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Fusion of Hidden Markov Random Field
Models and Its Bayesian Estimation

François Destrempes, Jean-François Angers, and Max Mignotte

Abstract—In this paper, we present a Hidden Markov Random
Field (HMRF) data-fusion model. The proposed model is applied
to the segmentation of natural images based on the fusion of colors
and textons into Julesz ensembles. The corresponding Exploration/
Selection/Estimation (ESE) procedure for the estimation of the pa-
rameters is presented. This method achieves the estimation of the
parameters of the Gaussian kernels, the mixture proportions, the
region labels, the number of regions, and the Markov hyper-pa-
rameter. Meanwhile, we present a new proof of the asymptotic
convergence of the ESE procedure, based on original finite time
bounds for the rate of convergence.

Index Terms—Bayesian estimation, color and texture seg-
mentation, Exploration/Selection algorithm, Exploration/Selec-
tion/Estimation procedure, fusion of hidden Markov random field
models, Julesz ensembles, Markov Chain Monte Carlo (MCMC)
algorithm.

I. INTRODUCTION

DATA fusion of image channels provided by various sensors
is an important problem in image processing, with applica-

tions to image segmentation of natural images, or in areas such
as geophysical imaging, medical imaging, and radio-astronomy
(see [1]). In this paper, we focus on image segmentation based
on data fusion.

One of the goals of image segmentation is to decompose an
image into meaningful regions, such as consistent parts of ob-
jects or of the background, based on the fusion of various types
of features. Our point of view is to characterize each meaningful
region in the image by the distribution of the features on the
region. This characterization of a region is called a Julesz en-
semble [2].

When working with Julesz ensembles, it is customary to com-
bine the various features assuming the independence property
conditional to the region process. An example can be found
in [3], in the case of univariate Gaussian kernels and uniform
priors on the estimated Gaussian parameters. In [4], a Gaussian
and an inverse gamma priors are set on the mean and the vari-
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ance, respectively, of each Gaussian kernel. One can also as-
sume a correlation between the channels conditional to the re-
gion process. For instance, the channels can be combined into a
single multi-channel vector [5], and the joint likelihood is then
defined directly on that vector. In [6], a correlation is also set
on the channels. In this paper, we set a correlation between the
features of a same type, but consider features of different types
as independent conditional to the region process.

In order to perform data fusion, a stationary distribution can
also be put directly on the image features knowing the marginals
of the features, based on the maximum entropy principle [1], [7],
[8]. The solution belongs to the generalized exponential family
(cf. the filters, random fields, and maximum entropy (FRAME)
model [9]). A fundamental result states the equivalence [10] be-
tween FRAME models and Julesz ensembles. In this paper, we
consider directly Julesz ensembles as a mean of data fusion,
due to the computational load of estimating FRAME models.
In [11], possible different generic (FRAME) models are set on
the various regions. But since the likelihoods of distinct models
might not be comparable, appropriate weights need to be as-
signed on each type of generic model [11]. In contrast, we adopt
the same model for all the regions, that is flexible enough to rep-
resent any type of region.

In the models mentioned above, the fusion process is based on
the data itself. One can also base the fusion decision on the indi-
vidual channel decisions. In [12], the fusion of the decisions is
based on an ad hoc Markov model. In [13] and [14], the various
channel decisions are combined together according to Demp-
ster–Shafer theory.

As it stands, the image itself could form a single region, or
on the contrary, each region could be formed of only a few
pixels. Thus, in order to obtain a meaningful decomposition of
the image, one needs a prior probability on the region process
that sets a constraint on the spatial organization of the region
labels. In this paper, the spatial prior is defined by a Markov
model of order 2, as well as a global constraint based on the
size of connected regions.

Once a model is established, an equally important problem is
the estimation of the model parameters. We adopt the Bayesian
paradigm for the estimation of the model. We propose to
estimate not only the Gaussian parameters of the kernels and
the region labels, but also the mixture proportions, the number
of regions, and the Markov hyper-parameter. Various Bayesian
priors are set on the parameters. We choose to compute the
MAP of the proposed model, weighted by a global constraint
on the region process.

