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A Fractal Projection and Markovian
Segmentation-Based Approach for

Multimodal Change Detection
Max Mignotte

Abstract— Change detection in heterogeneous bitemporal satel-
lite images has become an emerging, important, and challenging
research topic in remote sensing for rapid damage assessment. In
this article, we explore a new parametric mapping strategy based
on a modified geometric fractal decomposition and a contractive
mapping approach allowing us to project the before image on any
after imaging modality type. This projection exploits the fact that
any satellite image data can be approximatively encoded in terms
of spatial self-similarities at different scales and this property
remains quite invariant to a given imaging modality type. Once
the projection is performed and that a pixelwise difference map
between the two images (presented in the same imaging modality)
is then binarized in the unsupervised Bayesian framework. At
this stage, we will test several parameter estimation procedures
combined with several segmentation strategies based on different
Bayesian cost functions. The experiments for change detection,
with real images showing different multimodalities and changed
events, indicate that this new fractal-based projection method,
which is entirely based on a series of structural and spatial
information, is an interesting alternative to classical regression-
based projection methods (based only on luminance transforma-
tion). Besides, the experiments also show that the difference map,
resulting in this novel projection strategy, is also particularly
amenable for an unsupervised Markovian binarization approach.

Index Terms— Change detection, contractive mapping, fractal
projection, heterogeneous sensors, Markov random field (MRF),
multimodal, multisource.

I. INTRODUCTION

IN RECENT years, the advent of new sensor technologies
and the improvement of their capabilities have stimulated

the emergence of a new field of research in satellite remote
sensing imagery, namely the multimodal change detection
(MCD).

MCD [1] is defined as a procedure for identifying any
land cover changes (such as the emergence or disappearance
of artificial architectures or another type of landscape) that
occurred between two (or possibly several) satellite images
acquired at different times, in the same geographical area but
under heterogeneous conditions.
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It generally includes methods based on heterogeneous
images, i.e., acquired by different satellite sensors,
either with the same sensor type, but with two different
optical, SAR or other systems (cross-sensor or multisensor
images) or with different sensor types such as SAR/optical
images (multisource images) or possibly with the same
satellite sensor but with either different looks or specification
(mutilooking images) or outer (weather or light) conditions
that may also influence the imaging effect such as the
discrepancy in brightness, contrast, and the noise distribution
(information unbalanced data [2]).

MCD is thus a challenging task since the change detection
procedure must be powerful and flexible enough to deal with
image data that follow different statistical behavior in order to
solve the same problems usually processed by monomodal CD
techniques [3] such as natural, land, or environmental moni-
toring, damage monitoring (earthquake, flooding, landslides,
etc.), or urban planning, to name a few.

In the monomodal case, two main strategies are usually
considered. In the pixel-based CD (PBCD) approach, the two
coregistered images are used to generate a difference image
by either differencing, (log-)rationing or by considering that
the second image is in fact a linear function of the first
(regression method) or finally by classification-based CD
techniques which presume that the two images are first
segmented and classified and then compared with each other
(with supervised or automatic methods). At a higher level of
abstraction the object-based CD (OBCD) category operates
with extracted objects on the two images which can be clas-
sified (postclassification framework) before comparison [4].

MCD has recently received a growing interest in the
remote sensing community since this technique imposes less
restrictive conditions about the origin and characteristics of
the acquired data than the classical monomodal CD technique.
As a result, this technique allows us to exploit the enormous
amount of heterogeneous data that we can now obtain
from various archives or different types of (ever-increasing)
existing number of Earth observation satellites, including
the most advanced systems equipped with the latest sensor
technologies. Finally, let us add that the different imaging
modalities may be complementary and by this fact, this
imaging modality fusion technique could potentially be
exploited (not only in geoscience imaging [5]) for further
improving the change detection and analysis of land surfaces

0196-2892 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Université de Montréal. Downloaded on September 25,2021 at 18:35:31 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3845-5361


MIGNOTTE: FRACTAL PROJECTION AND MARKOVIAN SEGMENTATION-BASED APPROACH FOR MCD 8047

with complex properties subject to extreme conditions (e.g.,
temperature, fire, ice, etc.) [6].

