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Segmentation Framework Based
on Label Field Fusion

Pierre-Marc Jodoin, Max Mignotte, and Christophe Rosenberger

Abstract—In this paper, we put forward a novel fusion frame-
work that mixes together label fields instead of observation data as
is usually the case. Our framework takes as input two label fields: a
quickly estimated and to-be-refined segmentation map and a spa-
tial region map that exhibits the shape of the main objects of the
scene. These two label fields are fused together with a global en-
ergy function that is minimized with a deterministic iterative con-
ditional mode algorithm. As explained in the paper, the energy
function may implement a pure fusion strategy or a fusion-reac-
tion function. In the latter case, a data-related term is used to make
the optimization problem well posed. We believe that the concep-
tual simplicity, the small number of parameters, the use of a simple
and fast deterministic optimizer that admits a natural implemen-
tation on a parallel architecture are among the main advantages of
our approach. Our fusion framework is adapted to various com-
puter vision applications among which are motion segmentation,
motion estimation and occlusion detection.

Index Terms—Color segmentation, label fusion, motion estima-
tion, motion segmentation, occlusion.

I. INTRODUCTION

I N the field of imagery, computer vision is frequently con-
sidered as a research area in which applications aim at esti-

mating high-level models learned from input images. This is the
case for applications such as stereovision [1], motion estimation
[2], and motion detection whose goal is to estimate depth la-
bels, optical flow vectors and the presence (or absence) of move-
ment in a video sequence. Most methods used to solve these
kinds of imagery problems are built upon a to-be-optimized
energy function made up of low-level image features such as
color, spatial gradient or texture features. Years of research have
demonstrated that significant improvements may be achieved by
using more complex features (e.g., wavelets coefficients instead
of Fourier coefficients), better designed energy models (e.g.,
robust instead of quadratic or L1-norm energy functions) and
better optimizers (stochastic instead of deterministic optimizers
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and/or a multiresolution instead of monoresolution optimization
schemes).

With the ever-growing computational power of modern com-
puters, researchers tend to use an increased number of features
to enforce the result accuracy. The main advantage of using
many features resides in the fact that many features blended
together often mutually compensate for their respective limita-
tions. For example, when segmenting cluttered color images,
the use of color and texture features has shown great improve-
ment as compared to color-only or texture-only segmentation
approaches [3].

However, using numerous features raises the question of
how these metrics can be fused together. The most intuitive
and simple solution is probably to fuse those features inside
one single N-dimensional vector. In this perspective, each input
pixel may be associated not only to 3-D RGB color values, but
also to texture values, gradient values, edge data, or any other
input features. Among the applications that benefit from this
approach of “all features in one vector” are motion segmenta-
tion [4], texture segmentation [5]–[8], image retrieval [9], [10],
and face recognition [11]–[13], to name a few.

However, despite the obvious advantages of using high-di-
mensional data vectors, an increased number of features raises
new challenges. One such challenge is the well known problem
of the “curse of dimensionality” [14], [15] related to the rapid
increase of extra dimensions. Donoho [16] points out that if we
consider a unit dimension divided in bins of size 1/10, a min-
imum of ten points is needed to fill each bin with at least 1 point.
However, for a 20-dimension unit hypercube, no less than
points are needed to fill the bins. This means that an increase in
dimension often means a need for more input data which, for
some applications, is not realistic.

The typical solution used to avoid the curse of dimensionality
is to reduce the number of dimensions. To do so, one may try
to identify the “right” features in the stream of input data and
minimize the dimensionality by getting rid of the “less useful”
features [5], [14], [17], [18]. One simple but efficient way for
selecting features is to retain a subset of features that best
help the algorithm produce precise results [14]. Although this
approach is viable in many applications, it has the disadvantage
of requiring a training data set and, thus, being deficient for un-
supervised applications. Other approaches for reducing dimen-
sionality focus more on the “right” data space dimension than
on the “right” feature space. This is the case for methods such
as principal component analysis (PCA) [5], [6], [8], [11], [14],
[15], singular value decomposition (SVD) [9], and the Fisher
linear discriminant (FLD) [15], [17] which projects linearly the
input data onto a lower dimensional subspace. In cases where
features have complicated interactions, a nonlinear component
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analysis may also be considered [15]. Another way to deal with
high-dimensional data is to give more weight to some features
and less to others. This strategy has been used by Pichler et al.
[6], [7] with their feature contrast method and indirectly by
many authors who implement fuzzy logic-based fusion proce-
dures [19]–[22]. In a similar perspective, some researchers have
underlined the fact that data gathered form many sensors can
be fused together with the help of Dempster–Shafer theory of
evidence [23], [24]. Also, feature weighting is what back-prop-
agation training algorithms (neural networks) are meant to do
[14], [15]. However, since a training data set is needed to weigh
the input features, this approach is not suited to all applications.

