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An Energy-Based Model Encoding Nonlocal
Pairwise Pixel Interactions for Multisensor

Change Detection
Redha Touati and Max Mignotte

Abstract— Image change detection (CD) is a challenging prob-
lem, particularly when images come from different sensors.
In this paper, we present a novel and reliable CD model,
which is first based on the estimation of a robust similarity-
feature map generated from a pair of bitemporal heterogeneous
remote sensing images. This similarity-feature map, which is
supposed to represent the difference between the multitemporal
multisensor images, is herein defined, by specifying a set of linear
equality constraints, expressed for each pair of pixels existing in
the before-and-after satellite images acquired through different
modalities. An estimation of this overconstrained problem, also
formulated as a nonlocal pairwise energy-based model, is then
carried out, in the least square sense, by a fast linear-complexity
algorithm based on a multidimensional scaling mapping tech-
nique. Finally, the fusion of different binary segmentation
results, obtained from this similarity-feature map by different
automatic thresholding algorithms, allows us to precisely and
automatically classify the changed and unchanged regions. The
proposed method is tested on satellite data sets acquired by real
heterogeneous sensor, and the results obtained demonstrate the
robustness of the proposed model compared with the best existing
state-of-the-art multimodal CD methods recently proposed in the
literature.

Index Terms— Change detection (CD), energy-based model,
FastMap, fusion of binary segmentations, heterogeneous sensors,
multidimensional scaling (MDS) mapping, MDS, multimodal
remote sensing, multisensors, multisource data, pairwise pixel
interactions.

I. INTRODUCTION

NOWADAYS, change detection (CD) is a major applica-
tion and also an active research topic in remote sens-

ing image processing, since it plays an important role in
various application domains, including environmental mon-
itoring, deforestation, urban planning, and land or natural
disaster/damage monitoring and management to name a few.

Until now, many CD approaches have been proposed for
addressing the classical monomodal CD issue [1]–[5], which
occurs when the pairs of images are obtained from the same
sensor or, more generally, the same imaging modality. In this
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monomodal case, the two images, recorded at two different
times but under similar imaging conditions, are generally
first coregistered and corrected (preprocessing) and then, most
often, used to generate a difference image by differencing
or (log-)rationing. Finally, the resulting difference image is
then segmented into two classes to distinguish changes of
interest of the land cover/land use.1

A less explored and more challenging problem is the
so-called multimodal CD problem, which is based on pairs
of images obtained from different imaging modalities. In this
case, the two input (before-and-after change) images present
radically different image statistics (along with possibly dif-
ferent spatial and spectral resolutions), which cannot be com-
pared with traditional methods borrowed from monomodal CD
approaches relying on a simple pixelwise difference model.

Multimodal CD is especially appealing for several reasons.
In fact, in furthermore to generalize the monomodal case, this
processing treatment has obviously less restrictive consider-
ations about the formation of the input data pair, since it
must adapt itself to the characteristics of data with different
natures. As a consequence, it should be more robust to natural
variations in environmental variables, such as soil moisture
or phenological state (such as flowering, maturing, drying,
senescence, and harvesting) that cannot be avoided and well
taken into account and corrected in the preprocessing step of
a classical monomodal CD approach. Another interest is its
inherent practicality that it could bring in several emergency
situations. For example, it is useful in the case when an optical
image of a given area is provided by an available remote
sensing image archive data, and only a new synthetic aperture
radar (SAR) image can be acquired (for technical reasons,
lack of time, availability, or atmospheric conditions) in an
emergency situation for the same area. In addition to providing
a wide variety of information and properties about the study
area, let us stress out that the additional information provided
by two different sensors could also be used to our advantage,
to improve the accuracy of the final CD map. This can be
efficiently achieved if one succeeds in modeling the com-
plementary and supplementary information provided by the

1By changes of interest of the land cover, it must be understood that we do
not seek to detect, in this paper, changes such as atmospheric effects, including
haze, persistent cloud cover, phenological changes, thin snow or ice cover,
soil moisture, and shadow. In this paper, we are just referring to land cover
changes, such as major construction or excavations, flooding, earthquake, and
deforestation.
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two different imaging modalities, with modeling techniques
borrowed, for example, from the data fusion-based classifica-
tion theory. Finally, let us also mention that this multimodal
approach may be useful and sometimes indispensable in some
specific cases, such as forest monitoring in tropical or boreal
areas for which SAR, thanks to its ability to penetrate heavy
clouds and fog, is often used as a complement to optical
data. Another example, where SAR and optical sensors are
complementary, is the case of frequently snow-covered regions
of high altitudes, since the SAR is also able to penetrate a thin
snow layer.

Up to now, a relatively few research works have been
developed in CD using heterogeneous remote sensing images.
Among the few existing models proposed in the literature,
we can, however, mention the theoretical approach proposed
in [6]. In this paper, the model is based on the assumption
that some dependence indeed exists between the two images
in unchanged areas and more precisely relies on the estimation
of the local statistics of the first image through the point
of view (in a statistical sense) of the second one (and vice
versa). This dependence is modeled by quantile regression
applied according to the copula theory, and Kullkack–Leibler-
based comparisons of these above-mentioned local statistics
are applied to define a change measure, which is then finally
analyzed by thresholding, in order to detect between change
and no change areas. However, this method remains super-
vised, since it requires to learn the cumulative distribution
function of the pixel intensity in the after image, conditioned
to “no-change” hypothesis (i.e., the so-called copula) by using
a manually selected (carefully chosen) training set of samples
in the after image. Let us note that the model is also not easily
generalizable in the case when more than one image, before
and after a given event, is available and also not well suited
(in terms of modeling, speed, and efficiency) to be used for
images acquired with homogeneous sensors.

