 1− α

α+ β

=
β

α+ β
= 1− ωi (8)

where α and β are derived under the hypothesis that the
thresholding maps are generated independently and are defined
as follows:

α = p(Bi|Yi = 1)p(Yi = 1)

=
∏
j

p(Bij |Yi = 1)p(Yi = 1) (9)

β = p(Bi|Yi = 0)p(Yi = 0)

=
∏
j

p(Bij |Yi = 0)p(Yi = 0). (10)

The weight ωi stands for the conditional probability that
the pixel i belongs to class 1. Similarly to the simultaneous
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truth and performance level estimation algorithm [29], each
thresholding map Bj contributes to the final estimation (i.e.,
likelihood) of “change/no-change” detection based on its per-
formance in terms of sensitivity or “true positive (TP) fraction,”
which is denoted by pj , and specificity or “true negative (TN)
fraction,” which is denoted by qj . Therefore, their likelihood
terms are respectively defined as

p(Bij |Yi=1) = pjδ(Bij , 1)+(1−pj) (1−δ(Bij, 1)) (11)

p(Bij |Yi=0) = qj (1−δ(Bij, 0))+(1−qj)δ(Bij , 0) (12)

where δ(a, b) is equal to 1 if a = b; otherwise, it is 0. The
sensitivity and the specificity are respectively defined by

pj =

∑
i δ(Bij , 1) · δ(Yi, 1)∑

i δ(Yi, 1)
(13)

qj =

∑
i δ(Bij , 0) · δ(Yi, 0)∑

i δ(Yi, 0)
. (14)

Therefore, ωi is a normalized product of p(Yi = 1), which
is the prior probability that a pixel belongs to class 1, the
sensitivity of each thresholding map that leads to a “change”
pixel and the product of the specificity (i.e., 1-sensitivity) of
each thresholding map that leads to a “no-change” pixel.

C. Estimation of p(X|Y)

p(X|Y) stands for the likelihood of X given Y i.e., the
intensity distribution of the classes “change” and “no-change.”
The latter are defined by an initial segmentation provided
by the majority voting (MV) algorithm applied on the input
segmentation set {Bj , ∀ j}. These two classes can be modeled
as random processes, which are, in turn, modeled by fitting a
mixture of suitable distribution functions over the histogram of
the difference image X. We have noticed that, in general, each
difference image X follows a specific probability distribution
function, as will be detailed in Section III.

D. Regularization of Segmentation

As expected, some difference images have substantial noise.
Therefore, small isolated regions can be generated within each
segmented area due to a misclassification error caused by the
influence of the noise. Morphological operations can be applied
to remove those isolated small regions (sieving). As an alter-
native solution, in this work, we propose to incorporate prior
information about the neighboring of the labeled pixels using
Markov random fields (MRF) [30]. The latter aims to model
the spatial interaction between the labeled pixels to encourage
the neighboring pixels to have the same label.

First, let us introduce “theoretically” a segmentation Y0

(which, in practice, designates exactly Y, as illustrated in
Fig. 4). The updated segmentation model can be reformulated
as follows:

p(Y,Y0,B,X) = p(Y|Y0,B,X)p(B|X)p(X)

= p(Y0|Y)p(Y|B,X)p(B|X)p(X)

= p(Y0|Y)p(X|Y)λp(Y|B)p(B|X)p(X).
(15)

Fig. 4. Graphical illustration of the probabilistic model of “change/no-change”
segmentation.

Since X and B are known at the beginning of each iteration
and do not depend on Y, p(X) and p(B|X) can be neglected
(because their product results in a constant). Thus, the model
(15) can be reduced to

p(Y,Y0,B,X) ∝ p(Y0|Y)p(X|Y)λp(Y|B) (16)

where p(Y|B) and p(X|Y)λ are defined earlier in Sections II-B
and C, respectively. Assume that, in some situations, the pos-
terior probabilities will not deviate dramatically from the prior
probabilities [31], particularly when dealing with noisy data. In
such a situation, p(Y0|Y) can be defined as

p(Y0|Y) = (1 + δY0Y) p(Y0) (17)

where δY0Y satisfies δY0Y � 1. Substituting (17) into (15)

p(Y,Y0,B,X)=(1+δY0Y) p(Y0)p(X|Y)λp(Y|B). (18)