The algorithm presented in this paper in order to compute
the MAP is an extension of the Exploration/Selection/Estima-
tion (ESE) procedure [15] to the proposed fusion model. It is a
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variant of the Exploration/Selection (ES) algorithm [16], that in-
tegrates an (approximate) Markov Chain Monte Carlo (MCMC)
transition kernel into the exploration scheme. Meanwhile, we
present a new proof of the asymptotic convergence of the ES
algorithm, based on original finite time bounds for the rate of
convergence. The ES algorithm can be viewed as a mix between
genetic algorithms and simulated annealing. See [17] and [18]
for closely related algorithms.

Among the main algorithms for simulating the poste-
rior distribution of models of variable dimension, are the
Reversible Jump Markov Chain Monte Carlo (RJMCMC)
[19]–[21], the Data Driven MCMC (DDMCMC) [11], the
Birth-and-Death MCMC (BDMCMC) [22], the Delayed Re-
jection MCMC (DRMCMC) [23], the general Continuous
Time MCMC (CTMCMC) [24], and a generalization [25] of
the Swendsen–Wang algorithm [26]. In our case, we avoid
the (major) difficulty of engineering a Metropolis–Hastings
dynamics with a sufficiently high rate of acceptance, upon
using the ES algorithm. The point is that in order to compute
the MAP of the model, it is not required to simulate precisely
the posterior distribution of its parameters.

In this paper, we illustrate the proposed data fusion model
and the estimation method with color and texture features. The
color features are the Luv components, and the texture features
are the responses to Gabor and Gaussian filters. As mentioned
in [27], textons refer to micro-structures in natural images. In
[28], a texton is modeled by a Voronoi cell in the space of tex-
ture features. In this paper, we model a texton by a unimodal
(Gaussian) distribution on the space of texture features. The dis-
tribution of the texture features on the region class is then a mix-
ture of the unimodal kernels, each one appearing according to a
certain proportion within the region. That distribution describes
a Julesz texture.

This work develops on our previous paper [15] in the fol-
lowing aspects: 1) the ESE procedure is applied to a triplet of
Markov random fields, rather than a pair of random fields, in the
context of data fusion; 2) the local likelihoods are mixtures of
distributions rather than unimodal distributions; 3) the hyper-pa-
rameter of the Markov prior on the region process is estimated
rather than being fixed; 4) the proposed model is shown to be
identifiable; and 5) finite time bounds for the proposed algo-
rithm are given rather than just a proof of asymptotic conver-
gence.

The remaining part of this paper is organized as follows. In
Section II, we present the hidden Markov random field (HMRF)
color and texture models considered in this paper, as well as
their fusion model. In Section III, we present the Bayesian esti-
mator and its algorithmic computation. Experimental results are
briefly presented in Section IV.

II. FUSION OF COLORS AND TEXTURES

A. Random Fields Considered

The lattice of the image pixels is viewed as a graph , with
set of nodes . We consider a hidden discrete random field

on with random variable taking its values in a finite
set of labels . Our intention is to consider

as the set of region classes, and we call the region process.

We consider levels of analysis of the image, such as colors
and textures. At each level of analysis , an observ-
able random field is defined on the graph . Accordingly,
for each level of analysis , an observable (continuous) random
variable is defined at each site . The variables
take their values in a space of image features of dimension

, depending only on the level . Our intention is to consider
each set as a space of image features, such as color or tex-
ture features. We collect the various levels of analysis together,
upon considering the random field on the
graph .

Next, for each level of analysis , we consider
discrete random variables that take their values in a finite
set of cue labels . Each label rep-
resents an equivalence class of similar image features. The dis-
crete random field is called a cue process. Exam-
ples of cue processes are the color process and the texton process
(Section II-D). We collect the various cue processes together,
upon considering the random field on the
graph . See Fig. 1 for an illustration of the region process ,
and the cue processes and in the case of color and texture
features.

B. Likelihood

We now present a model for the likelihood of the observ-
able image features conditional to the hidden
field of region labels , and the hidden field of cue labels

(such as color labels and texton labels). The main
point is to use a unimodal distribution for the local likelihood
of the observable image features conditional to a cue label,
and to use a mixture of these unimodal distributions for the local
likelihood of the observable image features conditional to a re-
gion label.

For each site at level and each cue class , the
likelihood of the observable features conditional to the cue
label is modeled essentially by a Gaussian kernel. More
precisely, we consider the diffeomorphism
defined by on each component ,
where is the dimension of the feature space . We define

by

(1)

where denotes the Jacobian of the map .
We collect the local likelihoods together by setting

(2)

where and . We view the levels as
independent, conditional to ; more precisely, the joint distri-
bution of conditional to is modeled by

(3)

where and .
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Fig. 1. Natural image, the estimated region process X , the simulated cue processes: the color process C and the texton process C (cf. Section II-A). See
Section II-D for a description of the color features Y and the texture features Y .

