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A Stochastic Method for Bayesian Estimation
of Hidden Markov Random Field Models

With Application to a Color Model
François Destrempes, Max Mignotte, and Jean-François Angers

Abstract—We propose a new stochastic algorithm for com-
puting useful Bayesian estimators of hidden Markov random
field (HMRF) models that we call exploration/selection/estimation
(ESE) procedure. The algorithm is based on an optimization
algorithm of O. François, called the exploration/selection (E/S) al-
gorithm. The novelty consists of using the a posteriori distribution
of the HMRF, as exploration distribution in the E/S algorithm.
The ESE procedure computes the estimation of the likelihood
parameters and the optimal number of region classes, according
to global constraints, as well as the segmentation of the image. In
our formulation, the total number of region classes is fixed, but
classes are allowed or disallowed dynamically. This framework
replaces the mechanism of the split-and-merge of regions that
can be used in the context of image segmentation. The procedure
is applied to the estimation of a HMRF color model for images,
whose likelihood is based on multivariate distributions, with each
component following a Beta distribution. Meanwhile, a method for
computing the maximum likelihood estimators of Beta distribu-
tions is presented. Experimental results performed on 100 natural
images are reported. We also include a proof of convergence of the
E/S algorithm in the case of nonsymmetric exploration graphs.

Index Terms—Bayesian estimation of hidden Markov random
field (HMRF) models, color model, exploration/selection (E/S) al-
gorithm, image segmentation, maximum likelihood (ML) estima-
tion of Beta distributions.

I. INTRODUCTION

E STIMATION of an image model is an important problem
in image processing, with applications to higher level tasks

(such as object recognition or three-dimensional reconstruction)
and is closely related to image segmentation [1]. Since the pio-
neer work of [2] and [3], hidden Markov random field (HMRF)
models have shown to be useful, if not fundamental, in under-
standing that problem. HMRF models are sufficiently simple
to be algorithmically amenable, although that simplicity might
be considered as an over-restrictive hypothesis. However, it is
known [4] that (first-order) “HMRF models are dense among
essentially all finite-state discrete-time stationary processes and
finite-state lattice-based stationary random fields” so that they
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actually offer a nearly universal structure. The Bayesian par-
adigm has been widely used in the context of estimation of
HMRF models and its richness deserves further study.

Various methods have been developed for segmenting an
image based on HMRF models. The simulated annealing
(SA) algorithm [5] computes asymptotically [2] the optimal
segmentation in the sense of the maximum a posteriori (MAP)
criterion. However, the temperature-cooling schedule depends
on the function to minimize (i.e., the image treated). The
iterative conditional mode (ICM) algorithm [3], based on a
greedy strategy, usually produces a good suboptimal solution.
The modes of posterior marginals (MPM) criterion has been
proposed as an alternative to the MAP criterion, with the
advantage of being easily computed by a Monte Carlo (MC)
algorithm [6]. In the context of hierarchical multiscale (HMS)
models, the sequential maximum a posteriori (SMAP) criterion
has been introduced in order to take into account the interscale
relations [7]; a recursive algorithm computes an approximate
solution [7]. A multitemperature variant of the SA has been
extended to the case of HMS models [8]. Other segmentation
methods are based on multiresolution (MR) [9] or multigrid
(MG) [10] models.

One fundamental aspect of HMRF models is the unsuper-
vised estimation of the model parameters (i.e., without knowing
the segmentation) [1]. The adaptive simulated annealing (ASA)
algorithm [11] computes a joint estimation of the likelihood pa-
rameters of the HMRF model and segmentation of the image,
in the sense of the MAP. However, the solution might be subop-
timal [11]. A (suboptimal) estimation of the model parameters
and segmentation of the image, in the sense of the maximum
likelihood (ML), can be computed jointly using a generalization
[12] of the expectation maximization (EM) algorithm [13]. An-
other approach consists of estimating the HMRF model param-
eters and then performing the segmentation of the image. Under
that point of view, the iterated conditional estimation (ICE) pro-
cedure has shown to be relevant in estimating a wide variety of
HMRF models [14]–[20], although the statistical estimator that
it computes is not fully understood as of now.

In all the methods mentioned above, the number of region
classes is assumed to be known. More recently, the reversible
jump Markov chain Monte Carlo (RJMCMC) algorithm [21]
has been used to perform a joint estimation and segmentation
of the HMRF model [22]–[24] in the case where the number
of region classes is unknown. In [25], a cooling-temperature
schedule is imposed on the RJMCMC stochastic process, in
order to compute an optimal solution in the sense of the MAP.
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In [26], the split-and-merge strategy that is exploited in the
RJMCMC is incorporated into a hybrid genetic algorithm.