Similarly to what has been previously said, we are searching
for Ŷ, which maximizes the joint probability p(Y,Y0,B,X),
or its logarithm, i.e.,

Ŷ = argmax
Y

log p(Y,Y0,B,X)

= argmax
Y

log (1 + δY0Y) p(Y0)p(X|Y)λp(Y|B)

= argmax
Y

{log (1 + δY0Y) + log p(Y0)

+ log p(X|Y)λ + log p(Y|B)
}

= argmax
Y

{log p(Y0) + λ log p(X|Y) + log p(Y|B)} .
(19)

It is worth noting that the factor (1 + δY0Y) is removed from
(19) because it can be assumed as a constant. As aforemen-
tioned, in practice, Y0 means exactly Y (see Fig. 4). Therefore,
(19) can be written as follows:

Ŷ = argmax
Y

log p(Y,B,X)

= argmax
Y

{log p(Y)+λ log p(X|Y)+log p(Y|B)} . (20)

E. Prior Model P (Y)

In order to favor homogeneous regions in the segmentation
output, contextual spatial information of the segmented image
is integrated in our model. In this paper, we resort to an MRF-
based isotropic prior p(Y), which consists of modeling the
class label Y and biasing the neighboring pixels to have the
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Fig. 5. Eight difference images used for change detection. (a) Po. (b) Trentino. (c) Mina. (d) Riyadh. (e) Knee. (f) Merzières-en-Brenne. (g) Dashte Nawur.
(h) El Dorado.

same labels [30]. The Hammersly–Clifford theorem shows that
Y is an MRF (associated with a neighborhood system) if P (Y)
follows a Gibbs distribution [30], which is defined by

P (Y) =
1

Z
exp [−E(Y)] . (21)

The choice of p(Y) is always crucial, mainly to ensure a
good reconstruction of the region boundaries. Simplest MRFs
use the Ising model [30] with the following form:

E(Y) =
∑
i

∑
j∈Ni

β (1− δ(Yi, Yj)) (22)

where Yi and Ni are the label and the set of neighboring
pixels of the pixel i, respectively; δ(a, b) is equal to 1 if a = b;
otherwise, it is 0; and β is a constant. It is worth noting that the
model expressed by (22) is isotropic, and therefore, it wrongly
assumes an isotropic regularity on the region boundaries. In
order to favor homogeneous regions while preserving their
boundaries, the energy term in (22) is made dependent on the
local gradient (intensity change) of the input difference image
as follows:

E(Y) =
∑
i

∑
j∈Ni

βφ (Xi)(1 − δ(Yi, Yj)) (23)

where φ(Xi) consists of controlling the effect of the Ising
regularization term dependently on the degree of gradient mag-
nitude at pixel i. To achieve this, the following formula is
used [32]:

φ(Xi) =
1

1 +
(

‖∇i‖
k

)2 (24)

where ‖∇i‖ is the magnitude of the gradient at pixel i, and k is
a positive factor controlling the magnitude of this effect.

Finally, the proposed problem in (20) is handled with the
deterministic iterative conditional mode algorithm [33], which
converges to a local minimum depending on the initialization.
In this paper, the initial configuration is provided by the totality
voting rule applied on the set of initial segmentation images.

III. DATA SETS AND EXPERIMENTAL RESULTS

A. Data Set Description

Eight satellite images are used for the validation of the
proposed iterative change detection model (see Fig. 5). These
data sets are acquired by different sensors and present different
kinds of change. The description of each data set is given in
Table I.

The difference images of Po and Trentino with the corre-
sponding ground-truth images have been provided by Melgani
and Bazi [18], [34] (the original bands were not provided; thus,
our algorithm is performed directly on the provided differ-
ence image). The Mina and Riyadh data sets, which are true-
color composites, and their ground-truth images are provided
by Hichri et al. [4]. They are coregistered after having been
downscaled to 8 bits. Their difference images are computed
as indicated in Section II-A (i.e., all the channels R, G,
and B are considered). The remaining data sets (Knee,
Mezières-en-Brenne, Dashte Nawur, and El Dorado) contain
eight bands each. The coastal aerosol band (band 1) is not used
because it is not present in the other sensors examined here
(i.e., Landsat TM5, ETM+, and IKONOS). These data sets
were first radiometrically calibrated (to radiance) in ENVI 5.3
and atmospherically corrected using the FLAASH module of
ENVI 5.3. Based on the spectral signatures of specific land
covers/materials, before calculating the difference image, a
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TABLE I
BRIEF DESCRIPTION OF THE DIFFERENT DATA SETS CONSIDERED