Next, at each level of analysis , we consider
each cue label to appear in some proportion within the re-
gion class . Namely, let satisfy

(4)

Then, we model the probability of conditional to by

(5)

We collect these local likelihoods together by setting

(6)

Again, we consider the level of analysis to be independent.
So, we set

(7)

where .
The joint distribution of conditional to the region

process is expressed as

(8)
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using (2), (3), (6), and (7). We deduce that the marginal of
conditional to is equal to

(9)

where each factor is equal to

(10)

Thus, for each region label , the likelihood
is a mixture of the distributions

, and only the mixture propor-
tions vary from one region class to another. In particular,
the Gaussian kernels are in-
dependent of the region label . The proposed family of
distributions is quite flexible, since any continuous distribution
can be approximated by a mixture of a sufficiently large number
of Gaussian kernels. See Fig. 2.

The marginal distributions of the features
, , define uniquely a Julesz en-

semble [2] for each region ; namely, the set of stationary
fields with the distributions ,

, as marginals. In the case of texture features,
the Julesz ensemble is referred to as a Julesz texture. Further-
more, we then call the micro-texture corresponding to a single
Gaussian kernel a texton.
Thus, a texture is a mixture of textons.

C. Prior on the Region Process

In this paper, we consider a Potts model of order 2 on .
Namely, we consider the family of potential functions

(11)

where ranges over the set of all binary cliques. The diag-
onal cliques have less weight than horizontal or vertical cliques
as in [29].

Now, as in [15], is considered as the maximal number of re-
gions labels allowed in the region process . In order to handle
the case of possibly less classes than , we consider a vector

of bits, with the constraint that (cf.
[15]). The vector indicates which regions labels are allocated
(i.e., is allocated if ).

Let be a hyper-parameter. The prior distribution
is then defined by

(12)

where if the labels appearing in are precisely the
ones allocated by the vector (i.e., if and only if
for some pixel ), and , otherwise. Here, is
a normalizing constant called the partition function

(13)

An important uniqueness property of this model will be dis-
cussed in Section III-A11.

D. Image Features

We now present the color features at level . At each
pixel of the image, the raw color components yields the
CIE components under the hypothesis that the NTSC
phosphors standard [30] was used. The features are then
the color components [31] at the pixel , computed from
its components. In particular, is the dimension
of the space of color features . The purpose of the Luv com-
ponents is to provide a perceptually uniform color space. Note,
however, that we could have used any color system since they
all differ by a (possibly non-linear) change of variables.

Next, we present the texture features at level . A fun-
damental result [9] states the perfect reconstruction of the lu-
minance density (a stationary field) from the marginals of all
linear filter responses (one-dimensional random variables). In
practice, only a few filters suffice to distinguish textures within
a given image. In that case, the joint distribution of the chosen
filter responses defines uniquely a Julesz ensemble [2] that de-
scribes the texture.

Let be a given filter bank. We consider the observable
random vector defined by the filter responses ,
where is the image luminance of the components
at pixel (and not the component of the coordinates). In
particular, . An important issue is the design of a filter
bank [8], [32]. In this paper, we choose a filter bank as follows.

Recall that the linear 2-D-Gabor filters [33] are optimal for a
joint spatial and spectral resolution (cf. the uncertainty principle
of [33]). Such a filter is defined by

(14)
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Fig. 2. Examples of empirical and simulated distributions for the gray-level and the Gabor filter responses, based on the parameters estimated by the ESE proce-
dure. Mixtures of Gaussian kernels are quite flexible in modeling various continuous distributions.

where and ,
and . The first term defines a Gaussian kernel with
mean (of dimension 2) and covariance matrix

(15)

The second term produces a harmonic modulation with mean
frequency . The angle is called the orientation, and

, the standard-deviations. Accordingly, its Fourier trans-
form is a Gaussian kernel of mean and covariance
matrix .