In this paper, we consider a useful family of Bayesian estima-
tors for HMRF models that take into account global constraints
in the loss function. We propose a method for computing these
estimators that we call exploration/selection/estimation (ESE)
procedure. This procedure is an instance of the exploration/se-
lection (E/S) algorithm of O. François [27], with the novelty
that the a posteriori distribution of the HMRF model is used as
exploration distribution. The E/S algorithm is an evolutionary
optimization algorithm that belongs to the family of the gen-
eralized simulated annealing (GSA) algorithm [28]–[30]. Other
GSA algorithms include the simulated annealing (SA) itself [5],
a parallel version of the SA [31], and the genetic algorithm of
R. Cerf [32], [33]. The internal parameters of the E/S algorithm
depend (for all practical purposes) on the diameter of an explo-
ration graph, and not on the fitness function itself. This appears
to be a major advantage over other GSA algorithms.1 It follows
from O. François’ theorem [27] that the ESE procedure con-
verges to an optimal solution independently of the initial solu-
tion. The ESE procedure computes not only the estimation of
the HMRF likelihood parameters and the segmentation of the
image, but also the optimal number of region classes, based on
global constraints. In our framework, these tasks can be per-
formed jointly, or in two steps (estimation of the likelihood pa-
rameters, followed by a segmentation and an estimation of the
number of region classes). We view the total number of classes
as fixed, but with the possibility of dynamically allowing or dis-
allowing classes; in contrast, one would usually consider a total
number of classes that varies [22]–[26]. Our formulation al-
lows the ESE procedure to find the optimal number of (allowed)
classes without resorting (explicitly) to the more sophisticated
split-and-merge operators.

To keep this paper in its simplest form, we do not consider hi-
erarchical HMRF models. Rather, we apply the ESE procedure
to a new statistical HMRF (mono-scale) model for colors, whose
likelihood is modeled on multivariate distributions, with each
component following a Beta distribution. Incidentally, we note
that the log-likelihood function of a Beta distribution is strictly
concave, which justifies the use of the Fletcher–Reeves algo-
rithm in the computation of its ML estimators. This observa-
tion can be useful in SAR imagery [19], [34], [35], where Beta
distributions are commonly used.2 Other HMRF color models
include: a probabilistic model [36] for various color features,
which is segmented in the sense of the MAP by Hopfield neural
network optimization; a heuristic probabilistic MR model [37]
for dissimilarities of color features (based on thresholds), which
is segmented in the sense of the MAP by a MR SA; a Gaussian
model [38] for spatial interactions of RGB color features, which
is estimated in the sense of the ML, and then segmented by a
split-and-merge strategy; a Gaussian model [39] for the Luv

1More precisely, the critical height H of the E/S algorithm depends on the
fitness function, but the exploration diameterD is a good upper bound. For other
GSA algorithms, the known upper bounds are impractical.

2Gamma distributions are equally used in SAR imagery. However, our color
features are bounded, and, hence, we chose a family of distributions with
bounded support. In particular, the simpler Gaussian distribution hypothesis
would not be sound in our context.

features, which is estimated in the sense of the ML, and then
segmented in the sense of the MAP by the SA; and a Gaussian
model [25] for the Luv features, with variable number of classes,
which is jointly estimated and segmented in the sense of the
MAP by a RJMCMC with temperature-cooling schedule.

The remaining part of this paper is organized as follows. In
Section II, we present the HRMF models considered in this
paper and the Bayesian estimators that we study. Also, the E/S
algorithm is described in detail, as well as its application to
Bayesian estimation (i.e., the ESE procedure). Section II ends
with a description of the two-step estimation and segmentation
variant of the ESE procedure. In Section III, we apply those con-
cepts to the proposed HMRF color model, with a discussion on
the computation of the ML estimators. Experimental results are
briefly presented in Section IV.

II. BAYESIAN ESTIMATION OF CONSTRAINED HMRF MODELS

A. Constrained HMRF Models Considered in This Paper

Given an image, will denote the graph whose nodes are
the pixels of the image with neighborhoods given by the usual
8-neighbors. We consider a couple of random fields ,
where represents a random field of (continuous)
observations located at the sites of , and rep-
resents the labeling field (i.e., a hidden discrete random field).
Typically, in a standard segmentation formulation, we seek an
optimal realization (in the sense of some statistical criterion)
of given an observed realization of . For the color model
presented in Section III, represents a class of regions in the
image with “similar color” and takes its values in a finite set of
labels , whereas is the YIQ color chan-
nels based at the pixel .

In our context, represents the maximal number of region
classes allowed in the image. In our opinion, it is reasonable to
set this upper bound according to the image size; indeed, an ex-
ceedingly large number of region classes will result in a poor es-
timation of the model parameters (to be discussed below), due to
too few elements in the sample sets. The problem of estimating
the exact number of classes will be handled below.

We consider as usual a likelihood defined by a site-
wise product

(1)

i.e., the components of are mutually independent given
and, furthermore, . In a typical ap-

plication, the local distributions belong to
a specified family of distributions parametrized by a vector

(for instance, a multivariate Gaussian model). The like-
lihood of the HMRF is then described completely by the
parameter vector , . The depen-
dence of the likelihood distribution on the particular values
of the parameters is made explicit by using the notations

and . We assume that the
distributions are strictly positive and
continuous functions of and .