Despite its undeniable potential, there is relatively little
research on heterogeneous or MCD approaches in geoscience.
Nevertheless, it can be clearly seen, from an exhaustive review
of the literature on this problem, four different (nonexclusive)
types of strategies: firstly, the simplest methods are those
provided by algorithms using similarity measures [7]–[10]
or local descriptors [9] with assumed invariance properties
according to the imaging modality. Secondly, we can find
the class given by the parametric models in which a set (or
mixture) of multivariate or meta-Gaussian distributions are
generally used to model the joint statistics or the dependencies
between the two imaging modalities or the different types of
multisensor data [11]–[17]. Thirdly, we can consider the class
of nonparametric methods that have the property of not explic-
itly assuming a specific parametric distribution for the data.
This includes learning machine algorithms which learn directly
from examples (training data) [2], [18]–[27] or unsupervised
nonparametric-based procedures, that do not require a training
step, such as the least-squares energy-based model introduced
in [6] and aiming at satisfying a set of overdetermined con-
straints, expressed for each pair of pixels existing in the before
and after images. Finally, the last class is given by procedures
mainly based on a transformation or projection of the two
multimodal images into a common domain or feature space,
in which the two heterogeneous images have the property to
share the same statistics and on which classical monomodal
CD methods can then be applied [26], [28]–[34]. In the same
spirit, an interesting common space can be provided by a
segmentation or a clustering map [35] with which it is easier
to detect the different changes.

A subcategory of the latter strategy groups together all
the procedures mapping one of the two image data to the
domain (i.e., imaging modality) of the other image. This
subcategory, which may also be common to the aforemen-
tioned parametric or nonparametric method classes, will be
now described in more detail since the proposed MCD
model described in this article fits into this category. In
[36], parametric and nonparametric regression methods based
respectively on Gaussian processes, support vector machines,
random forests, and homogeneous pixel transformation [25],
[37] are evaluated. Such mapping can also be learned by
a neural network [20] and a training database. In the same
vein, a nonparametric projection map that aligns data from
different domains in a nonlinear way through kernelization
(and called Kernel Manifold Alignment) is also proposed in
[38]. A parametric method is used in [11] and [12] in which a
quantile regression is applied, according to the copula theory,
to perform an estimation of the local statistics that would have
been observed if the acquisition conditions of the first image
had been similar to the ones of the second image. Brunner
et al. [8] have presented another parametric MCD method to
quantify the earthquake damages in urban areas using a pre-
event optical image and a postevent SAR image. To this end,
the parameters of each building, estimated from the optical
scene and combined with the acquisition parameters of the
actual postevent SAR scene are both used to predict (via

simulation) the expected SAR signature of the building which
is then subsequently compared, with a similarity measure,
to the actual SAR scene in order to quantify the structural
damages caused by the earthquake.

In this article, we explore a new parametric mapping
strategy and, more precisely, we investigate the truth and
test the validity of the following hypothesis: any satellite
image data can be encoded in terms of spatial self-similarities
at different scales (or, equivalently, can be geometrically
represented by a collection of spatial transforms) and this
property remains quite invariant to a given imaging modality
type. This property allows us to project the before image
on the after imaging modality type and to obtain, with a
simple pixelwise difference, a relevant change probability
map which is then binarized with an unsupervised Markovian
approach.

In this context and in summary, this article makes the
following main contributions.

• Unlike the different regression-based projection methods
[20], [25], [36], [37], [39] which aim to learn/estimate
(and then apply) a luminance transformation to map the
first image to the domain of the other image, we herein
propose to exploit the inherent and structural fractal
property of any satellite (or natural) image and more
especially the fact that this appealing propriety remains
quite invariant to a given imaging modality type. This
gives us a new parametric strategy (or a new set of
transformations, entirely based on a series of structural
spatial information), allowing us to efficiently map the
pre-event image to the domain of the postevent image.

• In addition, we will show that, once the mapping is
done by our fractal decoding strategy, the pixel-by-
pixel difference map between the two images (presented
in the same imaging modality) has good properties in
terms of likelihood distributions associated with the two
classes (“change” and “no change”); i.e., first exhibiting
a mixture of sufficiently Gaussian (or quasi-Gaussian)
distributions which are also not too mixed between them
and that are suitable for that an unsupervised Markovian
segmentation (binarization) approach to be effective,
regardless the very different imaging modalities that
could be encountered in remote sensing.

Let us note that a possible and more adequate way to
estimate (or learn) a luminance transformation (or a collection
of luminance transformations) that maps the first image to the
domain of the other image (and/or vice versa) remains the dif-
ferent regression-based projection methods already proposed
in the literature [20], [25], [36], [37]. An interesting MCD
approach would be to combine a projection method based on
regression (luminance transformation) with our method based
solely on spatial transformations.