Note that for a Gabor filter , the
spatial and the spectral uncertainties [33] are, respectively, equal
to

(16)

We establish the architecture of the filter bank as fol-
lows. We set in what follows , and

. We choose a bandwidth of two octaves; i.e.,

. Thus,

the mean frequency is equal to .
We take four equally-spaced rotations , , ,

. Taking the real and imaginary parts of each Gabor
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Fig. 3. Left: real part of a Gabor filter. Center: its Fourier transform. Right: spectral aliasing due to spatial digitization. Parameters: � = 0:33, � = 0, � = 0,
� = � = 0:168166.

filter, we obtain 8 high-pass filters (see Fig. 3). We also con-
sider a low-pass Gaussian filter with same spectral resolution
as the Gabor filters, i.e., , and hence with same
variance. The corresponding spatial resolution of those nine
filters is . In our tests, we chose ,
which yields , and

.

III. ESTIMATION OF THE MODEL

A. Bayesian Estimator Considered

The fusion model presented in Section II is com-
pletely described by the vectors of parameters

(17)

where , , and , as pre-
sented in (1), (4), and (12). We estimate the vector of parame-
ters in a Bayesian framework. Under that
paradigm, it is essential to specify carefully the prior on the pa-
rameters to be estimated.

1) Prior on the Mixture Proportions: It is now a stan-
dard practice in Bayesian statistics to set a Dirichlet
process prior [34] on the mixture proportions. Namely,
the prior on the mixture proportions (conditional to
the allocation vector ) is defined independently at each
level and for each allowed region class

(i.e., such that ) by a Dirichlet distribution
equal to

(18)

where is the Euler gamma function. The constant is
called the dispersion parameter, and the constants
represent the prior information of the latent variable .

In our case, the initial guess on the mixture proportions
is that the cue label conditional to each region label

is distributed uniformly on the set of cue labels. So, we
set the prior proportions equal to . This is
called a Dirichlet process prior with base measure the uniform
distribution on , and with dispersion parameter . In
our setting, we want a non-informative uniform distribution for
the mixture proportions, so that we take . Thus, we
obtain the uniform prior

(19)
In order to sample from a Dirichlet

distribution , we use the algorithm of
Table I. An interesting advantage of the Dirichlet prior on
the mixture parameters is that the
posterior distribution of the parameters conditional to the cue
process and the region process is also a Dirichlet distribu-
tion as detailed in Table II. A prior with that property is called
a conjugate prior.

2) Prior on the Cue Likelihood Parameters: For the cue
Gaussian likelihood parameters and of (1), we
consider independently for each level of analysis
and for each cue class , the usual conjugate prior
for multivariate Gaussian distributions defined by [35, Th. 7.7.3]

(20)

where is the Normal distribution and is the inverted
Wishart distribution with degrees of freedom. Here, is a
vector of dimension , the dimension of the feature space ,

is a positive constant, and is a positive-definite symmetric
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TABLE I
SIMULATION OF A DIRICHLET DISTRIBUTION

TABLE II
EXPRESSION OF THE POSTERIOR DIRICHLET DISTRIBUTION

matrix of dimension . The inverted Wishart distribu-
tion is defined by (21), shown at the bottom of the page, where

denotes the determinant of a square matrix ,
denotes its trace, and

(22)

with the Euler gamma function. The expectation of is
, for . See [35, Lemma

7.7.1].
In our tests, we fix and , and the values

of and are estimated, once and for all on a given image,
at each level of analysis according to the method presented in
Table III. Thus, we obtain the prior defined by equal to

(23)

where and are as in Table III.

TABLE III
COMPUTATION OF THE PRIOR GAUSSIAN/INVERTED WISHART PARAMETERS

TABLE IV
SIMULATION OF AN INVERTED WISHART DISTRIBUTION

In order to simulate according to an inverted Wishart
distribution , we use the algorithm of Table IV,
which is a variant of Jones’ algorithm [36]. In order to simulate

according to a Gaussian distribution , we use the
algorithm of Table V. Again, an interesting advantage of the
Gaussian/Inverted Wishart prior on the likelihood parameters

and is that the posterior distribution of the parameters
conditional to the cue process is also a Gaussian/Inverted
Wishart distribution as described in Table VI. See [35, Th.
7.7.3]. Furthermore, Table VI shows that the matrix will
be positive-definite even if the empirical matrix is singular,
as long as the prior matrix is non-singular. This property is
useful when analyzing an image in which some regions have a
constant feature vector (because then, ).

3) Prior on the Region Process: The prior on the region
process is given by the model of (12).