Another recent study was proposed by Prendes et al. [7]
to overcome multisensor variability problems in CD. The
authors propose an interesting multivariate statistical approach
aiming to estimate a physical model, based on a mixture of
multidimensional distributions, which both takes into account
the relationships between the sensor responses to the objects
contained in the observed scene, the physical properties of
these objects, and the statistical properties of the noise cor-
rupting the images. The parameters of this multidimensional
mixture model are estimated by the expectation–maximization
(EM) algorithm [8], which are then subsequently used to
infer the relationships between the sensor physical properties
involved through manifold learning. A statistical test based
on this model allows to estimate the changes. An extension
of this model, taking advantage of the correlations between
adjacent pixels via a Markov random field model, has also
been proposed by Prendes et al. [9]. However, this method
also assumes a training set and more precisely that two training
images associated with an unchanged area are available. Also,
the method has been designed for heterogeneous multisensor
in the case of optical/SAR data and is not easily generalizable
for another pair of different sensors. Besides, it requires a
lot of EM estimations (nearly one for each pixel), each one

relying on a good unsupervised estimation of the optimal
number of existing components. Another CD approach for
heterogeneous multisensor SAR data based on the multi-
dimensional distribution mixture estimation has also been
proposed in [10]. In particular, the authors have studied a
new family of multivariate distributions whose margins are
univariate gamma distributions with different shape parameters
referred to as multisensor multivariate gamma distributions
(MuMGDs), which are well suited for detecting changes in
SAR images acquired by different sensors having different
numbers of looks. The parameters of this multidimensional
mixture model are estimated by the maximum likelihood
(ML) or inference function for margins algorithm. Also the
method, and more precisely the family of MuMGDs, has been
especially designed for heterogeneous SAR sensors and cannot
be easily generalized for other or different sensors. Finally,
[11] proposes to use a methodology borrowed from coregis-
tration (used in the field of medical imagery), based on the use
of similarity measures (such as correlation ratio and mutual
information) and to use the correspondence between the same
points in the two images to detect eventual changes existing
between the two data acquisitions. A comparison between
the results of the performance of tested similarity measures
is reported, which indicates that the mutual information and
the cluster reward algorithm (CRA) seem the best indicator
for multimodal (optical/SAR) CD. The CRA measure is built
from the joint and the marginal probabilities, as the mutual
information, and has a large value when the joint histogram
has little dispersion (thus indicating a good correlation score).
Nevertheless, these two measures are sensitive to the dimen-
sion of the estimation windows used for the pixel statistics
and the similarity measure calculation.

Contrary to CD techniques based on a classical pixelwise
modeling approach, we propose, as first and main contribution
of this paper, a new change detector relying on the set of
all pairs of (possibly nonlocal) pixels existing in the before-
and-after remote sensing images. This allows us to build a
robust similarity feature map, especially well suited to esti-
mate the difference between heterogeneous sensors exhibiting
radically different image statistics. In our model, a set of linear
equality constraints is expressed for each pair of pixels (in
terms of gray levels or local statistics difference), and this
overconstrained problem is then embedded or formulated into
a final energy-based model encoding all the local pairwise
pixel interactions. The quadratic complexity in the number
of pixels of this resulting energy-based model is reduced to
a linear complexity procedure, thanks to the FastMap-based
optimization procedure proposed by Faloutsos and Lin [12].
This technique acts as an efficient and fast global minimizer
of the cost function, integrating all the pairwise constraints, of
our model by performing geometric linear projections (using
the cosine law) in an n-dimensional space over an axis defined
by a pair of pixels from the image (or in our application, from
a pair of images) called pivots. Conceptually, the FastMap
treats each distance or constraints between a pair of pixels
(in terms of gray level difference) as a spring between the
pixels, and tries to rearrange the gray-level values of each
pixel to minimize the stress of the springs (also called the
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stress function) or equivalently to satisfy all the constraints in
the least square (LSQ) sense. Moreover, as second contribu-
tion, changed and unchanged areas are then finally identified,
from this latter similarity feature map, by fusing the results
of different automatic thresholding algorithms. In this way,
we efficiently combine the intrinsic properties and criteria
related to the different automatic thresholding algorithms in
order to further increase the robustness and reliability of our
multimodal CD strategy.

Let us note that, within the FastMap-based optimization
and energy-based model framework encoding the nonlocal
pairwise pixel interactions, we can mention the recent gait
analysis model proposed in [13], which allows us to convert
a video sequence of depth images of a human gait (on a
treadmill) into an informative color map providing a quick
overview of asymmetry existing in a given gait cycle for a
rapid clinical diagnosis. In this model that uses a video data
cube of the human gait, the pairwise interactions are defined
to encode the degree of similarity existing between two gait
movements (represented by two temporal depth signals) taken
on two different locations on a human’s body surface walking
on a treadmill and such that the (pairwise) distance is defined
as zero if the two motions are either pointwise similar or in
perfect phase opposition (i.e., with a phase difference of half a
gait cycle as it is normally the case for legs and arms during the
gait cycle of a healthy subject). The set of distances between
each pair of pixels is then used by the FastMap algorithm
to generate a final mapping in which these distances should
then code (as constraint) the L2-norm of color difference
existing between this pair of pixels. By this means, two pixels
(or two points located on the human’s body surface) that share
the same color on this mapping have to be considered as
symmetric (and conversely, all the more antisymmetric as their
color difference is high).