Fig. 6. Dashte Nawur data set. (a) Map showing the location of Dashte Nawur in Ghazni Province in Afgahanistan. (b) Its true-color composite. (c) Visualization
of the 3-D space of spectral features of three Regions of interests (ROIs): snow, soil, and water. Each point in the feature space represents an ROI pixel, and the
axis is in units reflectance. (d) Plot of the ROIs’ mean reflectance.

forward feature selection technique (in MATLAB 2014a) is
used to select a subset of bands from each data set accord-
ing to some training samples picked from the classes cloud,
snow/ice, soil, and vegetation (an example is shown in Fig. 6).
The selected bands for each data set are as follows: Knee
{Blue (band 2), Green (band 3)}, El Dorado {Red (band 4),
SWIR 1 (band 6)}, Dashte Nawur {Blue, Green, SWIR 2
(band 7)}, and Mezières-en-Brenne {Red, SWIR 1, SWIR 2}.
Finally, the difference images are computed as indicated in
Section II-A according to the selected bands.

The ground truths are used to measure the performance of the
segmentation output in terms of percentage of error rate PE ,
percentage of false alarm rate PF , and percentage of missed
alarm rate PM . PE is the most important measure compared
with PF and PM [18]. Let us define the following: N0 and N1

are the number of “change” and “no-change” pixels in the
ground truth, respectively. TP (true positive) is defined to occur
when the pixel is labeled as “change” and the ground truth as
well. FP occurs if the pixel is labeled “change” when the ground
truth is “no-change.” FN occurs when the pixel is labeled “no-
change” but the ground truth is “change.” Therefore, PE =

(TP + TN)/(N1 +N0), PF = (FP/N1)× 100, and PM =
[FN/N0]× 100.

In addition to those measures, we have used two other im-
portant measures well known in the domain of remote sensing
and information retrieval, which are Fm (F-measure) [35] and
Kappa coefficient, i.e., Kap [36]. Fm=(2×R×P )/(R+P ),
where R=TP/(TP+FN), and P = TP/(TP + FP). The Kappa
coefficient [36] is well known in the domain of remotely sensed
hyperspectral image classification. Its purpose is to give the
reader a quantitative measure of the magnitude of agreement
between observers. The calculation is based on the difference
between how much agreement is actually present (“observed”
agreement Po) compared with how much agreement would be
expected to be present by chance alone (“expected” agreement
Pe): Kappa = (Po−Pe)/(1−Pe), where Po = (TP + TN)/
(N0+N1), and Pe=[(n1/n)×(m1/n)] + [(n0/n) ∗ (m0/n)],
with n=N0 +N1, n1 = TP + FP, n0 = FN+TN, m1=TP +
FN, and m0=FP+TN. In contrast to PE , PF , and PM , higher
values of F-measure and Kappa mean better performance.

To the best of our knowledge, there is no optimal distribution
for each class of the difference image histogram (see Fig. 7) for
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Fig. 7. Histogram distributions of the eight difference images used in the experiment. (Left to right) Po, Trentino, Mina, Knee Lake, Merzières-en-Brenne, Dashte
Nawur, and El Dorado Lake.

the optical data. The image distribution modeling and fitting
problem has been addressed in the literature. The study in [15]
proposed to use the Gamma distribution to model the image
classes for change detection in optical remote sensing images;
the study in [11] proposed to use a mixture of Rayleigh–Rice
for change detection in optical remote sensing; the study in
[37] proposed to use a mixture of Gaussian–Weibull for sonar
image segmentation, among others. In our case, the generalized
extreme value (GEV) model has been used because of its
flexibility. It generalizes and combines the Gumbel, Frechet,
Weibull, Rayleigh, and exponential distribution families. In
order to improve the segmentation accuracy, it is better to fit
the histogram of each difference image to the GEV distribution,
which is a suitable statistical distribution.