Now, it might be desirable to have actually less classes than
the maximal number allowed. We view this option (for reasons
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that will be clear later) as omitting certain classes, rather than
decreasing the actual number of classes. Thus, we introduce a
vector of bits, that indicates which classes are allowed,
with the obvious constraint that at least one of them is allowed
(i.e., ). In particular, the vector of parameters
has a fixed size in our
framework.

We model the prior distribution by a two-dimensional
isotropic Potts model with a second-order neighborhood in
order to favor homogeneous regions with no privileged orien-
tation; more complex models are available in the literature. We
also consider a constraint imposed by the vector of allowed
classes; namely, we say that a segmentation is allowed by

, if all labels appearing in (i.e. for some pixel
) satisfy . Setting , it follows that

if is allowed by , and ,
otherwise. Thus, is modeled by

(2)

where summation is taken over all pairs of neighboring sites,
is the Kronecker delta function, is a parameter, and

is a normalizing constant equal to

(3)

So, the prior model depends on the parameter vector ,
and, again, the dependence of the prior on is made explicit
by the notation .

Altogether, the joint distribution of the couple of random
fields is given by .
Note that the exact number of region classes appears im-
plicitly in ; namely, . If ever , it is
understood that the parameter vectors corresponding to
disallowed classes (i.e, ) become obsolete in subsequent
higher level tasks (such as indexing images or localizing ob-
jects). However, they turn out to be useful at the intermediate
step of estimation (to be discussed below).

B. Bayesian Estimators of HMRF Models

As mentioned in Section II-A, the joint distribution of the
HMRF is completely specified by the vector .
We want to estimate jointly , , and , according to some
statistical criterion.

We formulate the estimation of the parameters in a Bayesian
framework. We view as the parameters to be
estimated. Would it be only for numerical reasons, we find con-
venient to assume in the sequel that the parameters and
belong to bounded domains. The prior distribution on the pa-
rameters is defined by

(4)

where denotes the uniform distribution, and is pro-
vided by the HMRF model.

Now, image segmentation is not a well-posed problem; it de-
pends on some criteria that favor an over segmentation, or, on
the contrary, a region merging. Thus, we consider an energy
function that sets a particular global constraint on the seg-
mentation process. In general, that function might depend on
meta parameters, based on the particular application one has in
mind (for instance, a probabilistic model of the real scene). In
this paper, we consider an energy function based on the “cubic
law” for region sizes [40]. Namely, assuming a Poisson model
for the objects of the real scene that is captured by the image
under orthographic projection [40], the area of disk-like ob-
jects has a density proportional to (because the radius
has a density proportional to ). We also want to restrict di-
rectly the number of regions in the image. So, we consider the
energy function

(5)

where are the sizes of the connected
regions induced by , is the size of the image, and
is a meta parameter ( or 1 in our tests). More precisely,

are the connected components of the graph
, whose vertices are the pixels of the image, and whose edges

consist of pairs of 8-neighbors with same region label. Now, it
is crucial to realize that the value of the partition function
increases at an exponential rate with respect to the number of
allowed classes (for a fixed value of ). This combinatorial
fact makes obsolete the comparison of the prior for
different number of classes: allowing just one class would be
optimal. So, the constraint function has to counter balance
the term appearing in the Gibbs energy of the prior
model.3 We, thus, consider a loss function defined by

(6)

where , denotes the Dirac dis-
tribution for continuous variables, or the Kronecker symbol for
discrete variables, with and .4

Finally, the likelihood is provided by
the HRMF model. We are then interested in the generalized
Bayesian estimator defined pointwise by

(7)

(8)

3In statistical mechanical physics, the quantity lim (logZ( )=jGj)
corresponds to the pressure of the image lattice under the prior distribution
P (xj ). See [41] and [42], for instance.

4One could also include in the constraint � a term corresponding to the
Bayesian information criterion (BIC) [43] in order to encourage simpler models
(i.e., a smaller number of allowed classes).
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since does not depend on ; hence-
forth

(9)

as is readily seen. Note that one could include in the prior
of the HMRF model and obtain the MAP estimator. However,
we prefer not to do so, because this would make the Markovian
blanket of each pixel extend to the whole image lattice.5 At any
rate, the proposed loss function yields the weighted mode of
the posterior distribution of . The squared error loss function
and the absolute error loss function would give respectively the
weighted mean and the weighted median of the posterior distri-
bution of (see [44, Ch. 3]).

Now, let be the ML estimator for the complete data
. That is, given a realization and the observed realization

, let be the ML estimator of on the sample
set , so that . Here, it
is understood that can have any value whenever the
class is empty in the segmentation (i.e., for all
pixels ). Following [11], we obtain

(10)

(11)

since, for given values of and , we have

upon using the independence of the variables conditional
to .

For simplicity, the prior parameter is fixed to 1 throughout6

so that reduces to the vector of allowed classes . Thus, in that
case, the estimation problem is reduced to the minimization of
the fitness function

(12)

on the set of all realizations for which is allowed by
.7 In this context, the SA algorithm [2] is intractable. Also, the

ASA algorithm [11] might converge to suboptimal solutions. In
this paper, we propose a new variant of the E/S algorithm [27]
in order to find an optimal solution which we now present.