The remainder of this paper is organized as follows.
Sections II and III describe, respectively, the proposed CD
technique and the optimization procedure related to this model
which allows us to estimate the similarity-feature map, from
which changed and unchanged areas are then identified in
Section IV by combining the results of different automatic
thresholding algorithms. Section V presents a set of experi-
mental results and comparisons with existing multimodal and
monomodal CD algorithms. Finally, Section VI concludes this
paper.

II. PROPOSED CHANGE DETECTION MODEL

Let us consider two (coregistered) bitemporal remote sens-
ing (N pixel size) images, yt1 and yt2 acquired at two times
(before and after a given event), in the same geographical area,
from different sensors or from the same sensor but without
the correction step, in terms of radiometric, atmospheric, and
distortion consistencies and characteristics.

In order to estimate y D , the similarity feature map, which
is supposed to represent the difference between the multitem-
poral (multisensor) images, we rely on an improved version of
the model introduced in [14] for the monomodal CD problem.
In this model, first, we have to specify an overdetermined set

of constraints to be satisfied (for y D) and expressed for each
pair of pixels 〈s, t〉 existing in each of the two multitemporal
images yt1 and yt2 . The similarity map y D is then seen as a
solution to this set of constraints via the following nonlocal
pairwise cost function to be optimized:

ŷ D = arg min
y D

∑
〈s,t〉s �=t

(
βs,t − ‖y D

s − y D
t ‖2

)2 (1)

where the summation is done over all the pairs of pixels
existing in the similarity feature image y D to be estimated and
‖.‖2 is the Euclidean distance. In (1), the set of βs,t represents
the set of N(N − 1)/2 equality constraints expressed for each
pair of pixels 〈s, t〉, in terms of difference of gray levels (or
local statistics), in order to obtain a reliable similarity feature
image y D in which unchanged pixels will be associated with
small gray-level values, whereas changed pixels will present
rather large values.2 These constraints are the following.

First, let us assume that two distinct pixels at locations s
and t belong to the class urban at time t1 and still belong
to the same class (urban), at time t2. In this case, these two
pixels should both belong to the (same) class label unchanged
area in the binary segmentation of y D. Let us consider another
scenario: let us assume that two distinct pixels at locations s
and t belong to the class urban at time t1 and both belong to
the class river, at time t2 (due to a flooding event). In this case,
these two pixels should both belong to the (same) class label
changed area in the binary segmentation of y D. These two
scenarios can be summarized, as first constraint, as follows.

Constraint #1: Two distinct pixels 〈s, t〉 should belong to
the class label unchanged pixels or belong to the class label
changed pixels, in the binary segmentation of y D , if yt1

s and
yt1

t have a similar gray level (or similar local statistics), and
if yt2

s and yt2
t also have a similar gray level (or similar local

statistics).
To satisfied this constraint, y D

s and y D
t should be assigned to

a small gray-level value in y D or should be assigned to a high
gray-level value in y D (since s and t should finally share the
same label in the binary segmentation of y D), or equivalently,
this constraint requires that the gray level difference between
y D

s and y D
t is small.

If two pixels at locations s and t belong to a same class
at time t1 (for example urban) and a different class at t2 (for
example urban for pixel s and river for pixel t) or conversely.
In this case, these two pixels should belong to a different
class label in the binary segmentation of y D, i.e., unchanged
pixels for one of the two pixels and changed pixels for the
other. This belonging to different class labels, in the binary
segmentation of y D , requires that two different (gray-level)
values to be assigned to these two pixels in y D (so that
the binary segmentation of y D correctly assigns two different

2Let us note that our model can handle separately the individual chan-
nels or bands of a multispectral or hyperspectral sensor system, since, in
our energy-based model, the difference between each pair of pixels can
be formulated as a Euclidean distance between two d-dimensional spectral
vectors with d being the number of spectral bands. By handling the bands
separately, the similarity-feature map ŷD is estimated according to a similar
(but opposite) criterion (i.e., a difference of “preservation of spectral distance”)
as the one often used as a criterion in the compression of hyperspectral
images [15].
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Fig. 1. Illustration of the four constraints (#1a, #1b, #2, and #3) correspond-
ing to the scenario described in Section II. (From left to right) Image at time t1
before a flooding event (with the urban region at the center, the vegetation
region all around the image, and the river region represented by a narrow,
elongated region at the bottom right of the image), image at time t2 after
a flooding event, and (ideal binarized) similarity map yD (with the white
region corresponding to the changed area) with the link (between each pair
of pixels considered) drawn in such a way that its thickness is proportional
to the associated distance defined by (2) between the gray levels (or local
statistics vector) of each considered pair of pixels.

classes to these two pixels). This leads us to the Constraint
#2.

The third and last cases, which lead us to the Constraint #3,
involve a situation in which two pixels 〈s, t〉 belong to a pair
of different classes at time t1 (for example, urban for s and
vegetation for t) and also belong to a pair of different classes,
different from the first pair, at time t2 (for example, urban for
s and river for t) or conversely. In this case, 〈s, t〉 should also
belong to a different class label in the binary segmentation of
y D , and this requires that the gray-level difference between
y D

s and y D
t is high (see Fig. 1).