4) Prior on the Spatial Hyper-Parameter: We adopt the
following non-informative improper prior distribution on the

(21)
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Fig. 4. Left: Prior distribution on the number jvj of allocated region labels (see Section III-A5). Right: Global constraint on the number of connected regions in
the case of 38 400 pixels and equal size components (see Section III-A9).

TABLE V
SIMULATION OF A GAUSSIAN DISTRIBUTION

TABLE VI
EXPRESSION OF THE POSTERIOR GAUSSIAN/INVERTED WISHART DISTRIBUTION

parameter of the Markov prior model

(24)

5) Prior on the Number of Allocated Regions: We consider
the number of allocated region labels as a random variable
of the form , where is a Poisson variable with mean .
So, . We set Jeffrey’s prior on the mean:

. With that model, we obtain

.
Taking also the number of permutations of the region labels

into account, we obtain the following prior distribution on the
vector of allowed region classes defined by

(25)

See Fig. 4 for an illustration of the shape of the proposed distri-
bution.

6) Prior Distribution on the Parameters: Altogether, we ob-
tain the following prior on the parameters :

(26)

as defined in (19), (23), (12), (24), and (25).
7) Likelihood: We find convenient to consider the augmented

data . The joint distribution of the augmented model is
described by (8), whereas the marginal distribution of given
is described by (9). Thus, the corresponding likelihoods can be
expressed as

(27)

(28)

8) Posterior Distribution on the Parameters: Finally, the cor-
responding posterior distributions on the parameters are ex-
pressed as

(29)

(30)

The directed acyclic graph (DAG) presented in Fig. 5 summa-
rizes the proposed Bayesian model.
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Fig. 5. DAG of the proposed fusion model.

9) Global Constraint: Given a segmentation , let
be the connected regions induced by . That

is, let be the graph with nodes the pixels of the image, in which
two pixels and are connected if they are 8-neighbors and if
they have the same label . Then,
are the connected components of the graph . Under the “cubic
law” of 3-D-object sizes [37], the probability of observing a
connected component of size is proportional to . If
we let the size vary from 1 to the size of the image, the
constant of proportionality is .

Also, we consider the number of connected regions to be of
the form where is a Poisson variable of unknown mean

. As in Section III-A5, the marginal distribution of is equal
to .

Taking of the combined probabilities, we obtain a
global constraint on the region process of the form

(31)

Fig. 4 illustrates the shape of the proposed global constraint, in
the special case of equal size components (i.e.,

). In this case, we took pixels. In
practice, only the increasing part of the curve is relevant, since
the function starts to decrease after as much as 12000 connected
regions. The likelihood of a natural image prevents this case to
occur. In our tests, the average number of connected regions was
521.89.

10) Weighted Map Estimator: Due to the intractable compu-
tation of the partition function , the ML estimator of
cannot be computed. So, we replace the likelihood (as is often
done) by the pseudolikelihood [38]. Since the pseudolikelihood
estimator of an MRF is consistent [39], nothing is lost in the es-
timation of the hyper-parameter , at least for sufficiently large
images. The pseudolikelihood estimator is the maximum
of the function

(32)

where is the set of neighbors of the pixel . The factor
1/2 takes into account the fact that each binary clique is counted
twice in the pseudolikelihood term.

Therefore, we propose the following weighted maximum a
posteriori (MAP) estimator of the
fusion model of (30): the values of the parameters that maximize
the function

(33)

where the pseudopartition function is equal to

(34)

Equivalently, is a global minimum of
the energy function defined by

(35)

Note that must be equal to the pseudolikelihood estimator
on the optimal segmentation . Also, the dependence of

on is only implicit. Namely, is the set of labels appearing
in (otherwise, ). See Table VII
for an algorithm that computes the pseudolikelihood estimator.
This algorithm works because the function defined by (32) is a
concave function.

11) Identifiability: An important property in statistics is the
identifiability of the model (cf. [40]). In the context of the pro-
posed model, this property can be stated as follows.

Theorem 1: Let with ,
for , 2, be two vectors of parameters that induce the same
values of the energy function for any observable data

. Then, (up to permutation of the indices).
The proof of the Theorem is postponed until Appendix I. A

practical consequence is that, for large images, the parameters
are uniquely determined by the observed data. In particular, the
weighted MAP is practically unique.