C. Exploration/Selection (E/S) Optimization Algorithm

The aim of the E/S is to minimize a fitness function on a fi-
nite search space . It relies on a graph structure on , called
the exploration graph, which is assumed connected and sym-
metric. For each element , denotes the neighbor-
hood of in the graph . For each , a positive distribution

5The two formulations are perfectly equivalent, and it is just a matter of taste
as to which one is preferred.

6See, for instance, [3], [12], and [45]–[48] for estimation methods of the prior
model. Technically, the estimation of the parameters of the prior distribution can
be included in our framework, but we choose not to discuss that aspect in this
paper.

7The term � logZ( ) of the constraint function cancels out with the term
logZ( ) of the prior so that only �(x) appears explicitly. In particular, the
fitness function does not depend on v, once restricted to the case where x is
allowed by v, but note that f(x; v) =1, whenever x is not allowed by v.

is defined on the neighborhood of in the graph
. Given , an element of the Cartesian

product is called a population (of solutions). Given a popu-
lation , will denote the current best so-
lution with minimal index: such that ,
for , and , for . The algo-
rithm can be stated as follows.

1) Initialization: Choose randomly the
initial population .

2) Repeat until a stopping criterion is
met.

a) Updating the current best: Determine
) from the current population ,

according to the fitness function
.

b) Exploration/selection: For each
, replace with probability

, by according to the
distribution ; otherwise, re-
place by (with probability

). Decrease .

In [27], at the exploration step, the element is taken in
, but this is unnecessary, as is explained in details

in Appendix A.8

The probability is called the probability of exploration and
depends on a parameter , called the temperature. Taking

, one has to decrease to 0 sufficiently slowly
and assume that the size of the population is sufficiently large.
Let be the set of global minima of the fitness function . The
following result follows directly from Theorem 2 of [27] and
will suffice for our purposes.

Corollary 1 (Corollary to O. François’ Theorem 2 [27]): Let
be the diameter of the exploration graph. Then, for any
, and any

whenever (i.e., ),
where is the iteration.

Proof: See [50, p. 43].
Now, we will actually need a slightly modified version of the

E/S algorithm. Let be an auxiliary finite set. We assume that
the exploration distribution depends on an element of . So,
given and , is a positive distribution on the
neighborhood . The modified E/S algorithm can be stated
as follows.

1) Initialization: Choose randomly the
initial population ,
and choose by some deterministic
rule the initial vector of auxil-
iary elements .

8However, for the variant [49] of the E/S algorithm, one has to take x 6=
�(~x).
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2) Repeat until a stopping criterion is
met.

a) Updating the current best: Determine
) from the current population ,

according to the fitness function
.

b) Exploration/selection: For each
, replace with probability

, by according to the
distribution ; otherwise, re-
place by (with probability

).
c) Updating: Modify the auxiliary ele-

ments according to some de-
terministic rule, based on the cur-
rent values of . Decrease
the probability of exploration .

In Appendix A, we show that all the results of [27] also hold
for this modified version of the E/S algorithm. An example of
“deterministic rule” for modifying the auxiliary elements, is pre-
sented in Section II-D.

D. Exploration/Selection/Estimation (ESE) Procedure

We now present a particular instance of the E/S algorithm
in the context of Section II-B. We let be the complete graph
structure on the search space of all pairs for which

is allowed by . Thus, , and this would yield a very
poor algorithm if the exploration distribution were the uniform
distribution. So, one has to design carefully an exploration
distribution.

Let the auxiliary set consists of all elements
of the form for some (depending on

). A simple possibility for the exploration distribution
is the a posteriori distribution of the HMRF model itself

, which can be sim-
ulated (approximatively) using a few sweeps of the Gibbs
sampler. Thus, roughly speaking, the new allowed classes are
chosen randomly according to a uniform distribution, and the
exploration is concentrated around the modes of the posterior
distribution . However, for algorithmic reasons, it
seems to us more interesting to replace the uniform distribution
by a distribution that modifies only 1/2 bit on average,
and to simulate according to the classes allowed by for
only one sweep

(13)

Note that we do not mind whether is allowed by , as long as
is. In our implementation, the dependence of on
holds in the fact that serves as initialization for one sweep

of the Gibbs sampler. Also, the deterministic rule for modifying
given , consists of setting , whenever a

class appears in (i.e., for some ), and keeping the
current value of , otherwise. Hence, is not completely de-
termined by ; this prevents us from dropping the dependence
of the distribution on . In other words, writing

might leave out some classes, which would be

problematic since we want to simulate any currently allowed
class. This is the whole point in using the auxiliary set in the
E/S algorithm. Note that the exploration distribution is strictly
positive because of the assumption made in Section II-A on

and .
In order to speed up convergence, one can use the -means

algorithm described in [51], rather than a random initialization.
Altogether, the E/S algorithm can be outlined as follows in our
context. Let and .