Therefore, the joint probability P (X|Y), which stands for
the likelihood term, is computed deceptively to the input dif-
ference image. Experimentally, the two classes “change” and
“no-change” can be modeled as a random process, which is, in
turn, modeled by fitting a mixture of GEV distribution function
over the histogram of the difference image X. In addition, we
would like to recall that our fusion model is in the category
of the committee machine learning model combining a set of
segmentation results with a dynamic structure type. It means
that the initial input segmentations are combined by means of
a mechanism that involves the input data (or original image),
in our case, with a likelihood fitting model using GEV model.
Thus, the GEV model is a part of our fusion model. The interest
of using a fusion model, with a dynamic structure type, and
a likelihood fitting model using GEV model is (empirically)
demonstrated, in terms of classification result (by comparison
with other methods).

B. Initial Input Segmentations

Six thresholding algorithms are used to produce six ini-
tial input segmentations. These algorithms are as follows:
1) Abutaleb [38], where the optimal threshold is selected by
maximizing the sum of the posterior entropies of two classes;
2) “Intermodes” [39], where the histogram is iteratively
smoothed until only two peaks remain (the threshold being the
midpoint of the two peaks); 3) Kapur [40], where a threshold is
chosen such that the entropies of distribution are maximized;
4) Kittler [41], which assumes a Gaussian mixture model in
order to determine the optimal threshold; 5) Shanbhag [42],
which is also based on an entropy measure; and 6) Yen [43],
where the optimal threshold is chosen so that a correlation
criterion is maximized. We have found that, in general, for each
image, there is one or two input segmentations that are very
different from others. These input segmentations are considered
as outliers and must be discarded from the ensemble because

TABLE II
RELATIONSHIP BETWEEN λ AND THE MEAN SIMILARITY

OF THE INPUT SEGMENTATION SET

they may impede the achievement of good results. The sign “/”
in Table III means that the corresponding input segmentations
are not considered in the segmentation process. In this paper,
we have proposed a simple automatic technique to detect only
one outlier image (but nothing prevents discarding more than
one). This technique consists in comparing, in terms of Kappa
(Fm can be used as well), all the input segmentations to that
produced by the MV algorithm, and then discarding the one
with the lowest Kappa. As shown in Table III, the Kittler and
Illingworth thresholding algorithm, for example, is the one that
produces the least similar binary input segmentation of Po;
therefore, it will not be taken into account in the segmentation
process.

C. Parameter Sensitivity

The proposed segmentation model is guided by two parame-
ters: 1) λ, which is related to the likelihood term [cf., (20)]
and thus controls the contribution of the difference image X
in the estimation of Y, and 2) β, which is linked to the prior
term [cf., (23)] and therefore controls the smoothing of the
segmentation output. In order to show the sensitivity of the
proposed segmentation model to these two parameters, a series
of experiments are carried out by changing their values. The
optimal value of β is equal to 1. In this paper, we consider the
parameter λ as the most important as it concerns the contribu-
tion of the difference image in the segmentation process. We
made from λ a factor that can be learned dependently from
the input segmentation set. In this paper, we have attempted
to study the relationship between λ and the cross correlation
(or the total mean similarity) between the input segmentations
provided by the different thresholding algorithms. In this paper,
we have used the Kappa measure (F-measure can be also used)
to compute the mean similarity between all the possible couples
of input segmentations set. We have found that the optimal
parameters of λ strongly correlate negatively (−0.98) with
the mean similarity measure. In other terms, λ is inversely
proportional to the mean similarity of the input segmentations,
and this means that the difference image X is considered
strongly in the segmentation process if the similarity of input
segmentations is low, and vice versa. Table II demonstrates
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Fig. 8. Evolution of the F-measure (Fm) as a function of the number of segmentations (s) to be fused. (Left to right) Po, Trentino, Mina, Riyadh, Knee Lake,
Merzières-en-Brenne, Dashte Nawur, and El Dorado Lake.

TABLE III
PERFORMANCE (IN %) COMPARISON IN TERMS OF FM, KAPPA (KAP), PE , PF , AND PM

the relationship between λ and the mean similarity within the
input segmentation set of each data set. Further analysis on this
issue will be conducted in future works. We can also notice
that, in general, a higher number of initial segmentations (s)
leads to better performance. This is shown in Fig. 8 (here,
only the F-measure is shown due to space limitations). This
experiment demonstrates the validity of our fusion procedure
and the performance measures obtained by the proposed change
detection model.