B. Stochastic Algorithm

We find convenient to use the augmented data in the
calculation of . Also, we consider an
auxiliary integer that represents the number of
allocated region labels so far. The role of in the algorithm
will appear clearer later. Thus, we consider the augmented
vector and we define a function

. Clearly, for any
and , the vector is optimal for

if and only if is optimal for . Thus,
we want to optimize the augmented function on the (aug-
mented) search space consisting of all admissible 8-tuples
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TABLE VII
COMPUTATION OF THE MAXIMUM PSEUDOLIKELIHOOD PARAMETER

; i.e., if and only if for
some pixel , for , and . Note that we
can view the space as finite, upon using the -machine of the
computer. That is, in reality, we are working with a finite set!

In order to solve this optimization problem, we resort to O.
François’ Exploration/Selection () algorithm [16]. The goal of
the algorithm is to minimize a function on a finite set . The
algorithm relies on an exploration kernel , with

, which gives the probability of reaching from under an
exploration operator.

Given , a vector of solutions in the Cartesian product
is denoted . Such a vector is called a population of solu-

tions. Given a population of solutions ,
denotes the best solution (with minimal index in case of a tie)
among ; i.e., , where for

, and for .
At each step, two operators are available. An exploration op-

erator that draws a new solution according the kernel ;
a selection operator that replaces by the best current solution

. The exploration operator is performed with probability
at iteration . The probability of exploration is set equal to

, where is a parameter of the algorithm. The random
state of the vector at iteration is denoted . The algorithm
is summarized in Table VIII.

In the original version of the algorithm [16], the exploration
kernel is a uniform distribution on a neighborhood

of with deleted. In this paper, the exploration
kernel can be any distribution that satisfies the following hy-
pothesis:

(36)

TABLE VIII
ES ALGORITHM IN ITS GENERAL FORM

Theorem 2: Let hypothesis (36) hold. For any and any

where is the global minimum of on , and
.

Theorem 2 is useful because we obtain a sequence converging
to 0, as shown in the following Lemma.

Lemma 1: Let be the sequence defined recursively by

where , , and . Then, .
Corollary 1: For any ,

.
Proof: This follows directly from Theorem 2 and Lemma

1, upon observing that hypothesis (36) implies that .
Thus, we recover a new proof of the asymptotic convergence

of the ES algorithm under hypothesis (36). But Theorem 2 ac-
tually gives unilateral confidence intervals for . For
instance, with , , and , we obtain

if . If

, we obtain .

In practice, condition (36) can be met as follows. Let
be any exploration kernel that satisfies the hypothesis

(37)
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TABLE IX
MODIFICATION OF AN ES EXPLORATION KERNEL a SATIFYING HYPOTHESIS

(37) INTO A KERNEL ~a THAT SATISFIES HYPOTHESIS (36)

where is called the diameter. If , the kernel
satisfies itself condition (36). If , consider the modified
kernel defined by the algorithm of Table IX. The idea is
to simply repeat the kernel a random number of times between
1 and . Then, clearly, the modified kernel satisfies condition
(36), because there is a positive probability of performing con-
secutively times the exploration according to the kernel .

There is a closed connection between the ES algorithm and
the simulated annealing. To see this, let ,
where is called the temperature. Then, if
is given by the usual simulated annealing temperature schedule

, we recover as in Table VIII. In fact,
it is shown in [16] that the algorithm converges to an optimal
solution (under hypothesis (37)) if and only if is of the form

, with an appropriate value of (in particular, it is suf-
ficient that ).

The ESE procedure [15] is a variant of the algorithm designed
in the case where is a space of parameters and is
the posterior distribution of the parameters conditional to the
observed data. Again, after digitization of the space, can be
viewed as finite. The main idea is to use an MCMC kernel of the
posterior distribution as exploration kernel. In practice, this cru-
cial idea helps the algorithm perform efficiently; in particular,
using a uniform distribution would yield a very poor algorithm
in our case.

We can build systematically the MCMC kernel upon using the
Gibbs sampler. Namely, one transition consists in performing
the following sampling steps.

1) , , , , , .
2) , , , , , .
3) , , , , , .
4) , , , , , .
5) , , , , , , .
6) , , , , , .

However, we need to bring some modifications to this general
scheme.

• In step 2), one needs to perform many sweeps of the image,
and moreover take into account the global constraint
in a Metropolis-Hastings (M-H) strategy. But this is unnec-
essary in our case, because the proposal/disposal mecha-
nism of the M-H algorithm is replaced by the exploration/
selection mechanism of the ES algorithm. The point is that
our goal in this paper is not to simulate the posterior distri-
bution of , but rather to compute the MAP estimator.