In summary, the three above-specified constraints, in terms
of pairwise gray-level difference in y D , for each pair of
locations 〈s, t〉, can be quite well satisfied by using [in (1)]
the following pairwise distance between pixels 〈s, t〉 at time t1
and t2 (which was empirically found and inspired from the
max-Symmetric χ2 distance combined with the city block
distance [16]):

βs,t =
∣∣∣∣max

(
|yt1

s −y
t1
t |

yt1
s

,
|yt1

s −y
t1
t |

yt1
t

)

− max

(
|yt2

s −y
t2
t |

yt2
s

,
|yt2

s −y
t2
t |

yt2
t

)∣∣∣∣ (2)

where we recall that yt1
s and yt2

s are, respectively, the gray
level (or a local statistics vector) at pixel s in, respectively,
the before and after image (i.e., at time t1 and t2). In our model,
(1) thus becomes a composite cost function encoding our
N(N −1)/2 constraints given by the observed data composed
of all the pairwise pixels existing in yt1 and yt2 . Optimization
of (1) will ensure a robust similarity feature map ŷ D with
land cover changes presenting significantly different values
from those associated with the pixels belonging to unchanged
areas. Nevertheless, it is important to note that the estimation
of ŷ D , according to (1), does not necessarily ensure that the
low gray-level value is assigned for the pixel belonging to the
unchanged area and conversely that the high gray-level values

are assigned for the changed area. It could be the opposite.
Nevertheless, let us mention that this latter case can be easily
and automatically detected with a correlation metric or more
simply by assuming that the land cover change is often much
smaller than the unchanged area, and once detected, we can
easily remedy it by simply inverting the gray-level values
of the estimated image ŷ D before its (binary) segmentation
(see Section IV).

Let us note that the major advantage of the proposed model
lies in its flexibility given by its LSQ criterion. Indeed, con-
trary to maximum a posteriori and ML approaches [7], [10],
the proposed model does not require an explicit knowledge of
the data distribution and also an (ML) parameter estimation
step of these distribution laws, which can be complex and/or
of very different natures, in the multimodal CD case, since the
images (before and after the change) are from different modal-
ities. Besides, contrary to machine learning-based approaches,
the proposed scheme does not also require a large and rep-
resentative and supervised training set. In addition, contrary
to recent methods that seek to transform the original pair of
temporal images into a new feature space or representation
that significantly highlights the changes and which may be
somewhat regarded as a CD method which could be invariant
to imaging modality [17], the proposed method also has the
advantage of not requiring the same number of spectral bands
for the two (temporal) satellite images (as it is most often the
case in practice for multimodal CD, since the two imaging
modalities are assumed to be different).

III. FASTMAP-BASED MODEL OPTIMIZATION

Let us note that the function to be minimized (1) is
also the so-called stress function used as a criterion in
the mapping based on the multidimensional scaling (MDS)
technique [21], [22]. MDS has already been successfully used
in a number of practical applications, such as color image seg-
mentation [23], [24], hyperspectral compression [15], asym-
metry detection [13], human action recognition [25], and
database browsing and visualization [26] to name a few.

In our case, MDS is able to estimate a mapping, i.e., a
gray-level similarity image y D , such that the distances between
each pair of gray-level values associated with pixels s and t are
close to βs,t as faithfully as possible (in the least square sense).
Nevertheless, the originally proposed MDS algorithm (called
metric MDS [21], [22]) is not appropriate in our application
(and more generally for all large-scale applications), because
it requires an entire N × N distance matrix to be stored in
memory with an O(N2) complexity (N being the number of
pixels). Instead, we have herein used a fast alternative called
FastMap [12] whose main advantage is its linear complexity
(thanks to a Nyström [27] approximation of the estimation
of the eigenvectors and eigenvalues of the distance matrix)
compared with the other MDS procedures.

In the proposed application, the FastMap allows us to find a
mapping y D with a linear complexity, such that the distances
between each pair of gray-level values associated with pixels s
and t are close to βs,t as much as possible. To this end,
we recall that the first step, and an essential element of the
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FastMap algorithm, is to select two objects (pixels in our
case) to form the projection line. These two pixels, also called
pair of anchor nodes or pivots (or pivot line), are selected,
such that the distance (βs,t in our application) is maximal.
To accomplish such a task, Faloutsos and Lin [12] proposed a
linear heuristic algorithm based on a deterministic procedure
called “choose distant objects.” The second step is to project
any other object (pixels) onto this orthogonal axis (pivot line)
by employing the cosine rule.

However, the price paid for the low linear complexity of the
FastMap is its sensitivity to outliers and nonlinearities. In our
case, this characteristic may give a poor or noisy estimation
of the similarity image y D. In order to get a more reliable
estimation, an interesting solution is obtained by averaging the
estimations from different pivot lines. To this end, the linear
heuristic and deterministic procedure proposed by Faloutsos
and Lin [12] can be easily modified in order to propose more
than one pivot line.

IV. FUSION-BASED SEGMENTATION STEP

Finally, in order to achieve more robustness, changes are
then identified, from the (previously estimated) similarity
image y D , by combining the results of T = 5 different
automatic thresholding algorithms3 (namely [28]–[32]). In this
way, this strategy (already been used in [33]) allows us to
synergistically integrate multiple different criteria, for which
these binary segmentation algorithms have been designed
to be optimal in order to further increase the robustness
and reliability of our proposed segmentation scheme. In our
application, this binary fusion process is simply achieved by
using a majority vote filter using a 3-D window W × W × T
whose the first two dimensions are spatial and the third
dimension indexes the different binary thresholded maps to
be fused. In our application, this majority vote is achieved
with a 3-D window, which is spatially centered on the pixel
to be classified, and that collects the binary class labels of the
different binary thresholded maps and, finally by assigning to
that central pixel, the class label that has the majority vote.
This strategy ensures both the spatial regularization of the
final fused (detection) map result and also a reliable decision
fusion between the results obtained by different thresholding
strategies.