The remainder of this article is organized as follows.
Section II describes the proposed fractal-based mapping strat-
egy and the unsupervised Markovian approach used to binarize
the change map. Section III presents a set of experimen-
tal results and comparisons with existing MCD algorithms.
Finally, Section IV concludes the article.
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II. PROPOSED CHANGE DETECTION MODEL

A. Introduction

In multimodal case, it is well known that the local statistics
of the input (before and after change) images acquired by the
two different imaging modalities may be radically different
from one image to the other one and this characteristic prevents
that a simple pixelwise difference [or (log-)ratio] model from
being effective in highlighting the different changes. Never-
theless, there is an important feature of any satellite image
data (also common to all natural images) that is quite well
preserved across the different types of imaging modality; any
kind of images show self-similar structures at different scales.
Otherwise said, all images are (approximatively) formed of
properly transformed parts of itself (or are made up of reduced
copies of themselves) and thus exhibits this peculiar type of
self-similarities across a range of scales. In fact, this piecewise
self-similarity property of the image is the redundancy that
fractal image compression schemes take advantage and attempt
to eliminate [40], [41] (in this case, at two successive scales to
be precise). Similarly, the high degree of redundancy expressed
by the self-similarity property, at the same scale, of any images
(thus simply expressing that “every small window in a natural
image has many similar windows in the same image”) has
been first successfully exploited in texture synthesis [42], [43]
and then has demonstrated all its effectiveness as regularity
assumption in image denoising algorithms with the so-called
NL-means introduced by Buades et al. [44]. This intrinsic
self-similarity property was also successfully used in zooming
[45], deconvolution/restoration [46], inpainting [47], super-
resolution [48], and demosaicking [49] procedures (whose
final aim is not to denoise, but instead to infer high frequency
information by transportation from known pixels to unknown
pixels) to name a few.

B. Fractal Projection Model

1) Fractal Encoding Step: The original image is partitioned
into a set a range blocks R = {R1, R2, . . . , RNR } of NW ×
NW pixel nonoverlapping squared subwindows. Let now D =
{D1, D2, . . . , DND } be the domain blocks, i.e., the set of all
Sc ·NW ×Sc ·NW overlapping squared subwindows existing in
the image (with Sc = 2 in conventional fractal encoding, see
Fig. 1). First, each of the domain blocks is contracted by pixel
averaging or down sampling to match the size of the range
block. Second, eight symmetrical transformations (rotations
and flips) are applied to all contracted domain blocks to bring
out an extended domain pool (see Fig. 2) that we now call
D↑. For each range block Ri , we search through all of the
extended domain pool D↑ to find the Ni best matched domain
blocks Di ∈ D↑, i.e., the Ni domain blocks that most look
like the subimage Ri in the LS sense.

At this stage, it is important to mention that there are
two main differences with the conventional fractal encoding
proposed by Barnsley [40] or Fisher [41]. Firstly, we consider
only spatial transformations. We do not consider any transfor-
mation of luminance or gray level such as the brightness and

Fig. 1. In a fractal encoding (or any partitioned iterated function) system,
self-similarity is sought between (larger and possibly overlapping) parts of
the image also called domain blocks (herein represented in blue and mathe-
matically defined by {Di } in the following) and smaller (and nonoverlapping)
parts of the image or range blocks (represented in red and defined by {Ri }). In
this example, we illustrate this kind of matching for the three first (red) range
blocks existing at the beginning of the image. Comparison between domain
and range blocks is done in the least square (LS) sense, by first extending
the domain pool (or set of domain blocks) to the eight possible symmetrical
transformations (isometry) for each domain block (rotations and flips, see
Fig. 2), and second, by contracting each domain block (by down sampling)
to match the size of the range block.

contrast transformation1 that could be used to determine (as
in conventional fractal encoding) the most similar subimages
Ri to a given scale factor (contrast) and offset (brightness)
factor. Secondly, in our encoding scheme, we do not consider
the best domain block (that most looks like the subimage Ri

in the LS sense) but rather the Ni best domain blocks (and
this search is ensured in our application by a kd-tree search
method [50]). The usefulness of this feature will be explained
in detail in Section II-B2. The position of the Ni best domain
blocks along with the right isometric transformation (rotations
and flip) corresponding to each range block is then stored in
an appropriate data structure called the fractal code (F frct) that
will be used in the following step.

2) Fractal-Based Projection Step: The goal of this step is
to use the previous fractal mapping/encoding procedure to
express the pre-event satellite image content (yt1) according
to the imaging modality of the postevent image (yt2) so that a
simple pixelwise difference between the two images, presented
in the same imaging modality, can highlight the different
changes.