Another problem that often occurs when fusing different fea-
tures concerns the need for axis rescaling. This situation occurs
when features with different units are blended together, making
the N-dimensional space anisotropic. This typically happens
when blending, say, RGB values ranging between (0,0,0) and
(256,256,256) with motion vectors ranging between ( 5.0,

5.0) and (5.0,5.0). In this case, the usual similarity measures
(used to evaluate the distance between data points) will give an
overwhelming importance to features having a larger unit range
such as the RGB values. Although data normalization [6], [15]
may be used to rescale the axes, for some applications rescaling
may have the effect of reducing the class separability [15].

To alleviate dimensionality problems, other methods use one
large energy function [4], [25]–[29] made of a series of smaller
energy functions built around one (or sometimes two) specific
features. A typical example is the method used by Heitz and
Bouthemy [28] in which a large Markovian energy function
composed of five gradient-based, edge-based and motion-based
energy functions is minimized. This kind of approach has the
advantage of using multiple features without having to deal ex-
plicitly with the inherent problems related to multiple dimen-
sions. It also allows intuitive and yet ad hoc energy function for-
mulation. However, despite the undeniable advantages of using
large energy functions, these applications often contain many
parameters to tweak. Furthermore, large and complex energy
functions are more likely to have an erratic profile with several
local minima that are not trivial to minimize, especially with a
deterministic optimizer.

Another family of fusion approaches used in imagery are
the so-called decision fusion approaches [30]–[32]. With these
methods, a series of energy functions are first minimized before
their outputs (their decisions) are merged. In this case, the en-
ergy functions are defined on different basic features and/or dif-
ferent cost functions. With this perspective, Reed et al. [33] suc-
cessfully implemented a similar fusion method to segment sonar
images. Their method fuses segmentation maps involving iden-
tical classes (here, segmentation maps of the seafloor in sonar
imagery) with a voting scheme followed by a Markov random
field (MRF) in-painting procedure.

The last data fusion trend that we mention involves the
so-called region-based approaches that are typically used
in stereovision [1], [26], [34]–[36], motion segmentation
[37]–[39], motion estimation [2], [40], and image deconvolu-
tion [41]. Region-based methods generally use a region map
initially obtained after segmenting an input image into regions
of uniform color. Under the assumption that these regions

contain precise information on the main objects of the scene,
the regions are used to help regularize the optimization process.
Although some of these methods implement a soft region-based
constraint [26], an imprecise region map often generates
errors that are difficult if not impossible to compensate for.

In this paper, we propose a new fusion framework that mixes
together label fields instead of features; label fields containing
different and yet complementary information. We will show that
a MRF framework can be efficiently used to fuse, in a versatile
way, the knowledge of these two preliminary label maps through
a data-related term and a regularizing prior. More specifically,
our framework takes as input two label fields: a region map
(called ) obtained after segmenting one (or two) input images
into regions of uniform color, and a rough estimate (called )
of the application label field. Note that is application spe-
cific and may contain occlusion labels, motion labels, or any
other high-level information. Once and have been esti-
mated, they are merged together with a fusion procedure ex-
pressed as an energy function minimization. Here, the optimiza-
tion process searches for a new label field whose content
is close to that of but adapted to fit the regions of . As is
the case for most conventional region-based methods, is as-
sumed to contain precise information on the overall shape of
the scene. However, by the very nature of our fusion proce-
dure, our framework is tolerant to imprecisions in and reacts
smoothly to any modification of its parameters. Let us mention
that the to-be-minimized energy function may be a pure fu-
sion function or a a fusion-reaction function including a data-re-
lated term. In both cases, our framework can be implemented on
a parallel architecture such as a graphics processor unit (GPU).