V. EXPERIMENTAL RESULTS

A. Results on Multimodal Data Sets

To evaluate the efficiency of our proposed model, we vali-
date our approach on three real pairs of heterogeneous remote
sensing images (see Fig. 2), provided by the CNES center
(French National Centre for Space Studies), and already used
in [7] and [18] and for which the different change mask
constructions were provided by a photointerpreter. Besides, we

3Let us note that the concept of combining classifiers for the improvement of
the performance of individual classifiers is known, in machine learning field,
as a committee machine, ensemble classifiers, ensemble methods, or mixture
of experts [34], [35]. In this context, Dietterich [35] has provided an accessible
and informal reasoning, from statistical, computational, and representational
viewpoints, of why ensembles can improve results.

have at our disposal one pair of heterogeneous SAR images
given in [10]. This allows us to compare the performance
of our model with the four existing state-of-the-art multi-
modal CD algorithms in this field, namely, the one introduced
in [7] and [18] (and its improved version proposed in [9]),
the multidimensional EM-based model proposed in [6], and
the method proposed in [10] for heterogeneous multisensor
SAR data. Besides, we have also compared our result with
change detector traditionally used in monomodal approaches
provided by the ORFEO Toolbox [20].

1) The first multimodal data set is a pair of SAR/optical
satellite images (Toulouse, France), with size 4404 ×
2604 pixels, before and after a construction. The
SAR image was taken by the TerraSAR-X satellite
(February 2009) and the optical image by the Pleiades
(High-Resolution Optical Imaging Constellation of
CNES) satellite (July 2013). The TSX image was coreg-
istered and resampled in [19] with a pixel resolution of
2 m to match the optical image.

2) The second one is a pair of optical/SAR satellite images
(Gloucestershire region, in southwest England, near
Gloucester), with size 2325 × 4135 pixels, before and
after a flooding (on a mixture of urban and rural areas).
The optical image is a screenshot from Google Earth and
comes from the Quick Bird 02 (QB02) VHR satellite
(July 15, 2006), and the SAR image was acquired by
the TerraSAR-X satellite (July 2007). The TSX image
presents a resolution of 7.3 m, and the QB02 image (with
resolution of 0.65 m and 0% cloud cover) was coregis-
tered and resampled in [19] to match this resolution.

3) The third data set is a pair of different optical images,
with different sensor specifications (i.e., spectral bands),
with size 2000 × 2000 pixels (with the same resolution
of 0.52 m and 0% cloud cover), before and after
the construction of a building (in the urban area of
Toulouse, France). The first optical image is captured
by the Pleiades sensor (May 2012), and the second
optical image is a screenshot from Google Earth and is
acquired by WorldView2 satellite from three (red, green,
and blue) spectral bands (July 11, 2013). The World-
View2 VHR-image was coregistered in [19] to match
the Pleiades image.

4) The fourth multimodal data set [10] is a pair of
SAR/SAR satellite images (Gloucester, U.K.) before and
during a flood, with size 762 × 292 pixels, acquired by
the RADARSAT satellite. The numbers of looks for the
before SAR image are 1-look image (September 2000),
and the numbers of looks for the after image are
5-looks (October 2000). These two SAR images have
a resolution of about 40 m.

We have considered the pairwise distance formula given
by (2), where yt1

s corresponds to the simple gray level
of the image (and not a local statistics vector around a
neighborhood of s). In the case of an optical image, this
also requires the conversion of the possible color image
to a grayscale image. We have finally considered the
final majority vote with a squared window spatial size set
to W = 3 × 3.
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Fig. 2. (From left to right) Image t1 (before event), image t2 (after event), ground truth, estimated similarity feature map ŷD , final binary map result, and
confusion map (white region: TN, red region: TP, blue region: FP, and cyan region: FN). (From top to bottom) Multimodal image pair: SAR/optical (image from
TerraSAR-X/Pleiades satellite of Toulouse, France), optical/SAR (image from QB02/TerraSAR-X satellite of Gloucester, U.K.), heterogeneous optical/optical
(image from Pleiades/WorldView2 of Toulouse, France), and heterogeneous SAR/SAR (image from SAR 1-look/SAR 5-looks of Gloucester, U.K.).

We have summarized, respectively, in Tables I and II,
the accuracy rates and the confusion matrix obtained by our
approach, compared with the four existing multimodal CD
methods (see also Fig. 2), and some classical CD methods
borrowed from monomodal techniques. We can notice that the
proposed model outperforms quantitatively the four existing
state-of-the-art approaches recently published in this field.

Fig. 3 shows the binary maps obtained by the Prewitt [28],
Kapur [29], Zack [30], Yen [31], and Shanbhag [32] binarizers
on the feature similarity map generated by the FastMap in the
case of the second and the fourth multimodal data set and
the fusion results obtained by the proposed fusion strategy
based on a 3-D (3 × 3 × 5) majority vote filter. We can
notice that the different binarizers estimate a different optimal
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TABLE I

ACCURACY RATE OF CD ON THE FOUR HETEROGENEOUS DATA SETS OBTAINED BY THE PROPOSED METHOD AND THE STATE-OF-THE-ART Multimodal

CHANGE DETECTORS (FIRST TOP PART OF EACH TABLE) AND Monomodal CHANGE DETECTORS (SECOND BOTTOM PART OF EACH TABLE)

TABLE II

CONFUSION MATRIX FOR THE FOUR Multimodal DATA SETS, i.e.,

[TSX/PLEIADES] (4404 × 2604 PIXELS), [QB02/TSX]

(2325 × 4135 PIXELS), [PLEIADES/WORLDVIEW2]

(2000 × 2000 PIXELS), AND [SAR 1-LOOK/

SAR 5-LOOKS] (762 × 292 PIXELS)

Fig. 3. Individual binary CD maps given by, respectively, the Prewitt [28],
Kapur [29], Zack [30], Yen [31], and Shanbhag [32] binarizers on the
similarity-feature map generated by the FastMap (see Fig. 2) and fusion results
using a majority vote filter using a 3-D (3 × 3 × 5) window.

threshold leading to a different binary map, since different
criteria are used. Nevertheless, the proposed fusion strategy
ensures both an efficient spatial and consensus regularization,
even if the statistical distribution of the feature similarity map
is not clearly bimodal (see Fig. 4).