To this end, we can use the iterative decoding process
proposed by Barnsley [40] that consists of iterating, for all
range blocks, the inverse transforms, listed in the fractal code
(Ffrct). More precisely, this means that, for every range block
Ri , the right domain block Di is taken from an initial image

1Indeed, the luminance transformation closely depends on the considered
imaging modality type. Let us note that a possible and more adequate
way to estimate (or learn) a luminance transformation (or a collections
of luminance transformations) that maps the first image to the domain of
the other image (and/or vice versa) remains the different regression-based
projection methods already proposed in the literature [20], [25], [36], [37].
An interesting MCD approach would be to combine a projection method
based on regression (luminance transformation) with our method based solely
on spatial transformations.
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(that will be specified later), the inverse isometry is applied and
is then mapped to the range block. This completes an iteration
of the decoding process. The resultant image is thus made
of the collage of the entire subsampled transformed domain
blocks or otherwise said, the decoded image is made up of
reduced copies of itself (see Fig. 1). This image is then used
back as the initial image of the second decoding iteration until
the sequence of images converges, i.e., the iterates get attracted
to a fixed set also called the attractor. This convergence is
ensured, after a few number of iterations, by the fractal theory
of iterated contractive image transformations also called partial
iterated function system (PIFS) [40], [41].

In our application, since we represent image data as collec-
tions of spatial transformations without luminance (brightness
and contrast) transformations, we need to make the following
changes in the decoding process in order to converge and to
represent the before image with the imaging system generating
the after image.

a) First change: We take for the first iteration of the
decoding process, the after image as an initial image and
this for several reasons. Indeed, this image is closest to
our goal (excepted for the few regions in this image where
there has been a change) and consequently the convergence
of the decoding process is thus greatly facilitated. In fact,
to be precise, we must start the iterative decoding process
with an initial image that has been generated with the after
imaging modality if we want to reach our goal (and this
contrary to the conventional fractal decoding procedure which
can start with a random image). Indeed, the constraint used
in our application of using only spatial transformations and
thus spatial collages of the entire domain block (eventually
flipped and/or rotated) without luminance (brightness and
contrast) transformations allows to recreate the image content
but with the rendering or textural characteristics intrinsically
dependent on the imaging modality (or imaging system and
data acquisition) of the domain blocks (taken from the initial
image).

b) Second change: During the fractal decoding (or the
reconstruction process) of the before image with the imaging
modality belonging to the after image, some domain blocks
could be contaminated by the postevent change (see Fig. 3).
This could induce some noise when copying/mapping these
blocks to their respective range block. That is why we
consider, in our application, not one, but Ni best domain
blocks (with the right isometry) corresponding to each range
block (see Section II-B1). In order to eliminate the most
contaminated blocks, we then select, among these Ni blocks,
the ρ percent that most look like the block Ri (in the LS sense)
and in order to eliminate even more noise, we average them
and mapped the averaging result to the corresponding range
block (see Figs. 3 and 4).

C. Probability Change Map Estimation

In its simplest form, the fractal coding is applied over fixed
blocks for the range domain, typically of size 8×8 or 16×16
(NW×NW ) with domain blocks generally twice larger than the
range block (Sc = 2). In fact, for these two choices of range

Fig. 2. The eight symmetrical transformations (rotations 0◦, 90◦, 180◦, 270◦,
and their vertical flip).

Fig. 3. From left to right; before (pre-event) yt1 and after (postevent) yt2

images. Let us assume that we have found the Ni = 5 best matched 16× 16
domain blocks Di (blue dotted frame) existing in the before image which most
look like (in this example with the T 0 isometry [see Fig. 2 at top left]) the
squared block or 8×8 subimage R1 (at the top left of the before image drawn
in red and with solid lines) in the LS sense. Among these Ni = 5 domain
blocks Di , once reported on the after image, one domain block (the middle
left) turns out to be clearly contaminated by the postevent change (a flood).
In order to express the pre-event satellite image content according to the
imaging modality of the postevent image, we take for the first iteration of the
decoding process, the after image as initial image and we then select, among
these Ni = 5 domain blocks (taken in the postevent image) a percentage ρ (or
subset) of domain blocks that most looks like the Ri block of the postevent
image (as, for example, those who are pointed by an arrow and who are
the least contaminated by the “change” area). We average them (after that
the corresponding inverse isometry is applied) and we finally mapped the
averaging result to the location corresponding to R1. This is repeated for
each range block and for several (Nk ) iterations.