To our knowledge, fusion of label fields involving labels of
different natures (i.e., classes estimated with different image
features), has never been proposed in the literature before,
and/or developed (up to now) into a coherent theoretical
framework.

The rest of the paper is organized as follows. In Section II,
our framework is first introduced and summarized with an algo-
rithm. Then, Section III illustrates three applications (namely,
motion segmentation, motion estimation, and occlusion detec-
tion) that can benefit from our framework. This section also
includes experimental results. Further experimental results are
presented in Section IV while Section V draws conclusions.

II. LABEL FIELD FUSION

A. Framework

As mentioned previously, our method fuses together two label
fields, both estimated with different low-level image features
[42], [43]. The reason for blending label fields is to alleviate
dimensionality problems and, more specifically, the rescaling
problem that arises when blending features with different units
such as color and motion vectors for example. Furthermore,
since the two label fields are estimated separately, they allow
the minimization of simple energy functions (i.e., functions with
few local minima) defined on one or two features.

The first label field considered is a region map
defined on a rectangular lattice made up of sites.

The map is obtained by segmenting one (or two) input images
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Fig. 1. Schematic view of our fusion framework adapted to motion segmenta-
tion. In this example, the fusion of the region map r and the motion segmentation
field x makes the resulting label field x̂ more precise and less blobby.

into uniform regions. Here, “uniformity” may be defined in the
sense of color, texture or any other image features that best suit
the image content. For the purpose of this paper, is estimated
based on the color feature. Every element in takes a value
in where “ ” is the number of color
classes in which the input image is segmented. In this way, every
input pixel associated with a given class has a color with
distribution .

The second input label field for our framework is the so-called
application label field, i.e., a field made of application-specific
labels. For instance, this label field (which we call ) may con-
tain motion labels, optical flow labels, occlusion labels or any
label specific to the current application. As is the case for ,
is defined on a rectangular lattice of size whose sites take
a value in where is the number of cat-
egories. For instance, for a typical occlusion detection applica-
tion, and and .
Here, the occlusion concept related to stereovision or video ap-
plications and refers to pixels that are visible in one image but
occluded in a second image (c.f. Fig. 12).

In our framework, is a rough estimate of the true label
field that we wish to estimate. Thus, is typically obtained
with a simple method and may be imprecise near edges, and
contain false positives and false negatives due to noise or lack
of texture. In fact, serves as an initialization for the ensuing
iterative fusion process (hence the “ ” exponent).

Once and have been estimated, they are blended together
with a fusion procedure (see Fig. 1 for a schematic view). The
goal of this fusion procedure is to modify the content of
based on the regions of which describe the overall shape of
the predominant objects of the scene. Here, by the very nature
of and , it is reasonable to assume that the regions of the
to-be-estimated label field follow the ones in . In other words,
we assume that no transition in occurs inside a uniform region
of and, thus, that the edges in correspond to edges in .

B. Fusion Procedure

In the light of the assumption described at the end of the pre-
vious section, the validity of a solution may be evaluated by
measuring how well the regions in follow the ones in . Lo-
cally, this means that a uniform section in will also be uniform
in and that an edge in should also correspond to an edge in
. In other words, no transition in is expected to occur inside

a uniform region of .

In our model, we assume that and are realizations of a pair
of joint Markov random fields (MRFs) and that, by the proper-
ties of the Hammersley–Clifford theorem [44], the joint proba-
bility is a Gibbs distribution, such as

(1)

where is a normalization factor, is a local energy
function measuring how well and fit together around site ,
and is a local joint neighborhood surrounding site .
In the absence of any prior geometric knowledge on and , we
define the potential function as

(2)

where is the Kronecker delta function ( if
and 0 otherwise). Note that this potential function to some

extent resemble the Potts model, i.e., an N-class generalization
of the well-known Ising model [45]. Equation (2) is what we call
the fusion model that, by its very nature, measures the spatial
homogeneity of the joint couple of Markovian random fields
and . More specifically, is small when the regions in fit
locally the regions in , i.e., when no edges in cross a uniform
region in . Also, can be seen as a function that counts the
number of neighbors “ ” around site “ ” whose label “ ” and
“ ” is the same as “ ” and “ .” In this way, the best label
field may be expressed as