We can notice that some histograms of the similarity map
are not bimodal. In our case, this is not a problem, since four of
the five binarizers, used in our procedure, do not necessarily
assume that the histogram is bimodal. For example, the so-
called triangle method presented in [30] proposes to construct
a line between the histogram peak and the farthest end of the

Fig. 4. Histogram of the four similarity-feature maps of the four multimodal
image pairs generated by the FastMap (see Fig. 2).

histogram, and the threshold is the point of maximum distance
between the line and the histogram. Another binarization
method, which is applicable, even if the histogram is not
bimodal, is the binarizer proposed in [29], which uses the
entropy concept. In this case, the threshold is estimated,
such that the entropies of distributions above and below are
maximized. In the same spirit, [31] uses the maximum corre-
lation criterion as a more computationally efficient alternative
to entropy measures. Finally, [32] proposes an extension of
the method proposed in [29]. Only the binarizer proposed
in [28] seeks two modes in the histogram and thus relies
on the presence of a bimodal shape of the histogram. The
method consists in iteratively smoothing the histogram (using
a running average of size 3) until two peaks remain; the
threshold is then the minimum or midpoint between the two
peaks. Nevertheless, algorithmically, if a bimodality in the his-
togram is not detected after a maximum number of iterations,
the threshold is generally the gray value corresponding to the
highest peak. All these different binarizers generally ensure
the diversity, which is then needed for a reliable subsequent
fusion process.

Let us stress out that the proposed model can also be easily
generalized in the case where more than one image, before
and after a given event, is available. Indeed, this can be easily
done by considering the following averaged pairwise distance:

βs,t = 1

Np

∑
〈b,a〉

βs,t(yb, ya) (3)

with βs,t(ya, yb) the distance expressed in (2) for an image,
respectively, belonging to the before (and after) event set yb

(ya) and where the averaging is done over all possible pairs
of images available before and after a given event (〈b, a〉)
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Fig. 5. Comparison of the similarity-feature maps obtained by
Prendes et al.’s method [19] and the proposed method on the first three
multimodal data sets. From lexicographic order, ground truths, similarity-
feature map obtained by Prendes et al.’s method in false colors (the red
areas represent high similarity between the two images, while the blue areas
correspond to low similarity) and similarity-feature maps obtained by the
FastMap-based proposed method for, from top to bottom, the TSX/Pleiades,
QB02/TSX, and Pleiades/WorldView2 data sets.

(and Np is the number of averaging pairs). Let us note,
however, that this technique can be applied only if the date of
change event is known beforehand. This averaging procedure
could even improve the estimation of βs,t , since the averaging
procedure is a reliable strategy to reduce the noise of any
estimation procedure. In addition, it would be interesting to
study, in this multiple before-and-after image case, the effect
of a median, harmonic, or geometric mean operator instead of
this arithmetic mean-based operator.

Fig. 5 shows a comparison of the similarity-feature maps
obtained by Prendes et al.’s method [19] and the proposed
method on the first three multimodal data sets. By comparison
with Prendes’s method, the proposed CD method seems to
visually produce more distinctly two clustering structures
(modeling the unchanged and changed areas) a bit more
separated and more compacted (with lower internal variance
within a cluster) and with less overlap. Besides, our method
yields to more spatially and properly regularized (or less
noisy) similarity-feature maps. It is interesting to note that our
multimodal CD strategy is able to detect very thin structure
in the changed area class, such as the thin S-shaped region
in the middle bottom of the middle image (contrary to the
Prendes et al.’s method). We can also notice that some false
positives are detected in the same locations in the two methods
(see the rectangular shape at the top-right of the bottom-left
quadrant of the third image). Let us note that, in our case,
the similarity-feature maps closely depend on the pairwise

distance used [see (2)]. A clever and more discriminative
pairwise distance metric would allow us to obtain a better
similarity-feature map. In addition, it is worth mentioning
that the proposed method still remains perfectible if a better
binarization strategy is found.

B. Results on Monomodal Data Sets

In order to demonstrate that our approach is flexible
enough to also be efficiently used in monomodal CD (i.e.,
with homogeneous sensor), we present a set of experi-
mental results obtained on different real, publicly available,
monomodal optical, multitemporal, multispectral, airborne
SAR, or radar data sets with available ground truth. In this
case, we use the following and simple pairwise distance
βs,t :

βs,t = ∣∣∣∣yt1
s − yt1

t

∣∣ − ∣∣yt2
s − yt2

t

∣∣∣∣ (4)

which turned out a bit more efficient that the distance used
in multimodal case. In addition, for the monomodal case, we
have considered the final majority vote filter with a squared
window size set to W = 3 × 3.