block sizes, one generally obtains a substantially identical
compression error (depending on the image) but related to a
different resulting contractive mapping which then generates a
different spatially distributed reconstruction error map. More-
over, let us note that this reconstruction error map appears
as random noise instead of visible ringing or smoothing or
block-boundary artifacts which are typical in JPEG, discrete
cosine transform (DCT), or wavelet compressed image data
[41]. Here, we can exploit this appealing property and reduce
the noise of our final difference or probability change map
by averaging several difference maps obtained by a pixelwise
absolute value of the difference between the after image and
the decoded image (i.e., the before image expressed according
to the imaging modality of the after image).
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TABLE I

DESCRIPTION OF THE TEN HETEROGENEOUS DATA SETS

Algorithm 1 Fractal Encoding & Projection Algorithm

Input: Pair of bitemporal satellite images: (yt1, yt2 )
Output: yt1�t2 : yt1with the imaging modality of yt2

NW Size of the square range blocks
Sc Scale of the contractive transformation
Ni Number of (closest) domain blocks to a given range

block
ρ Percentage of the closest domain blocks used in the

projection/decoding process
Nk Number of iterations of the projection/decoding

R = {Ri } Set of all nonoverlapping range blocks of size
NW × NW covering the image

D = {Di } Set of all overlapping domain blocks of size
Sc · NW × Sc · NW covering the image

D↑ Extended domain block considering for each
Di the 8 existing symmetrical transformations
(see Fig. 2)

D↑� Set of all downsampled domain blocks of D↑
by factor Sc

Ffrct Fractal encoding data (structure) file

1. Fractal Encoding Step
� Initialization: build D↑� from yt1

for each Ri (lexicographically indexed) of yt1 do
◦ Search through all of D↑� (built from yt1) to find the
Ni domain blocks which most look like Ri in the LS
sense and save the location & symmetrical
transformation (associated with these Ni blocks) in
the file Ffrct

2. Fractal Projection/Decoding Step
� Initialization: k ← 0:yt1�t2 ← yt2 : build D↑� from yt2

while k < Nk do
for each Ri (lexicographically indexed) of yt1�t2 do
◦ From Ffrct file, find the location and the right
isometry of the Ni domain blocks associated with
Ri

◦ Select the ρ percent of Ni domain blocks that
most look like Ri (in the LS sense) and average
them and map the averaging result to the
corresponding range block in yt1�t2

k ← k + 1

Fig. 4. Heterogeneous data sets #1, #2, #10 (see Table I). (a, b) Pre-
event image t1 (yt1 ), postevent image t2 (yt2 ), (c) yt1�t2, pre-event satellite
image reconstructed according to the imaging modality of the postevent image
(Nw = 8, Ni = 5, and ρ = 50%) (see Section II-B2), and (d) binary change
map (ground truth).

In our application, this averaging is achieved by averaging
three difference maps, respectively, generated for NW = 8,
NW = 12, and NW = 16 (the gain of this averaging strategy
will be quantified in Section III). The result is then filtered by
a 3×3 classical Gaussian filter to further remove the remaining
noise.

The fractal encoding and projection algorithm including
the averaging process above explained is summarized in
pseudocode in Algorithm 2.

D. Two-Class Unsupervised Segmentation

Finally, in order to automatically separate the change and
no change areas from the previously obtained probability
change map, we have formulated the binarization problem
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in the unsupervised Bayesian framework with a two-step
process. First, a parameter estimation step is conducted to infer
the likelihood model parameters in the maximum likelihood
(ML) sense. At this stage, we consider a simple mixture of
two Gaussian likelihood distributions (for the two possible
class labels; “change” and “no change”) and to estimate the
parameters of this distribution mixture, we will implement
and test the expectation maximization (EM) [51] (see Fig. 8)
and the stochastic expectation maximization (SEM) estimation
procedure [52]. Then, a second step is devoted to the two-
class segmentation or change detection itself based on the
value of estimated parameters [53]. In this step, we will
test successively the simple binarization scheme using the
Markov random field (MRF) segmentation model, called iter-
ated conditional modes (ICM), introduced by Besag [54] using
the maximum a posteriori (MAP) estimator, a Monte-Carlo
algorithm using the Gibbs sampler to find the maximizer of the
posterior marginal (MPM) estimator proposed by Marroquin
et al. [55] (with a Potts MRF pairwise interaction in the two
latter cases), and finally the multiscale MRF segmentation
algorithm presented by Bouman and Shapiro using the sequen-
tial MAP (SMAP) estimator [56].