D. Results and Evaluation

The proposed method is compared with the following: 1)
the ensemble of thresholding algorithms used to produce the
initial input segmentations; 2) some similar fusion-based meth-
ods: the well-known majority voting rule (MV) [44]; Fusion-
MRF [18], which is based on fusing multiple thresholding
outputs; Fusion of clustering Results (FCR) [47], which is

based on the within-cluster fusion; Probabilistic Rand index
based Fusion (PRIF) [49], where the fusion of segmentations
is achieved in the probabilistic random index sense; variation
of information based fusion model (VOIBFM) [21], where the
fusion of segmentation is performed according to the variation
of information criterion; and F-measure based fusion model
(FMBFM) [48], where the segmentation is performed based
on F-measure; and 3) some non-fusion-based methods as well:
Bazi et al. [45], Bruzzone and Prieto [2], Level-Set Chan-Vese
[46], Multiresolution level set (MLS) [19], SVM-MLS [4], and
Multilevel Markov random fields (ML-MRF) [15].

Table III presents, in percentage, the performance of the
different methods. The sign “/” means that the correspond-
ing input segmentation is not considered in the combination
process, and the sign “-” means that the image has not been
tested by the corresponding algorithm for two reasons: either
the original bands of that image are not available (we have
only the difference image), and therefore the algorithm is not
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Fig. 9. Average performance over eight images processed by the different
methods. (a) (hashed) Mean Fm and (solid) mean Kappa. (b) Mean PE . (Other
methods are not considered because of the two reasons aforementioned in the
beginning of this subsection).

applicable, or the code of the algorithm is not available (for
example, Po and Trentino are not processed by the algorithm
ML-MRF [15] because ML-MRF is designed to perform on
the original spectral bands, which are not available). From this
table, two points can be emphasized. First, the proposed method
outperforms, in general, all the ensemble of theresholding algo-
rithms (used to generate the initial segmentations to be fused),
particularly in terms of Fm, Kap, and PE , and this confirms
the validity of our hypothesis postulating that the segmentation
estimated by the proposed method should be more accurate than
all the initial segmentations individually. Second, the proposed
method outperforms all the other fusion-based and non-fusion-
based (level-set-based and MRF-based) methods, particularly
in terms of Fm, Kap, and PE (the most important metrics).
Since the proposed method is better in terms of PE and PF than
in terms of PM , this means that it is able to avoid the detection
of wrong change (i.e., false positive), but it fails to detect some
real change (i.e., true positive). A possible reason is that some
isolated changed pixels are affected by the MRF smoothing
effect. On some data sets, some simple thresholding algorithms
can perform better than recent methods. For instance, the Inter-
modes algorithm outperforms other literature methods on the
Po image in terms of PE (i.e., PE = 1.8; this is not strange
since there are some indications in the literature that very
simple rules may achieve surprisingly high accuracy on many
data sets [50]). In terms of generalization power, the proposed
methods outperforms the literature methods (see Fig. 9).

It is also important to report the performance of the segmen-
tation model over the iterations. From Fig. 10, we can remark
that, over the iterations, Fm (for instance) increases as expected.
This means that the segmentation quality is improving from
one iteration to the other. The question that may arise is how
many iterations are needed to reach the maximum performance
of segmentation. Theoretically, the accuracy of the estimated
segmentation is always increasing as long as the model is fed by
good segmentations at each iteration. In this work, we have set,
empirically, the number of iterations to be equal to half the total
number of initial thresholding images plus one, i.e., 6/2+1=4.
We have found that, beyond that number of iterations, the
performance does not change significantly, as shown in Fig. 10.

From the aforementioned results, we can conclude that the
hypothesis on which the proposed model is based is exper-
imentally validated, i.e., almost, the estimated segmentation
is better than all initial segmentations, and a good initial set
of segmentations leads to better final segmentation. This can

be achieved due to the contribution of several factors: 1) the
outliers detection and rejection from the initial segmentation
set; 2) the fitness of the intensity distribution of difference
images to their appropriate statistical functions; 3) the incor-
poration of the MRF-based regularization; 4) the contribution
of the difference images in the segmentation is based on their
consistency and self-similarity; and 5) the benefit provided by
the iterative scheme of the segmentation model.