1) The first data set4 (see Fig. 7) is a pair of optical
satellite images produced by the EROS data center in
southwest U.S., corresponding to a part of Reno-Lake
Tahoe area of Nevada (acquired on August 5, 1986, and
August 5, 1992), with size 200 × 200 pixels, captured
by the Landsat Multispectral Scanner. The Burn images
show a change that results from forest fire phenomena.
The Cuts images show a change described by a decrease
in the surface area of the lake that results from drought
effects. The Dray Lake images show a change that
corresponds to the beginning and culmination of drought
conditions in the western U.S. The Surface Disturbance
images show increased surface disturbance due to con-
struction or excavations for construction, including road
resurfacing or paving.

2) The second data set [4], [36] [37], [39] (see Fig. 6)
is provided by the Defence Research and Development
Canada, Ottawa (Canada), and is two multitemporal
SAR images relating to Ottawa, with size 290×350 pix-
els, acquired by the RADARSAT SAR sensor, respec-
tively, in July 1997 during the summer flooding, and
August 1997 after the summer flooding.

3) The third data set [4], [36]–[38] (see Fig. 6) is a pair
of two multitemporal SAR images with size 301 ×
301 pixels (the pixel resolution is 12.5 m), acquired by
ERS-2 satellite (the European Remote Sensing satellite).
It presents a natural phenomenon, generally occurring
during the rainy season in the Switzerland area, near

41) The first monomodal data set: Burn, Cuts, and Dray Lake
images and their ground truths have been downloaded from
http://geochange.er.usgs.gov/sw/changes/natural/reno-tahoe/
Surface disturbance and its ground truth has been downloaded from:
https://geochange.er.usgs.gov/sw/changes/anthropogenic/vegas/const.html.

2) Images of the second, third, and fourth monomodal data sets and their
ground truths have been provided by Xiong et al. [40] and Li et al. [41].

3) Images of the fifth data set have been provided by UMD-NASA and
downloaded from http://glcf.umd.edu/data/landsatTreecover/ and their ground
truths from http://www.landcover.org/.
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TABLE III

ACCURACY RATE OF CD OBTAINED BY DIFFERENT STATE-OF-THE-ART METHODS, ON BERN (ERS-2),

OTTAWA (RADARSAT), AND BEIJING (AIRBORNE SAR) DATA SETS

Fig. 6. Experimental results on monomodal SAR (second and third) and airborne SAR (fourth) data set: Ottawa, Bern, and Beijing. (From left to right) Image
acquired at time t1 and t2, ground truth, similarity feature map, final (changed/unchanged) binary segmentation result, and confusion map (white region: TN,
red region: TP, blue region: FP, and cyan region: FN) obtained by our approach.

the city of Bern, in April 1999 before the flooding and
in May 1999 after the flooding.

4) The fourth data set [40] (see Fig. 6) shows a pair
of X-band airborne SAR (intensity) images with size
900×900 pixels (the pixel resolution is 0.5 m), acquired
over a field in Beijing, China, on April 4 and 6, 2004.
It shows the number and positions of the vehicle on
the field which were different during the two data
acquisition dates.

5) The fifth data set (see Fig. 8) is a collection of
images with size 7660 × 7402 pixels (the pixel reso-
lution is 30 m), provided by the NASA/USGS Global
Land Survey [42], captured by the multispectral scan-
ner Landsat-5 (TM) and Landsat-7 Enhanced Thematic
Mapper Plus and showing various change phenomena in
landscape, in different areas, between 2000 and 2005.
For each pair of images of the same area, this data
set proposes a ground truth image containing the dif-
ferent evolutions undergone by the area for five years
(thrust drills and loss of trees).

Table III summarizes the different CD accuracy rates
obtained by our approach with a comparison with other

monomodal “state-of-the-art” approaches [4], [36]–[39], [40]
for different data sets with different imaging modalities (with
the total number of images tested in each case). We can
see that the different changed–unchanged detection binary
map results match fairly the different regions present in the
ground truth, and that the most changed regions for the dif-
ferent imagery modalities are well recognized by our strategy
(see Figs. 6–8).

C. Shadow Effects

In this paper, 1 our goal is to detect changes of interest in the
land cover or land use. So far, we have considered, in our mul-
timodal experiments, a major or a localized minor construction
and two types of flooding (Fig. 2) and in the monomodal
case; a deforestation (due to a forest fire), two examples of
decrease of a given lake’s surface area (resulting from drought
effects), a surface disturbance (i.e., an excavations/construction
for road paving) (Fig. 7), two different floodings, the detec-
tion of vehicles in an agricultural field (Fig. 6) and var-
ious change phenomena in the landscape such as thrust
drills, loss of trees, changes in tree cover over time, etc.
(Fig. 8).
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Fig. 7. Experimental results on monomodal optical Eros center (first) data set: Burn, Cuts, Dray Lake, and Surface Disturbance. (From left to right) Image
acquired at time t1 and t2, ground truth, similarity feature map, final (changed/unchanged) segmentation result, and confusion map (white region: TN, red
region: TP, blue region: FP, and cyan region: FN) obtained by our approach.

As an additional experiment, it would also be interesting
to see how the proposed CD model behaves when one of
the two images has glow and shadow effects. To this end,
for the homogeneous CD detection case, we have considered
a stereo panchromatic data set provided in [43], with size
900 ×900 pixels (the pixel resolution is 5 m) and captured by
Cartosat-1 satellite sensor. This pair of panchromatic images
is acquired over Arges region (Romania near Piatra Craiului
national park), on October 2008 and November 2009 and
shows a forest changes caused by storms, and containing many
shadow areas caused by steep terrain due to the mountainous
forest area [43].