The overall proposed change detection algorithm is finally
summarized in pseudocode in Algorithm 2.

Algorithm 2 Fractal Projection & Markovian
Segmentation-Based Algorithm for MCD

Input: Pair of bitemporal satellite images: (yt1 , yt2)
Output: A binary CD segmentation map: x

Ni Number of (closest) domain blocks to a given range
block

ρ Percentage of the closest domain blocks used in the
projection/decoding process

yt1�t2 yt1 with the imaging modality of yt2

yd Difference or probability change map
�yd Estimation of the distribution mixture of yd

1. Difference Map Estimation Step
� For Each k ∈ {0, 1, 2} do
◦ yt1�t2

1 ← FRCT_ENCOD&PROJ ALGO (yt1 , yt2, . . .
. . . , NW = 8+ 4k, Ni = 5, ρ = 50%, Sc = 2)
(SEE ALGORITHM 1.)

◦ yd
k ← |yt1�t2

k − yt2 | & linear contrast stretch yd
k from 0–255

yd ← 1
3 |yd

1+yd
2+yd

3 | & linear contrast stretch yd from 0–255
� yd ← [3× 3] GAUSSIANFILTER(yd )

2. Segmentation Parameter Estimation Step
� �yd ← EM OR SEM algorithms applied on yd

3. Segmentation Step
� x← ICM OR MPM OR SMAP algorithms applied on
yd and based on �yd

III. EXPERIMENTAL RESULTS

A. Heterogeneous Data Set Description

To validate our approach, we present in this section a
series of tests conducted on ten real and very different

TABLE II

PERCENTAGE FOR THE TEN HETEROGENEOUS DATA SETS IN TERMS OF

TN, TP, FP, AND FN AND F-MEASURE (SEE TABLE I) FOR THE EM/ICM

COMBINATION

heterogeneous (multimodal) data sets, illustrating the com-
plexity of the addressed problem. This data set both includes
different multimodalities (belonging to the three different
classes of heterogeneity existing in this research domain;
namely multisensor, multisource, and multilooking), reflecting
different change detection conditions, showing a wide diversity
of changed events (river flooding, lake overflow, river’s drying
up, construction, urbanization volcano eruption) and provided
at different resolution levels (varying from 0.52 to 30) and
for different image sizes (varying from 300 to 4135 pixels in
length or width) (see Table I).

More precisely, this data set includes 3 (#1, #4, #10)
multisensor optical image pairs (i.e., same sensor type) but
with two different optical sensors (#4) or same satellite sensor
but with different specifications or bands (#1, #10), 5 (#2, #3,
#62 [39], #7, #8) multisource image pairs (i.e., different sensor
types), respectively optical/SAR (#2, #6) and SAR/optical (#3,
#7, #8) and 2 (#6,#9) mutilooking image pairs (i.e., with the
same satellite sensor but with different looks or specification).

This allows us to compare the performance of the pro-
posed method with different state-of-the-art MCD algorithms
recently proposed in this field [12], [13], [31], [57], [15]–
[17], [6], [10], [20], [24]–[26], [34], [36], [39], [58]–[60] in
different MCD conditions. In this benchmark, all the ground-
truth images (change detection mask) were provided by an
expert photograph interpreter.

B. Results and Evaluation

In all the experimental results, we have considered the
simple gray level of the image (and thus converted), when
necessary, the optical color (or three-bands) satellite image
to grayscale (by simply averaging the three color channels)
and reduce the size of the image such that its maximal size
(length or width) does not exceed 500 pixels (for reducing the
computational load of our procedure).

As already said in Section II-C, we average three difference
maps respectively obtained by a pixelwise absolute value
of the difference between the after image and the before
image reconstructed according to the imaging modality of the

2This heterogeneous data set is kindly available online at http address
https://sites.google.com/view/luppino/data
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Fig. 5. Heterogeneous data sets (see Table I). (a–c) Image t1, t2, ground truth; (d) difference map, and (e) confusion map (white: TN, red: TP, blue: FP,
cyan: FN) obtained by the proposed approach [Fractal-(EM/ICM) Markovian CD model].

after image, and generated (encoded/decoded) respectively for
NW = 8, NW = 12, and NW = 16.