1) Parameter initialization: Use the
-means algorithm to obtain a raw

segmentation based on the set of
color features into classes.
Set , for ; set

, for , where denotes
the vector with all bits equal to
1. The estimate is equal to the
ML estimator on the complete data

. Set , for .
2) Then, is computed

recursively from until a
stopping criterion is met, as fol-
lows.

a) Updating the current best: Deter-
mine from the current pop-
ulation , using the values
of the fitness function ,

.
b) For , explore a solution

with probability , or
else select the current best.
i) Exploration: Modify each bit
of with probability ; if
all bits become equal to 0, set
one of them (randomly) equal to 1.
Let be the resulting vector
of allowed classes. For one sweep,
visit the sites of the image lat-
tice sequentially. At each site
, draw according to the
weights

(14)

where denotes the set of
8-neighbors of . Let be the
resulting segmentation.
ii) Selection: Let

.
c) Estimation: Set . It

is understood that for each class
not appearing in , the former
estimation is kept.



DESTREMPES et al.: HIDDEN MARKOV RANDOM FIELD MODELS WITH APPLICATION TO A COLOR MODEL 1101

Fig. 1. Left: Example showing the current best value of the fitness function f as a function of the iteration t (the value of the function is normalized by the size
of the image); the ESE strategy converges surely to the optimal solution, whereas a simulation-like strategy might take a lot longer before it reaches the optimal
solution. Right: Example showing the actual number of allowed classes as a function of the iteration t, for a population of three solutions.

From O. François’ theorem, we obtain
, for , with probability 1. The

Bayesian estimator sought might not be uniquely
defined, but the algorithm will compute one of the optimal so-
lutions. We call this algorithm exploration/selection/estimation
(ESE) procedure.

It remains to determine a sensible stopping criterion. The
best result known to date in that direction is given by Theorem
3 of [27]. However, the constants and appearing there
are not known explicitly. Moreover, achieving this task is way
beyond the scope of this paper. So, we have decided to fix
the final exploration probability empirically. In our tests, we
take and , and the final exploration probability
is set equal to 1/6. Thus, the procedure is stopped after 217
iterations and an average of 158 explorations are performed.
See Fig. 1 for an example showing the current best value of
the fitness function as a function of the iteration . In that
figure, we compare the ESE strategy with a simulation-like
strategy, upon setting . Clearly, the ESE procedure
seems more promising. Fig. 1 also presents an example of the
actual number of allowed classes that were explored, in the
case of an upper bound of 12 allowed classes. We note that
only 3 to 12 allowed classes were actually explored within
the 217 iterations; the minimal Gibbs energy obtained was

9.796 57 and the estimated number of allowed classes was
8. We also performed the estimation procedure with a fixed
number of allowed classes varying from 1 to 12. The respective
Gibbs energy obtained were: 4.317 26, 5.6363, 9.625 38,

9.800 42, 9.791 46, 9.751 14, 9.742 72, 9.726 39,
9.737 38, 9.741 45, 9.729 46, 9.707. The main point

is that an exhaustive search on the number of classes yield a
relative improvement of only 0.039% on the Gibbs energy (see
Section IV for further discussion).

As seen above, the exploration distribution can be easily sim-
ulated using the Gibbs sampler. If were included in the ex-
ploration distribution, one would need the MCMC algorithm
to simulate the exploration distribution (because, in that case,
the Markovian blanket of a pixel would be too large). In that
case, the Gibbs sampler could be used to simulate the proposal
function, but this is unnecessary in our framework: The accep-
tance/rejection mechanism of the MCMC is replaced by the ex-
ploration/selection mechanism of the E/S.

One could choose the model of variable size for the vector
of parameters , corresponding to a variable number of region
classes, but, then, one would need the RJMCMC for the simula-
tion of the exploration distribution. In contrast, our framework,
based on omission of classes and auxiliary set in the E/S algo-
rithm, allows the use of the Gibbs sampler.

The ESE procedure presents some resemblance with particle
filtering (PF) algorithms [52]. One can consider the iteration as
the time, the sequence of estimated parameters as the signal
process, and the constant sequence as the obser-
vation process. The exploration distribution
would correspond to the transition kernel of the signal process
at consecutive time and the model likelihood to the marginal
distribution of the observation conditional to the signal process.
The selection step of the ESE would be replaced by the updating
step (or resampling) of the PF. Finally, the estimation step would
be replaced by a simulation of the parameters and included in
the prediction step, together with the exploration step. The main
point is that the ESE procedure converges with a fixed number
of particles (i.e., solutions) as small as 2, whereas the known
convergence results [52] for the PF require that the number of
particles tend to infinity.

E. Variants of the ESE Procedure

In the case where the model is very complex, it might be
preferable to perform the estimation and the segmentation of
the model in two steps. In a first step, the estimation is per-
formed without omitting any class, nor considering any global
constraint. In a second step, the segmentation is performed ac-
cording to the full model, but using the parameters of the likeli-
hood previously estimated. We now give the details.