We have applied our CD model with and without any
preprocessing step on the image pair. As preprocessing, we use
a simple (double) histogram matching method [44]. More
precisely, the before image is histogram matched to the after
image to give the preprocessed before image, and the after
image is then histogram matched to the latter (preprocessed
before) image. We show in Fig. 9 the obtained results with a
comparison in Table IV with other state-of-the-art monomodal
change detectors studied in [43]. The result shows that our

method is also robust in this monomodal case. Nevertheless,
it would have also been interesting to evaluate how our model
behaves in the multimodal case involving shadow effects,
especially between SAR and optical images, since the shadow
is a quite different phenomenon between these two imagery
modalities that cannot be corrected with a simple preprocess-
ing scheme as a simple histogram matching method. This
special case still remains to be studied.

D. Discussion

We can also notice that the rate accuracy of our method
remains comparable, although slightly lower than the other
monomodal “state-of-the-art” approaches but above all that
the strength of the proposed model is its ability to process
a wide variety of satellite imaging modalities (i.e., multitem-
poral, multispectral, airborne SAR, or radar data) potentially
degraded by different noise types and different noise levels
(see, for example, Fig. 6 where the SAR images are corrupted
by different speckle noise levels). This peculiarity certainly
comes from the fact that our model is, before all, designed to
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Fig. 8. Experimental results on monomodal UMD-NASA (fifth) data set. (From left to right) Image acquired at time t1 and t2, ground truth, similarity
feature map, final (changed/unchanged) binary segmentation result, and confusion map (white region: TN, red region: TP, blue region: FP, and cyan region:
FN) obtained by our approach.

Fig. 9. Panchromatic data set: image t1 and t2, ground truth, similarity feature map, final (changed/unchanged) segmentation result, and confusion map
(white region: TN, red region: TP, blue region: FP, and cyan region: FN) obtained by the proposed approach. First row presents the results obtained without
any preprocessing step. Second row presents the results obtained with a double histogram matching method-based preprocessing step.

be used for the multimodal CD case. The average accuracy rate
obtained by our CD approach over 17 image pairs stemming
from this five different monomodal data sets with the distance
expressed by (4) is ρ = 0.94 (94%). With the distance
expressed by (2), especially well suited for the multimodal CD
case, the average accuracy rate obtained on these five different
monomodal data sets is ρ = 0.92 (92%).

Consequently, we can say that the proposed method also
has the defect of its main quality. Its ability to process a wide

variety of imaging modalities (with different noise types and
levels) explains why it will also be less accurate than a specific
monomodal CD model only dealing with a specific type of
noise and for which the similarity map, obtained by some
local operations, follows a particular mixture of distributions
whose each distribution’s shape may be theoretically estimated
and for which the parameters of the finite distribution mixture
can then be efficiently estimated with an EM-like algorithm
to finally obtain a reliable binary CD map.
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TABLE IV

KAPPA STATISTIC OF CD ON THE PANCHROMATIC SHADOW DATA SET OBTAINED BY THE PROPOSED METHOD AND OTHER UNSUPERVISED (FIRST TOP

PART OF THE TABLE) AND SUPERVISED (SECOND PART OF THE TABLE) STATE-OF-THE-ART MONOMODAL CHANGE DETECTORS [43]

We can also notice that the proposed model has, compara-
tively, more difficulties to separate the changed and unchanged
areas when the SAR imaging modality is involved (see Fig. 2).
This behavior can be probably explained by the inherent
multiplicative speckle noise degrading the quality of any SAR
images and creating, for each land cover class, a kind of
macrotexture with grainy patterns (and referring to variations
in radar brightness that are larger than many resolution cells).
More precisely, this can be explained by the fact that the
pairwise distances, used in our energy-based model [see (1)
and (2)], with yt

v corresponding to the simple gray level at site
v, cannot fully model a coarse texture. In a multimodality case
involving SAR imaging, a more appropriate model would have
been to consider local statistics around the pixel and, therefore,
a distance computed between two feature vectors instead of
two scalars. Nevertheless, experimentally, it would seem that a
complex distance (i.e., a more complex, realistic model) also
leads to a harder optimization problem and, finally, a more
approximated solution given by the FastMap optimization pro-
cedure. In our case, a good solution of a simpler, approximate
model seems preferable than an approximate solution of a
complex (and maybe more realistic) model.

VI. CONCLUSION

In this paper, we have proposed a new model for CD in
heterogeneous remote sensing images. Our method is mainly
based on the estimation of a robust similarity feature map,
containing the difference caused by the event between the
bitemporal multisensor images involved, and which is for-
mulated as the solution of a set of constraints expressed for
each pixel pair via a global cost function. A FastMap-based
optimization and then a simple fusion step, used to combine
a set of binary segmentation maps generated by several auto-
matic thresholding algorithms on this similarity feature map,
allow us to identify between the changed and unchanged areas.
The proposed method is unsupervised and does not require a
training data set or the estimation of an important parameter
and can be used for any pairs of heterogeneous sensors.
Besides, the proposed method is flexible, since it can also
be efficiently used in monomodal CD (i.e., with homogeneous
sensor). It can be easily generalized in the case where more
than one image, before and after a given event, is avail-
able or be used to handle separately the individual bands of a
multispectral or hyperspectral image (with d spectral bands),

by simply formulating the constraint or difference between
each pair of pixels, as the distance existing between two d-
dimensional spectral vectors. Finally, the model is perfectible
by identifying a better pairwise distance or a better binarization
strategy and its time complexity is linear with the total pixel
number.
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