• Step 1) should be combined with step 2) in a RJMCMC
strategy in order to simulate the posterior distribution of

with jumps in dimension. Note that engineering a
RJMCMC kernel that offers sufficiently high rates of ac-
ceptance is a hard task in practice. But again, all we need
is an exploration kernel that satisfies hypothesis (37) (for
some value of ). So, we replace step 1) by an ad hoc ex-
ploration , as described in Table X. The
point is that in the sampling of the region labels in
step 2), only those labels allowed by are used. In this
manner, an artificial jump in dimension is performed.

• In step 4), whenever a region class is empty, we do not
simulate the mixture proportions according to the prior dis-
tribution. Rather, we keep the former values of the mixture
proportions for this region class intact for a subsequent it-
eration. Similarly, for step 5).

• As explained in Section III-A10, in step 6), we are actually
interested in taking instead of simu-
lating .

The resulting modified Gibbs sampler is presented in Table X.
Now, we want to start with one region (i.e., ) and let the

number of allowed regions grow gradually until it reaches the
maximal value (i.e., ). In order to do so, we consider
an operator of birth of a region explained in Table XI. The idea
of using such an operator can be found in [22]. Altogether, the
exploration kernel used in this paper consists of Table XI
followed by Table X. The resulting kernel satisfies hypothesis
(37) with . Then, use Table IX with to obtain a
kernel that satisfies hypothesis (36). Note that at the interme-
diate steps, the vector might not be admissible, but that at the
output is admissible.

Finally, we present the initialization steps in Table XII.
The results above imply that the whole procedure converges
asymptotically to the weighted MAP ,
with probability 1. In our tests, we took and in
Table VIII. Furthermore, we waited for the first 10 iterations
before increasing the number of allowed regions (cf. Table XI).

IV. EXPERIMENTAL RESULTS

We have tested the proposed method of estimation and seg-
mentation on the University of California at Berkeley (UCB)
test dataset [41] of 100 natural images in “.jpg” format. We think
that all of them are optical images obtained by electronic acqui-
sition, though we do not have that information at hand. The typ-
ical size of an image was 481 321. Each image was reduced
by a factor of 50%. In our implementation in C++, we use the
GNU scientific library of functions.

We performed for each natural image , a joint estimation and
segmentation based on the observed chan-
nels data , with a maximal number of allowed
classes, and a fixed number of color classes and

texton classes. This represents a task of estimating
38 400 color labels, 38 400 texton labels, 38 400 region labels,
144 Gaussian color parameters, 864 Gaussian texton param-
eters, 30 mixture parameters per region class, and one Mar-
kovian hyper-parameter. We then simulated the image channels

based on that estimation. Thus, and
were considered as ground-truth. Note that the image itself
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TABLE X
MODIFIED GIBBS SAMPLER FOR THE ESE PROCEDURE

was not simulated. Next, we performed a joint estimation and
segmentation for the synthetic image, with
again and . We took and
as internal parameters of the ESE procedure. The procedure was
stopped after iterations (see Section III-B).

We evaluated the estimation error with the measure

where is defined by (35), as well as the relative measure pro-
posed in [15]

TABLE XI
OPERATOR OF BIRTH OF A REGION FOR THE ESE PROCEDURE

TABLE XII
INITIALIZATION OF THE ESE PROCEDURE

For the first estimation, the average number of region classes
was (the maximum 40 was reached for only
one image out of 100), while the average number of connected
regions was (or if
singletons are omitted). For the second estimation, the average
number of region classes was (the maximum
40 was never reached), while the average number of connected
regions was (or if
singletons are omitted). The ESE procedure took on average 3 h
and 26 min. on a Workstation 2.4 GHz for an average of 1046.44
explorations. This represents roughly 11.81 s/exploration. The
complexity of each exploration is actually linear in the size of
the image times the number of region classes.

See Fig. 7 for a histogram of and over the dataset,
and Figs. 1, 6 and 8 for examples of segmentations. The
three images 175043.jpg, 38082.jpg, and 69040.jpg were
totally missed ( and

respectively). In
fact, the current number of allowed region classes was only 1 at
iteration 1465. We increased the number of iterations to 8352
and obtained successfully
and respectively.