(3)

Although this formulation can produce very decent results [
in Figs. 1–3 has been computed with (3)] it nonetheless contains
a weakness. In fact, allows more than one global minimum
that may correspond to trivial yet uninteresting solutions such
as the constant label field , . Of course, most
of the time when (3) is minimized with a deterministic downhill
search algorithm, the estimated solution lies in a minima close
to the initial estimate . However, when minimizing (3) with
a stochastic optimizer such as simulated annealing, the resulting
solution may be quite far from and not useful in practice.
To overcome this problem, a reaction term is added to to
make sure the problem is well-posed and that there exists only
one global solution. Mathematically, this is formulated as

(4)
where can be viewed as a reaction term and is a
constant. In this case, the best label field is given by

(5)

Since neither (5) nor (3) have an analytical solution, we use
Besag’s iterative conditional mode (ICM) optimization algo-
rithm [44] to estimate as shown in Algorithm 1. ICM is a de-
terministic update optimization algorithm introduced by Besag
[44] to optimize the energy function of a Gibbs distribution.
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More precisely, it consists in finding the conditional modes,
i.e., for each site, the value that maximizes the local conditional
probability density function (pdf). This deterministic algorithm
is not guaranteed to find the global minima; nevertheless, it dras-
tically reduces computational time as compared to stochastic re-
laxation techniques such as simulated annealing.

Algorithm 1 Fusion-Reaction Algorithm

Require: Input image

Ensure: Label field after the iteration

Initialization

1: Estimate based on features picked in I

2: spatial segmentation of into “c” classes

3:

ICM Optimization (Fusion).

4: repeat

5:

6: for each site do

7: for each class do

8:

9:

10: end for

11:

12: end for

13: until

14: return

The way our fusion procedure works is illustrated in Fig. 2
( in this example). In image , site is part of the black
class (which is a section of the moving vehicle) but has the static
label in . When considering the sites that are part of the black
section of the vehicle in inside , we see that a majority of
those sites have a mobile label in . In other words, within the
nearest neighbors around site with a black label in , there is
a majority of mobile sites. For this reason, after minimizing the
energy function , the site is assigned a mobile label in .
Note that, since in this example, each ICM iteration of
our fusion method works in a similar way to the well-known
nearest neighbor algorithm does.

C. Markovian Segmentation

As mentioned previously, and are label fields estimated
with different image features. Since contains application-
specific labels, we will see in Section III how it can be esti-
mated in the context of three specific applications. As for , al-
though any valid segmentation algorithm may be used to esti-
mate it, we use a Markovian approach that we shall describe in

Fig. 2. Zoom on KARLSRUHE sequence. Top left is the label field r and top right
is motion label field x . In this example, the motion label field x contains
two classes which can be understood as the “static” and the “moving upward”
classes. Bottom left is the image frame at time t while bottom right shows the
motion label field at convergence (here, � = 0). Note how the region in x̂ is
well localized as compared to the one in x .

Fig. 3. Zoom on the TSUKUBA scene. After fusing r (the region map) and x

(an occlusion map), the number of isolated false positives and false negatives in
x has significantly reduced because the region map r is locally homogeneous.

the following paragraphs. The reason for this choice is twofold.
First, the segmentation method we have implemented is unsu-
pervised and, thus, requires no human intervention at runtime.
Second, this segmentation method can be parallelized and im-
plemented on a parallel architecture such as a graphics processor
unit (GPU) [46]. With such an implementation, can be com-
puted in interactive time.

Let us consider , a pair of random fields where
and represent, respectively,

the color label field and the observation field, both defined on
a lattice .
Here, is a known input image and (a realization of ) is
to be estimated. As mentioned previously, takes a value in

, where is the number of color classes.
Note that is a 3-D vector for color images and a scalar for
grayscale images.

Segmentation can be viewed as a statistical labeling problem,
i.e., a problem for which each observation vector most be as-
sociated with the best color class . Thus, infer-
ring a label field can be seen as an optimization problem that
searches for the best in the sense of a given statistical crite-
rion. Among the available statistical criteria, the maximum a
posteriori (MAP) criterion states that a label field is optimal
according to when it maximizes the a posteriori pdf: .
In this way, is optimal whenever [44].