The internal parameters of our model are Ni , the number of
best-matched domain blocks Di that, once subsampled, most
looks like the subimage Ri block of the pre-event image (see
Section II-B1 and Fig. 3) and ρ, the percentage of domain
blocks, reported on the after image, that most looks like the Ri

block of the postevent image. For all the experimental results,
we use Ni = 5 and ρ = 50%. For the parameter estimation
step, we initialize the EM and the SEM algorithms with a
mixture of two Gaussians with equal proportion and equal
variance (σ 2 = 100) and with two distinct means m0 = 100
and m0 = 200. For the Markovian segmentation, we have
considered an a priori Potts model relying on a second-order
neighborhood system with every clique potential setting to

β = 1 in the case of the ICM and 6 level of pyramids for
the SMAP with a hyperparameter equals to = 0.995.

In order to discuss and compare obtained results, a quantita-
tive study is realized by computing first the classification rate
accuracy that measures the percentage of the correct changed
and unchanged pixels: PCC = (TP+TN)/(TP+TN+FN+FP)
and the F-measure: Fm = (2TP)/(2TP+ FP+ FN), where TP,
TN, FN, FP designate classically the true positives, negatives,
false negatives and positives.

First, we have indicated in Table III the score (mean
accuracy rate, mean F-measure, and the overall computation
time in seconds) for the CD estimation of the ten hetero-
geneous data sets considered in our study and obtained by
our fractal reconstruction process followed by an unsupervised
Markovian segmentation with a two step-procedure combining
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Fig. 6. Heterogeneous data sets (see Table I). (a–c) Image t1, t2, ground truth; (d) difference map, and (e) confusion map (white: TN, red: TP, blue: FP,
cyan: FN) obtained by the proposed approach [Fractal-(EM/ICM) Markovian CD model].

either the parameter estimation step provided by the EM
[51] or SEM [52] estimation procedure followed by either
a Bayes minimum error approach (thus without segmentation

algorithm), or the ICM [54], MPM [55], or finally the SMAP
[56] segmentation model. The obtained results are comparable
with less than 1% for the accuracy rate and less than 0.8% for
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Fig. 7. Heterogeneous data sets (see Table I). (a–c) Image t1, t2, ground truth; (d) difference map, and (e) confusion map (white: TN, red: TP, blue: FP,
cyan: FN) obtained by the proposed approach [Fractal-(EM/ICM) Markovian CD model].

the F-measure for each estimation/segmentation combination
(which, in fact, means that the difference map is reliable, stable
over different multimodalities and has also good properties
in terms of noise [Gaussian-distributed and not too mixed],
see Fig. 8). In terms of implementation and computational
complexity, the EM/ICM gives us a good compromise between
simplicity of implementation and precision. A comparison
with different state-of-the-art approaches [6], [10], [12], [15],
[34], [39] is summarized in Table IV. We have also summa-
rized in Table II the percentage, obtained by our proposed
Fractal- (EM/ICM) Markovian CD model, in terms of TN, TP,
FP, FN. From Figs. 5–7 and Table IV, we can see that the rate
accuracy of our method performs very well and is able to give
consistent good results comparatively to the other state-of-the-
art approaches. The average accuracy rate obtained on the ten
multimodal data set based on our fractal and Markovian CD
approach is 92.50% with an F-measure equals to 0.560 thus
with well-balanced confusion matrices.

C. Discussion

We have compared our MCD model (including the aver-
aging of three difference maps respectively generated for
NW ∈ {8, 12, 16}, see Section II-C) and the score obtained
with the averaging of two difference maps (generated for
NW = {8, 16}) or the one obtained for a single difference map
generated for NW = 8. For two maps, we obtain: Accuracy =
92.298 and a mean F-measure = 0.551 and for one map,
Accuracy = 91.99 and a mean F-measure = 0.534. A slight

TABLE III

SCORE (MEAN ACCURACY RATE, MEAN F-MEASURE, AND THE

OVERALL COMPUTATION TIME IN SECONDS) FOR THE CD ESTIMATION

OF THE TEN HETEROGENEOUS DATA SETS CONSIDERED IN TABLE I

WITH DIFFERENT BAYESIAN OR MARKOVIAN

ESTIMATION/SEGMENTATION STRATEGIES

increase in gain is observed in the case of a combination of
several difference maps.

An interesting experimentation is to apply the proposed
approach to two multimodal images without any “change”
zone and to visualize the difference (or probability change)
map with the result of detection obtained. This can be done
easily by extracting (for example, from data set-1 and data
set-2) the same part of the image showing no changed area
(see Fig. 9). This experiment gives us, from the difference
map, the fractal encoding/decoding error which is, for the
same part of the image, quite similar to (the same part of) the
difference map shown in Fig. 5 and also, from the obtained
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Fig. 8. Histograms (with luminance intensity on the x-axis versus the number (or proportion) of pixels on the y-axis) of the probability change (or difference)
map and mixture of two Gaussian likelihood distributions for the two possible class labels; “change” and “no change” estimated by the EM algorithm, on the
ten heterogeneous data sets.