V. CONCLUSION

We have presented an HMRF data-fusion model based on
Julesz ensembles and applied it to the segmentation of natural
images. The ESE procedure [15] is a general method for es-
timating the weighted modes of HMRF models, with global
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Fig. 6. Top: A natural image and the formation of its region process at iterations
25; 30; 35; . . . ; 85, and 1465. Bottom: evolution of the number of region classes
and the Gibbs energy of six solutions as a function of the iteration.

Fig. 7. Histograms of the evaluation measures � and � over the dataset.
Mean of � : 0.308919. Mean of � : 0.84%.

constraints taken into account. We have shown how to adapt
it to the proposed data fusion model. Not only the parameters
of the Gaussian kernels and the region labels were estimated,
but also the mixture proportions, the number of regions, and the
Markov hyper-parameter. The internal parameters of the algo-
rithm that insure asymptotic convergence to an optimal solu-
tion are known explicitly and are practical [15]. Furthermore,
we have presented new finite time bounds for the rate of con-
vergence. The tests reported in this paper indicate that the ESE
procedure succeeds in finding the optimal solution of the pro-
posed fusion model, within a relative error bound of less than
0.87% on average.

It remains to test the fusion model in various higher-level
tasks, such as image indexing, 3-D-reconstruction, motion
detection, or localization of shapes, in combination with prior
knowledge on the particular problem.

APPENDIX I

We present in this Appendix a proof of Theorem 1 of
Section III-A11.

Fig. 8. Examples of segmentations based on a fusion of colors and textons.

Let , be two vectors of
parameters, with . Assume that

for all . This means that

In particular, we obtain an equality of distributions
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as well as the equality

Considering the marginals, we deduce

for each pixel and each model . Indeed, the variables
are mutually independent. It follows at once from the identifi-
ability property [40] of mixtures of Gaussian distributions, that
after relabeling of indices, on allowed region classes,
and , on cue classes. We deduce immediately
that withprobability (w.p.)1, sincedistinct regionshave
distinct mixture proportions w. p. 1. Furthermore, , since

indicates which region labels are present in the segmentation .
Finally, we conclude that because is the pseudo-

likelihood estimator of .

APPENDIX II

The purpose of this appendix is to give an upper bound on the
rate of convergence of the ES algorithm of Table VIII. The hy-
pothesis is given in (36) and the notation is as in Section III-B.
Our approach is inspired by previous work on genetic algo-
rithms [42] and [43].

We now present the proof of the main result. After normaliza-
tion, we may assume without loss of generality that the global
minimum of the function is equal to .

Proof: (of Theorem 2)Let be the Markov transition matrix
associated with the chain ; i.e.,

. From Table VIII, we have for any

(38)
where denotes the Kronecker symbol.

Given , let be the characteristic function of the
event ; i.e., if , and
otherwise. Then, .
Let denote the distribution of . Since

, we compute

(39)

(40)

where and
. In the first term (39), we have , whereas

, for any . Thus, the equality never oc-
curs. It follows from (38) that .
Thus, we obtain

(41)

In the second term (40), we have , for any . Thus, we
obtain

(42)

This completes the proof of the Theorem, upon setting
.

Finally, we prove the lemma.
Proof: (of Lemma 1)We rewrite the recursion for as fol-

lows:

where and .
First of all, we claim that , for all . For ,

the property holds by definition. Assume that the property holds
for ; i.e., . Then, is located between the numbers

and . Since both of them are in the interval , the
same holds true for .

Next, we claim that it is sufficient that . In-
deed, we have . Thus, it follows that

. We now show that .
Case 1: .

Since , and , we can
take sufficiently large so that . Note also that
the sequence is decreasing, whereas the sequence is
increasing.

Fix , and consider the sequence

We claim that for . For , the property is
immediate. Assume the property true for some . We
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compute

which proves the claim. In particular, .
Now, the sequence can be solved explicitly. Namely, we

have

Indeed, this sequence satisfies the recursive definition of . In
particular, we obtain

upon making use of the facts that and .
One can check that implies that

; also, implies that
. Therefore, the right-hand side converges to 0, and

we are done. One can actually show more: the right-hand side is
of the same order as , where the constant of propor-
tionality depends on . We skip the details here.

a) Case 2: .
We then have . Fixing , we

thus obtain . But
now, since

. Thus, . Since , the series
converges. Thus, , and we

are done.
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