Because is often complex or undefined, it is common
to assume that and are realizations of MRFs and that, by
the Hammersley–Clifford theorem [44], the posterior distribu-
tion is defined by a Gibbs distribution of the form

where is an energy function [44]. By the
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properties of the Bayes theorem [14], the a posteriori distribu-
tion can be represented as

(6)

where and are the likelihood and prior energy functions.
By assuming independence between the random variables
(i.e., ), the corresponding posterior
energy to be minimized is

where corresponds to the isotropic Potts model. Here,
is the Kronecker function, is a constant, is a set of binary
cliques, and . Note that the cliques
defined here are on a second-order neighborhood.

The conditional distribution models the distribution
of the observed data given a class . In this paper, this
distribution is modeled with a Normal law that depends on the
two parameters . Since there are different classes,
there are different Normal laws and a total of Gaussian
parameters . Because these
parameters are initially unknown, they need to be estimated.
To this end, we use a Markovian and stochastic method called
Iterated conditional estimation (ICE) [47]. Note that K-means
or the EM algorithms could have also been used.

Once has been estimated with ICE, can be obtained by
minimizing the global energy function

(7)

To do so, we again use Besag’s ICM algorithm [44]. For more
details on our implementation of ICM and ICE, please refer to
[46].

III. COMPUTER VISION APPLICATIONS

In this section, three computer vision applications are
described and adapted to our fusion framework. These appli-
cations are motion segmentation, motion estimation/segmen-
tation, and occlusion detection. As the name suggests, motion
segmentation is a procedure that groups together pixels having
a uniform displacement in a video sequence. As for motion esti-
mation, it refers to the task of estimating the optical flow visible
in a video sequence. Since our motion estimation procedure
estimates a parametric flow together with a motion label field,
we call this operation motion estimation/segmentation. Finally,
occlusion detection is a procedure that takes as input two
images and that locates the pixels that are visible in one image
but occluded in the second image. Consequently, occlusion
detection is closely related to optical flow and stereovision.

In order to gauge performance of our algorithm, we used se-
quences representing different challenges. Some sequences are
real while others have been computer generated and come with

a perfect ground-truth label field . The results presented in this
Section illustrate how stable and robust our algorithm is with
respect to the window size , the coefficient (4)
and the precision of the region map . Note that for these re-
sults, the region maps have been computed with a number of
classes ranging between 4 and 7 and that the window size
ranges between 5 5 and 11 11. Also, the number of itera-
tions needed by the fusion procedure to converge (algorithm
1) depends on the nature of the scene and the application. For the
motion segmentation and the motion estimation applications, an
average of 30 iterations is needed whereas an average of five it-
erations is needed for the occlusion detection.

A. Motion Segmentation

1) Introduction: Motion segmentation refers to the general
task of labeling pixels with uniform displacement [48], [49].
Consequently, motion segmentation has often been linked to
motion estimation. Actually, a common way to segment an
image sequence is to estimate an optical flow field and then
segment it into a set of regions with uniform motion vectors.
Such an approach is sometimes called motion-based [48] since
segmentation is performed on the basis of displacement vectors
only. This kind of segmentation is rather easy to implement
and generates more accurate results than, say, an 8 8 block
segmentation procedure.

To enforce precision, some authors propose segmentation
models based on additional features, such as brightness and
edges. These models are sometimes referred to as spatio-tem-
poral segmentation techniques. In this context, Black [25]
presented an MRF approach that minimizes a three-term energy
function using a stochastic relaxation technique. In Black’s
work, the motion label field is estimated on the basis of motion
and intensity. In [39], Altunbasak et al. proposes a region-based
motion segmentation approach. Assuming that color regions are
more accurate than the motion regions, a region-based motion
segmentation is performed, whereby all sites contained in a
color region are assigned the same motion label. In a similar
vein, Bergen and Meyer [50] show that an image segmentation
may be used to eliminate error due to occlusion in an animated
scene. For completeness, let us also mention the work by
Khan and Shah [4] in which a MAP framework is proposed to
softly blend color, position and motion cues to extract motion
layers. In this contribution, each cue has its own pdf. These
pdfs are combined together with feature weights that give more
or less importance to a cue depending on certain specified
observations.