E. Influence of the Quality of the Input Segmentation Set

We have attempted to analyze the accuracy of change detec-
tion output, i.e., Y (estimated segmentation of the difference
image), based on the quality of the set of input segmentations,
i.e., {Bj:...6}. We have investigated experimentally how the
performance, in terms of Fm, for example, of Y, can be
influenced by the performance of {Bj:1...6} all together over
the eight data sets considered. First, we studied the influence
of the mean performance of {Bj:1...6}, and second, we studied
the influence of its standard deviation (variability or diversity
within the set). Let Fmk, k = 1 . . . 8, be the performance mea-
sure of Y generated from the kth data set and MFmk and
SFmk be the mean and standard deviation of the performance of
the set {Bj:1...6} generated from the kth data set, respectively.
Fig. 11(a) illustrates the change of Fmk according to MFmk,
whereas Fig. 11(b) illustrates the change of Fmk according to
SFmk. The dashed curves are the regression lines (trend lines)
used for the overall interpretation. In general, from Fig. 11(a),
we can notice that Fmk is highly proportional to MFmk, ∀ k,
with a correlation coefficient equal to 0.77, and Fmk is always
better than MFmk, ∀ k. Furthermore, it is clear that the pro-
posed method can achieve good results (i.e., Fm8 = 82.8%)
from less accurate input segmentations (i.e., MFm8 = 27.5%).
Nevertheless, the gap between Fmk and MFmk diminishes
when the mean performance approaches saturation (MFmk →
100%), which is indeed normal. From Fig. 11(b), Fmk seems to
be inversely proportional to SFmk as expected. This means that
the smaller the variability (higher similarity) within {Bj:1...6}
is, the higher the performance of Y is. It is worth noting that a
high number of less accurate segmentations in the set {Bj:1...6}
may lead to estimating a better Y, but not necessarily that it is
much better than any other input individually. The El Dorado
data set is a typical example (see Table III), in which five over
six input segmentations have very low performances. Despite
this, the method is able to estimate a good result, but is still very
close to the Yen method [43] (Fm8 = 82.8% versus 82.7%).
Based on this simple investigation, it can be concluded that the
estimation of more accurate segmentation needs to have at least
a subset of input segmentations with reasonable accuracy. The
issue of defining/selecting such a subset will be investigated
more thoroughly in future work.

In this paper, a new approach of change detection from
bitemporal remotely sensed images is proposed. The objective
is to segment into two classes (“change/no-change”) the dif-
ference image that is generated from two bitemporal images
of the same area acquired at two different dates. In contrast to
the computationally costly and complex segmentation models
proposed in the recent state of the art [3], [51], the idea of fusion
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Fig. 10. Improvement of the performance in terms of Fm of the estimated segmentations over the iterations. (Left to right) Po, Trentino, Mina, Riyadh, El Dorado
Lake, Dashte Nawur, Knee Lake, and Merzières-en-Brenne.

Fig. 11. Influence of the mean performance (MFm) and variability (SFm) of
the input segmentation set on the performance (Fm) of the estimated segmen-
tation (i.e., change detection output). (a) MFm versus Fm. The performance
values are sorted by MFm from smallest to largest (the order of the data sets
numbers is changed accordingly). (b) SFm versus Fm. The performance values
are sorted by SFm from largest to smallest. The dashed curves are the regression
lines used for the overall interpretation.

low-cost thresholding (or classifiers) outputs, to estimate a new
more accurate one, has been shown to be very competitive
[18]. It was motivated in machine learning [23] that, even when
the input classifiers are indistinguishable with respect to their
(resubstitution) training error, they may have different general-
ization performances. Instead of picking only one classifier, a
safer option would be to use them all and average their outputs.
The new classifier might not be better than the single best
classifier but would diminish or eliminate the risk of picking an
inadequate single classifier. The proposed fusion model is in the
category of the committee machine learning model combining a
set of segmentation, resulting from different parametric and/or
nonparametric models, with a dynamic structure type. It means
that the initial input segmentations are combined by means of
a mechanism that involves the input data (or original image),
in our case, with a likelihood fitting model using GEV model.
Thus, the GEV model is a part of our fusion model. The interest
of using a fusion model, with a dynamic structure type, and
a likelihood fitting model using GEV model is (empirically)
demonstrated, in terms of classification result by comparison
with other methods.