1) Estimation With No Class Omitted: In order to omit no
class, it suffices to consider for the prior model the distribu-
tion , where is the Kronecker delta symbol.
Moreover, the global constraint is not considered, upon setting

. This approach amounts to computing the Bayesian
estimator

(15)

The ESE procedure is modified accordingly upon letting the
search space consists of all realizations of the hidden
random field .
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2) Segmentation Based on the Likelihood Parameters: Once
the vector of parameters of the model is estimated, one can
estimate once again itself, but using this time the global
constraint and permitting the omission of classes. This
amounts to computing the Bayesian estimator

(16)

Thus, . Accordingly, one can modify the ESE
procedure upon letting the auxiliary set consists of the only
element .

Note that the resulting estimated parameters are
not equal to the ones computed in Section II-D. Nevertheless,
they also constitute reasonable and (hopefully) useful estimators
of the model.

III. STATISTICAL MODEL FOR COLORS

We now apply the general concepts presented in Section II to
an original statistical model for colors. We adopt the same for-
malism as in Section II-A. Namely, denotes the image lattice,

is the observable random field of YIQ color channels on ,
and is the hidden random field of color labels that belong to
a finite set of region classes.

A. Description of the Color Features

The raw data represents the RGB channels at the pixel
located at the site . We compute the YIQ coordinates
using the transition matrix [53]

(17)

With the convention that each component of takes its values
in , we deduce that ,

, and
. Based on these bounds, each component of

is normalized between 0 and 1. This yields the transformed
data .9

B. Statistical Model for the Color Features

For each site of , and each color class , we model
the distribution by a multivariate Beta model,
that we now describe. First, we consider the diffeomorphism

defined by on each compo-
nent , where . A few examples convinced us
that the variable does not quite follow a Gaussian distri-
bution. We chose to model by considering the random vector
of dimension equal to

(18)

where is the average -dimensional vector of the trans-
formed features , and is a orthogonal (decorre-

9One could also consider nonlinear transformations of the RGB channels
[54], such as the Luv coordinates.

lation) matrix for . Thus, after a suitable rotation, the com-
ponents of the variable are assumed
independent, and the same holds true for the components of .

We model independently each variable by a Beta distri-
bution , where

(19)

with . Here,
is the Euler (1729) gamma function.10 Now, it

does not seem suitable to allow an arbitrarily small value for the
standard deviation of the Beta distribution, since one might end
up with arbitrarily large values for the shape parameters .
Indeed, we have and,
hence, . So, we impose the condition
that be no less than a fixed value . This condition implies
that are bounded. Thus, our requirement that the likelihood
vector of parameters be defined over a bounded domain is
fulfilled (see Section II-B).

The values of , for , are established as fol-
lows. We compute , where is the estimated
mean of over the sample set. We consider the derivative

of the map evaluated at the point , and we
set , for some fixed-value . With
that choice, the image of the box
under the map , covers the box centered at of radius

(with respect to the norm ). Thus, roughly speaking, at
least 99% of the distribution of covers for each an interval
of length no less than . In our tests, we chose
in order to cover one unit of the RGB channels (on a scale of 0
to 255). Since, the RGB channels actually vary between 0 and
255, rather than 1 and 256 (see Section III-A), the variances
obtained are indeed bounded.

Altogether, is modeled by ,
where and stands for . See
Fig. 2 for an example of empirical distributions for the decorre-
lated color features.

C. ML Estimators

Let be a sample of i.i.d. observations drawn
according to the multivariate Beta model .
The first step in computing the ML estimators of the model is
the estimation of the decorrelation operator . Here, we
use the principal component analysis (PCA) estimators

(20)

where the columns of span the principal subspace of the
sample covariance matrix of the sample (with corre-
sponding eigenvalues in decreasing order).

Next, the pseudo-decorrelated features are com-
puted. For each fixed index , we estimate the corresponding
Beta distribution, using the method explained in Appendix B.

10By theorem, the Euler Beta function B(a; b) = u (1� u) du is
equal to �(a)�(b)=�(a+ b).
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Fig. 2. Example of empirical distributions for the decorrelated color features,
based on the segmentation and the parameters estimated by the ESE procedure
on the first image of Fig. 4, with a maximum of 12 allowed color classes. Here,
we show two classes per line. The histogram of each normalized decorrelated
color feature is compared with the corresponding estimated Beta distribution.

D. Estimation and Segmentation Based on the Color Model

Given an image, the statistical model for colors is described
completely by the parameter vectors

(21)

where . As in Section II-B, we fix throughout,
so that reduces to . The ESE procedure described in Sec-
tion II-D is used in order to perform a joint estimation and seg-
mentation. Alternatively, one can use the two-step variant of
Section II-E.

E. Simulation of the Color Model

Given a color class , and a statistical parameter vector
, we proceed as follows

to simulate a color region of that class. For each pixel with
label , simulate each component according to the given
distribution , and set . Then, compute the
vector corresponding to before normalization and set

. This process is repeated until ,
for , 2, 3.

IV. EXPERIMENTAL RESULTS

We have tested the proposed method of estimation and seg-
mentation on 100 natural images taken from the database The
Big Box of Art. We think that all of them are optical images
obtained by electronic acquisition, though we do not have that
information at hand. The typical size of an image was 511
768. We have performed two series of tests, with the cubic law
of sizes as global constraint.