2) Motion Segmentation and Our Framework: As mentioned
in Section II, our framework is supplied with two label fields:
, a region map and a motion map. Although could be

obtained with any valid motion segmentation approach, we de-
cided to use the same unsupervised statistical Markovian pro-
cedure that we use to compute . In this way, is obtained
by segmenting , a vector field computed with an iterative and
multiresolution version [51] of the well-known Lukas–Kanade
algorithm [52], [53]. Note that, for this segmentation, the vector
field stands for the observation field that we called in Sec-
tion II-C and that every element is a 2-D real vector. For every
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Fig. 4. Three different versions of SEQUENCE A. From left to right, the sequence
exhibits a precise, a medium and an imprecise region map r. In every case, the
resulting label field x is more precise than the initial one x . The last row
contains graphics of the percentage of badly matching pixels versus the window
size 	 = L� L. These curves are discussed in Section III-A3.

sequence we have tested, was computed with a two-level
pyramid and an integration window of size 7 7 pixels [51].

3) Motion Segmentation Results: To test the robustness of
our motion segmentation framework, different real and syn-
thetic sequences have been segmented. At first, we segmented
two synthetic sequences (called sequence “A” and sequence
“B”) both having a ground truth label field (see Figs. 4 and
5). Note that both synthetic sequences are made of real images
pasted on computer generated shapes. To measure how precise
the label fields returned by our algorithm are, we use
the percentage of badly matching pixels between and the
ground-truth label field , i.e.,

(8)

where is the number of sites in and is the
Kronecker delta function.

We computed the label field for both sequences with a
different region map exhibiting precise, medium and impre-
cise regions. These region maps are used to illustrate how robust
our method is with respect to . Here, the percentage of badly
matching pixels is presented in Table I (and on the last row of
Figs. 4 and 5). In Table I, our fusion procedure is compared with

Fig. 5. Three different versions of SEQUENCE B. From left to right, the sequence
exhibits a precise, a medium and an imprecise region map r. In every case, the
resulting label field x is more precise than the initial one x . The last row
contains graphics of the percentage of badly matching pixels versus the window
size 	 = L� L. These curves are discussed in Section III-A3.

Altunbasak et al.’s method [39] which also relies on a pre-es-
timated region map . Since our fusion method does not assign
one motion class to every pixel of a region (as is the case for
Altunbasak et al.’s), our approach is less sensitive to impreci-
sions in . This observation illustrates the fact that our algorithm
reacts smoothly to a change in its parameters and .

Also, as shown in Fig. 6, four real video sequences have been
segmented. To illustrates the precision of the resulting label
fields, and have been superimposed to the image .
From left to right, the sequences were segmented with, respec-
tively, three, three, four, and six motion classes. As can be seen
in most cases, the label field returned by our fusion frame-
work is more accurate than the ones with no fusion procedure

.

B. Motion Estimation

1) Introduction: Motion estimation is one of the most studied
area in computer vision. Among the solutions proposed for this
problem, let us mention variational methods [27], [54]–[59],
local methods [54], [60]–[62], frequency-based methods [63],
correlation-based methods [64], phase-based methods [65], and
Markovian methods [66], [67].

Another class of motion estimation algorithms include those
assuming that the overall motion in a video sequence is piece-
wise parametric [48], [68], i.e., that the motion field may be di-
vided into regions whose motion can be expressed with a para-
metric motion model. Thus, the goal of these approaches is to
jointly estimate the motion regions together with their asso-
ciate parametric motion model. To this end, the motion regions
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TABLE I
PERCENTAGE OF BADLY MATCHING PIXELS COMPUTED WITH THREE DIFFERENT VERSIONS OF TWO SYNTHETIC IMAGE SEQUENCES. FROM LEFT TO RIGHT:

RESULTS OBTAINED WITH ALTUNBASAK et al. [39], OUR UNSUPERVISED STATISTICAL MARKOVIAN SEGMENTATION ALGORITHM AND RESULTS OBTAINED WITH