IV. DISCUSSION AND CONCLUSION

The proposed method is compared, in the first part of
Table III, to the ensemble of thresholding algorithms used to
produce the initial input segmentations (and used in our fusion
procedure) and, in the second part of Table III, to some other
methods (based on a fusion procedure [18], [21], [44], [47]–[49]
or not [2], [4], [19], [45], [46], [15]) with which we could
compare our approach. The classification result obtained by
each individual thresholding algorithm is important in order
to quantify the gain obtained by our fusion procedure and
the comparison with the other methods, in order to evaluate the

accuracy of our method against state-of-the-art ones. The
thresholding algorithms, which are listed in Table III, are used
as such. In fact, they cannot be rederived for the GEV distribu-
tion since these methods do not (generally) use a distribution
mixture model to determine their threshold from the histogram
of the image, except the Kittler method, which assumes a
Gaussian mixture model in order to determine the optimal
threshold, but this method cannot be easily derived in the
case of a mixture of GEV distributions. For the methods in
the second part of Table III, the authors use sometimes their
own statistical distribution model, for the difference image [2],
[45] (in fact, the distribution model that they believe to be the
most appropriate for this problem), and sometimes, they do
not use a distribution model [18], [46], [19]. To empower the
fusion accuracy, we have proposed, in this paper, a new iterative
strategy of fusing the results of different thresholding algo-
rithms while taking into account the statistical characteristic of
the input difference image. The proposed method is based on
the following hypothesis: the estimated output segmentation is
assumed to be more accurate than all other input segmentations
individually, and more accurate input segmentations lead al-
most to better output segmentation. This gives rise to the idea of
an energy-based fusion model in which the outlier segmentation
is detected and rejected to further estimate a more accurate
segmentation.

Mathematically speaking, the proposed model aims to max-
imize the joint probability between the difference image, the
ensemble of input segmentations, and the output segmentation
under a Bayesian–Markovian stochastic framework. In this
work, the difference image contributes in the segmentation
process by a certain weight defined automatically from the
degree of similarity within the input segmentation set. It has
been found empirically that, when the similarity of the input
segmentations is low, the contribution of the difference image
is really important to compensate the disagreement between the
input segmentations. In addition, it was found experimentally
that if the majority of input segmentations are largely different
from each other and have “very low” accuracy (the case of all
the El Dorado data set outputs), the proposed fusion model is,
somehow, able to get a more accurate output, but not necessarily
the one that it is better than any other input individually. There-
fore, it is advisable to select a subset of input segmentations
with reasonable accuracy to achieve better performances. The
MRF is also incorporated in the segmentation model in order to
regularize and smooth the segmentation output by encouraging
the neighboring pixels to have the same label. This has a
positive impact on the final segmentation, particularly when
the noise level is high. Objective evaluation of the proposed
approach is conducted on the basis of ten data sets. A numerical
comparison with other methods is also realized. The experiment
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results show that the proposed method has a power of general-
ization compared with the state of the art.

We believe that the proposed pixel-based method may still
be used in the future for time-series images from same or
different sensors that meet its basic assumption [3]. Further-
more, the proposed method will be further investigated to deal
with perturbing factors, which may affect the image pair. For
instance, in some cases, the cloud cannot be preprocessed (i.e.,
removed) and appear as unwanted change, which may harm
the real change. Nevertheless, based on the difference between
the motion frequencies of the unwanted change (e.g., due to
cloud) and the real change, which may be both computed
using multiple short-temporal images, it may be feasible to
differentiate between these two types of changes.

The advantages of the proposed method are that it is simple,
automatic, easy to implement, and has a positive impact on
the fusion accuracy. In addition, the Bayesian framework has
the advantage of being open to including other terms, such as
MRF, which is responsible for homogenizing the outputs by
removing the very small regions. However, the MRF must be
taken with caution, because it can lead to undesirable results
if the small regions represent areas of interest. Thus, the user
must have sufficient prior knowledge about these regions and
weaken the weight of the prior probability by diminishing the
value of his factor. Unfortunately, similar to other methods,
it has a disadvantage that resides in setting the parameter λ,
which we want to be learned automatically. This point will
be investigated in future work. We would like to mention that
the proposed method was tested on subsets trimmed from their
original remote sensing images for demonstration purposes, but
it is applicable across the entire images.
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