In the first series of tests, we performed for each natural
image , a joint estimation and segmentation , with
a maximal number of allowed classes, and or

1. We then simulated a synthetic image based on that esti-
mation. Thus, and were considered as ground
truth. The RGB channels of that image were saved in floats,
rather than in the format ppm, in order to preserve the distribu-
tions. Next, we performed a joint estimation and segmentation

for the synthetic image, with a maximal number
of allowed classes. We evaluated the estimation error
with the measure

(22)

where ,
and is the observed random field for the synthetic image. See
Fig. 3 for a histogram of over the dataset and Fig. 4 for
examples of simulated images.

The average number of allowed classes was 11.91 with
, and 7.18 with . This does not necessarily mean that

the algorithm failed in finding an optimal reduced number of
classes. It could just mean that the optimal number of classes,
according to the color model and the global constraint, is not
so low. In order to clarify that important point, we performed a
second series of tests, with , , and . We
compared the two segmentations with the following measure:

(23)

where ranges over all one-to-one maps from into . Thus,
that measure represents the classification error, after an optimal
match of classes. indicates whether the ESE procedure is
capable of estimating the right number of classes, in the difficult
situation where the algorithm has to reach four classes, starting
with 12 of them. The average number of classes was 5.57, but
note that takes into account the proportion occupied by extra
classes in the image and had an average value of 0.5%. See Fig. 3
for a histogram of over the dataset.

In the case of synthetic images produced with , we
estimated each image with a fixed number of four classes. We
then compared the optimal Gibbs energy with the one obtained
when . The relative error was only 0.20% on average.
Thus, one would not gain much by performing an exhaustive
search on the number of classes. The point is that, as in [55],
all that matters for higher level tasks, is the Gibbs energy of the
model.

Note that specifying the value of (i.e., the global constraint)
does not amount to fixing the number of allowed classes. Indeed,
once the synthetic images are obtained upon setting
or , one obtains an average of 11.91 classes, and 4.89
classes, respectively, with a fixed value of . The point is
that once the global constraint is fixed, the number of classes
found by the proposed model depends on the constraint and the
observed data. That being said, modifying the global constraint
(e.g., taking instead of ) does affect the number
of allowed classes. As in [24], the choice of a global constraint
could be guided by a generic model of the image acquisition
(e.g., [40]), a statistical criterion (e.g., [43]), or a learning phase
performed on a database of images. It would remain to test the
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Fig. 3. Histograms of evaluation measures over the dataset. In the usual order. � for K = 12 and ! = 0; mean: 0.47%. � for K = 12 and ! = 1;
mean: 1.73%. � for K = 4 and ! = 0; mean: 0.50%.

Fig. 4. Unsupervised estimation and segmentation of images using the
ESE procedure, according to the multivariate Beta color model. Left: Image.
Right: Simulation based on the resulting Bayesian estimators, using the cubic
law of region sizes, with ! = 0 and K = 12.

robustness of the proposed method with respect to a calibration
or estimation of the global constraint parameters.

The ESE procedure is stopped when the exploration prob-
ability reaches 1/6 (i.e., after 217 iterations) and takes about
48 min. on a Workstation 1.2 GHz when . This rep-
resents an average of no more than 18.5 s/exploration, for a
total of 158 explorations. In [24], it is reported that an image
of size 350 250 takes from 10 to 30 min after some pre-
processing step, on a Pentium-III PC. In our case, an image
of size 366 250 takes about 10 min. The CPU time is not
available for [25], but we know that 200 explorations were per-
formed. Thus, we are inclined to think that the computational
complexity of the ESE procedure is equivalent to that of the

RJMCMC [24], [25]. Also, the ASA [11] would take the same
time per iteration (and might yield a suboptimal solution). The
main point is that the known internal parameters of the ESE pro-
cedure that ensure convergence are practical, whereas for other
state-of-the-art algorithms (ASA, RJMCMC with stochastic re-
laxation), the known bounds are impractical (e.g., what should
be the initial temperature that would ensure convergence?). Fur-
thermore, as mentioned in [11], a joint estimation and segmen-
tation with a plain SA is out of the question, since this would
require at each iteration one estimation of the model parame-
ters per pixel for each color label. In our case, this represents
about 44 days and 6 h of CPU time per exploration step (i.e., an
increment by a factor of about ). Thus, it seems to
us that the computational load of the ESE procedure compares
favorably to state-of-the-art algorithms for joint segmentation
and estimation, with a clear advantage of having practical op-
timal internal parameters.

V. CONCLUSION

The ESE procedure is a general method for estimating the
weighted modes of HMRF models, with global constraints taken
into account. The optimal internal parameters of the algorithm
(i.e., that insure asymptotic convergence to an optimal solu-
tion) are known explicitly and are practical. The split-and-merge
mechanism is handled implicitly by the procedure, thus yielding
a relatively easy implementation. The tests reported in this paper
indicate that the ESE procedure succeeds in finding the optimal
solution of the proposed color model, within a relative error
bound of less than 1.73% on average.