OUR FUSION ALGORITHM. THE FIVE RIGHTMOST COLUMNS MEASURE THE EFFECT OF THE WINDOW SIZE (L� L). THE QUALITY OF THE SPATIAL PARTITION r

IS RANKED FROM PRECISE TO IMPRECISE, DEPENDING ON HOW WELL OBJECTS HAVE BEEN SEGMENTED (SEE FIGS. 4 AND 5)

Fig. 6. Sequences KARLSRUHE, TAXI, TENNIS, TREVOR WHITE, SEQUENCE A, and SEQUENCE B. The first row presents frames at time t, the second row spatial
partitions r and the last two rows the motion label fields x and x superposed to I . As can be seen, the moving objects are more precisely located after the
fusion process (x ) than before (x ).

and the motion model parameters are generally estimated with
a two-step procedure [69]–[71] that iterates until convergence.
The first step consists in estimating the motion model param-
eters according to the current motion label field [68], [72]. In
contrast, the second step estimates new motion regions while
the motion models are kept unchanged. Following the work
of Murray and Buxton [73], Odobez and Bouthemy [72], and
Stiller and Konrad [68], Tekalp [74], [75] summarizes these two
steps with a maximum likelihood (ML) and MAP procedure.
The difference between the former and the latter is the use of
an a priori energy function that helps smooth the resulting mo-
tion label field.

2) Motion Estimation and Our Framework: The goal is to
estimate a label field whose pixels are associated with labels
ranging between and . Since the optical flow field is
assumed to be piecewise parametric, each class is assigned a
parameter vector . A commonly used parametric model is the

six-parameter affine model
defined as [75]

(9)

(10)

where are the Euclidean coordinates of site and
are the horizontal and vertical components of motion vector .

In this paper, the motion label field (as well as the pa-
rameters , ) are estimated with a MAP procedure



2542 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

[73], [75] whose objective is to maximize the a posteriori pdf
where is the input image sequence (note that for the

rest of this subsection, will be replaced by to simplify the
notation). By the well known Bayes theorem, may be
rewritten as

(11)

where is the likelihood pdf that measures how well the
motion label field (together with its motion models) fits the
input observation and is the prior pdf. Observe that since

is constant with respect to , it will be ignored during the
optimization process.

If we assume that the true vector field is perturbed with a zero
mean white noise with standard deviation and that the mis-
match between and is modeled with the well-known motion
constraint equation

(12)

(13)

where denote the spatial and temporal partial
derivatives at site and time , the likelihood pdf can
be expressed at each pixel as

(14)

As for the prior pdf , the Potts model may be used to
incorporate local constraints on the segmentation. This is given
by

(15)

where is a normalizing constant, is the Kronecker
delta, and is a constant. If we assume that each random vari-
able is independent, the optimal solution can be formulated
as

(16)

or, if we assume that the noise level is the same for each class

(17)

Combining (17) and (10) leads to

which emphasizes the need for a joint estimation of and . As
proposed by Murray and Buxton [73] and Tekalp [75], and
may be estimated with stochastic optimizers such as simulated

annealing or the Metropolis algorithm. In this paper, we use the
simulated annealing approach presented in Algorithm 2.

Algorithm 2 Stochastic algorithm used for the motion
estimation/segmentation procedure. This algorithm returns a
motion label field as well as the affine motion model for
each motion class.

Require Input video sequence

Ensure

Initialization

1: Initialize with random values.

2: , the initial temperature

Stochastic optimization.

3: Repeat.

4: Update according to

(18)

This minimization is done with a least-square estimation

5: For each site, compute the probability
related to each label as

and randomly assign a label to according to its
probability .

6: .

7: Until reaches a minimum temperature.

8: Return .

Once the motion label field has been estimated, it can be
fused with using our fusion procedure (Algorithm 1).