TABLE IV

ACCURACY RATE OF CHANGE DETECTION ON THE TEN HETEROGENEOUS DATA SETS OBTAINED BY THE PROPOSED METHOD (EM/ICM) AND THE

STATE-OF-THE-ART MULTIMODAL CHANGE DETECTORS (FIRST UPPER PART OF EACH TABLE) AND MONO-MODAL CHANGE DETECTORS (SECOND

LOWER PART OF EACH TABLE) [12], [13], [31], [57], [15]–[17], [6], [10], [20], [24]–[26], [34], [39], [58]–[60] IN DECREASING ORDER OF

ACCURACY WITH THE BEST RESULT INDICATED IN FIRST AND IN BOLD

detection, almost the same false positives and true negatives
(respectively in blue and white in the confusion map) obtained
in Fig. 5(e). This demonstrates us that the proposed algorithm

is quite stable, numerically speaking, knowing, that in these
two cases, the set of self-similarities between each range and
domain blocks (and stored in the fractal file) as well as the
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selection of the best “noncontaminated” domain blocks are
necessarily different.

Most (nine-tenths) of the time of our procedure is taken
by its first fractal encoding/decoding step but it worths men-
tioning that this part could be easily parallelizable on graphics
processing units (GPU). Indeed, block matching on GPU is an
extensively studied problem since this one is useful for many
vision, graphic or robotic applications (stereovision, tracking,
compression, robotic localization, 3D reconstruction, graphic
rendering, etc.).

Let us underline that if the image has more than three bands,
our strategy requires to use any dimensionality reduction
model such as [62] and [63] to reduce beforehand the image
into one or three bands. Nevertheless, it should be mentioned
that our fractal projection strategy remains easily generalizable
to accept input multispectral (or hyperspectral or multiband)
raw data without requiring a dimensional reduction step. In this
case, the matching process for self-similar parts of the image
(between range and domain data blocks) at the first fractal
encoding step can be done simply from (possibly spectral)
data volumes (possibly always in the LS sense) but at a higher
computational cost. The second (fractal projection/decoding)
step is straightforward and simple since it essentially consists
of averaging several volumes of data rather than blocks of
image data.

Let us finally add that our model is perfectible, maybe by
using more difference maps to be averaged and more likely
if we improve the fractal coding/decoding model; especially
the partitioning step of the range domain. As proposed in
Section II-B1, we can replace the simple (nonadaptive) and
regular partitioning by a more complex (and adaptive to the
image content) Quad-tree, HV-partitioning, or triangular parti-
tioning scheme [41]. Finally, and as already said in Section II-
B1, another interesting improvement to be considered would
be to combine a projection method based on regression
(luminance transformation) with our fractal-based projection
method based solely on spatial transformations.

The C++ code of the overall MCD proposed model
(and outlined in pseudocode in Algorithms 1 and 2 running
on Linux, data, and all that is necessary for reproduction
of the results shown in this article is freely accessible at
http://www.iro.umontreal.ca/∼mignotte/ResearchMaterial

IV. CONCLUSION

In this article, we have addressed the problem of change
detection in heterogeneous remote sensing. To this end, we
have explored a new parametric mapping strategy based on
a spatial fractal decomposition and a contractive mapping
approach, allowing us to project the before image on any after
imaging modality type. This projection exploits the fact that
any satellite image data can be approximately encoded in terms
of properly spatially transformed parts of itself. We have seen
that this piecewise self-similarity property of any image, which
is the redundancy that fractal image compression schemes
takes advantage, also remains quite invariant to a given imag-
ing modality type and can be used, after some modification and
without supervised learning step, to map the before image on

Fig. 9. Heterogeneous data sets (a, b) image t1, t2 (cropped image extracted
from the “no-change” area in data sets 1 and 2, see Fig. 5), (c) difference
map, and (d) confusion map (white: TN, red: TP, blue: FP, cyan: FN) obtained
by the proposed approach [Fractal-(EM/ICM) Markovian CD model].

the imaging modality of the after image. Once the projection
is performed and that a pixelwise difference map between
the two images (presented in the same imaging modality) is
then binarized in the unsupervised Bayesian framework. At
this stage, we have noticed that the EM/ICM gives us a good
compromise between implementation simplicity and precision
for a wide diversity of heterogeneities, changed events and for
images acquired at different resolution levels.
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