As for the color model itself, it remains to be tested in various
higher level tasks, such as indexing or localization of shapes, in
combination with models for additional aspects of image anal-
ysis. For instance, it is agreed that image segmentation should
also include texture analysis and edge detection. See [24] and
[56], for instance, but, in this paper, we wanted to test the esti-
mation method on a simple model. Future work will include an
extension of the ESE procedure to a hierarchical HMRF model
[57], in view of texture segmentation.

APPENDIX I

The E/S algorithm simulates a in-homogeneous Markov
chain on the set , since the temperature depends on the
iteration . will denote the state of the vector
at iteration , where . We let be the Markov
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transition matrix associated with the chain ; i.e.,
. We then have

where denotes the Kronecker symbol. Let
. We obtain

Let be a constant such that
, for any , , and

, where denotes the uniform distribution on
. Such a constant exists because all sets involved are finite,

and the distributions are positive on . Then, we have

where

if
otherwise

In particular, is irreducible (since is connected), and the
function is exactly as in [27]. Hence, we are exactly in the
same relevant setting as [27], and all the results there apply di-
rectly.

We now turn to the case where the exploration graph is
not necessarily symmetric. We recall from [58] that a -graph
on consists of a set of arrows

such that every point of is the initial point of
exactly one arrow, and leads to through a sequence of arrows.
If , the set of all -graphs is denoted by . Also, the
communication cost from to is defined by

The virtual energy of is then defined by

where

The set of minima of on is denoted by and the min-
imal value by . Let denote the set

. We identify with its natural embedding into .
The asymptotic behavior of the algorithm is determined by

the critical height . We refer the reader to [30] for a detailed
definition of this concept, as well as the notion of cycles and exit
height of a cycle. If is a cycle, denotes its exit height.

is then defined as . The importance of
the critical height is expressed by the following theorem valid
for any GSA.

Theorem 1 (Trouvé [30]): (a) For all decreasing cooling
schedules converging to 0, we have

if and only if .
The corollary of Section II-C in the case of not necessarily

symmetric graphs follows from Trouvé’s theorem, upon proving
the following two propositions. See [27] for similar results and
proofs in the symmetric case.

Proposition 1: If , then .
Proposition 2: If , then .
Lemma 1: Let . Then, there exists such

that and for all either 1) ,
, or 2) , .

Proof: This is a special case of [32, Lemma 5.9] with
, since for any .
Lemma 2: Let . and . Then, .

Proof: This follows from [49, Lemma 6.1 ] (with identical
proof in the nonsymmetric case), since .

Lemma 3: Let . Then, .
Proof: Let be an graph as in Lemma 1. There exists

such that . Remove that
edge and introduce the edge . This gives a graph
so that

but , since .
Proof: (proposition 1): First, consider any with

. Let be an graph as in Lemma 1. There exists
and such that . Remove that
edge and introduce the edge . This gives a graph.

Now, , since . Moreover, from
Lemma 2, . Hence

Now use Lemma 3.
Lemma 4: For any cycle, , , , we have

where .
Proof: This is established within the proof of [30, Prop.

2.16].
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Proof: (proposition 2): Let and pick
, as well as , such that . By

Lemma 4, . Now use Lemma 2.

APPENDIX II

Lemma 5: Consider the Euler Beta function

Then, is strictly convex on its domain
; i.e.,

for any in , and .
Proof: Fixing , we have to show that

This inequality amounts to

. Now, write and
. Then, in the case where , the in-

equality reads as

but this is just Cauchy–Schwartz inequality, since is of the
form only if . Thus, is strictly
convex in the Jensen sense (J-convex) on

for . Since is continuous, we conclude
that it is strictly convex.

Let be a sample of i.i.d. observations drawn
according to a Beta distribution

From [59], the log-likelihood function of the distribution
is given by

where ,
.

Corollary 2: The log-likelihood function of the Beta distri-
bution is strictly concave and has a unique global maximum,
which is its unique critical point.

Proof: Since the function
is affine, we conclude from the lemma, that
is strictly concave. Furthermore, setting

,
we have that

. Thus, has a global maximum on its
domain. Furthermore, using strict concavity, this is the unique
critical point of on its domain.

Following [59], we obtain

where is the digamma function . For an initial
approximation of the ML estimators, let

and set , . If ever ,
replace the former by the latter. In [59], it is recommended to
use Newton–Raphson’s method in order to refine the solution,
but, by the corollary, it is more appropriate to use a method such
as Fletcher–Reeves algorithm for the optimization of the log-
likelihood function . Using strict concavity, this algorithm will
converge to the optimal solution, even if the initial solution is
somewhat far from the optimal one. This gives us the estimated
Beta distribution . In our implementation in C++, we use
the GNU scientific library of functions for the log-gamma and
digamma functions, as well as for the Fletcher–Reeves method
(with a tolerance of as stopping criterion). If ever

, the procedure is stopped. We admit
that this is rather ad hoc, but, in this manner, we avoid working
directly with the constraint.
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