3) Motion Estimation Results: For this application, we seg-
mented four synthetic sequences having a ground-truth label
field and ground-truth vector field . These sequences are
presented in Figs. 7–9. In Fig. 7(a), the sequence (which we call
sequence “C”) exhibit two shapes moving in different directions
on a flat grayscale background. In this case, since the region map

contains highly precise edges, the results also exhibits pre-
cise regions. This is shown by the percentage of badly matching
pixels (in Table II) which is much larger for than for . As
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Fig. 7. Sequence “C” (a) with flat background and (b) with textured back-
ground. Note that the textured background has been removed from x and
x to help visualize the results. In (c), vector fields obtained with Algo-
rithm 2 (V ), our fusion method (V ), Lucas–Kanade (LK) [52], and
Horn–Schunck (HS) [54] optical flow methods.

for the sequence of Fig. 7(b), it exhibits the same moving shapes
as in Fig. 7(a) but in front of a textured background. With this
textured background, the region map contains regions less pre-
cise than those of Fig. 7(a). This is because the background is
composed of shades similar to the ones on the moving shapes.
However, nevertheless, as shown in Table II, even with an im-
precise region map , is still significantly more precise than

.
The third synthetic sequence we segmented is the one shown

in Fig. 8. It contains an image of the Parthenon moving to the
right, on top of an image performing a counterclockwise ro-
tation. From left to right are the ground-truth, the scene es-
timated with algorithm 2, and the result of our fusion proce-
dure. Because of the highly textured background, the region
map contains local imprecisions, especially around the first,
second, third, and fifth columns. As can be seen in image
and , the local imprecisions in have induced local er-
rors in the resulting fields, especially around the first and the
fifth column. However, nevertheless, the results returned by our
fusion procedure are less noisy and globally exhibit more pre-
cise edges than the ones returned by the MAP procedure. This
observation is underlined by the percentage of badly matching
pixels presented in Table II which is almost three times smaller
for than for .

The fourth synthetic sequence is the famous YOSEMITE [53]
sequence presented in Fig. 9. As can be seen, even if has local
imprecisions (especially in the top left section of the scene) the
resulting label field (as well as ) is much smoother than

.
We also implemented a metric to measure how good the

vector fields returned by our framework are. Following
Barron et al. [53], we used to the average angular error metric
to evaluate the distance between the ground truth vector field

and the estimated vector field (be it or ), namely

(19)

Fig. 8. PARTHENON sequence with the region map r, ground-truth images, ini-
tial estimates, and the result of our fusion procedure. Note that the third row
exhibits the vector fields’ magnitude.

where and are normalized 3-D vectors:
. Using this metric, the vector

field of the four synthetic sequences are compared to the
ones returned by the MAP procedure. The angular errors are
presented in Table III and again, the results clearly favors our
method.

We also segmented a real image sequence, namely the
RHEINHAFEN sequence presented in Fig. 10. Again, our results
shows sharper edges and less isolated false positives and false
negatives.

C. Occlusion Detection

1) Introduction: The goal of most optical flow and stereovi-
sion algorithms is to estimate a matching function (be it a dis-
parity map [76] or an optical flow field [53]) between the pixels
of two (or more) input images. Due to motion or to a parallax ef-
fect between a left and a right image, most scenes contain areas
that are visible in only one frame. Generally speaking, these
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Fig. 9. Yosemite sequence with ground-truth, results from the MAP estimation/segmentation procedure, and results from our fusion framework. Although r

contains local imprecisions, the fusion procedure significantly reduces the number of false positives and false negatives in x.

half-occluded areas are either newly exposed or newly occluded
[77], [78]. Since these areas have no direct correspondence in
the second image, they are a classical source of error for most
motion or depth estimation algorithms.

While many authors have considered occlusion as a source
of noise that is to be fought with spatial smoothing [76], others
have explicitly included an occlusion criterion in their energy
function [26], [79]–[83]. During the past few years, a variety
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TABLE II
PERCENTAGE OF BADLY MATCHING PIXELS COMPUTED

FOR THREE SYNTHETIC SEQUENCES

TABLE III
AVERAGE ANGULAR ERROR WITH STANDARD DEVIATION COMPUTED FOR

FOUR DIFFERENT SEQUENCES. THESE RESULTS SHOW THE ANGULAR

ERROR WITH (V ) AND WITHOUT (V ) FUSION,
AS WELL AS FOR THE LK AND THE HS METHODS

Fig. 10. Zoom on the RHEINHAFEN sequence. In this case, the fusion process
has significantly reduced the number of false positives and false negatives. As a
result, the moving areas are more homogeneous.

of occlusion metrics have been proposed among which the one
Egnal and Wildes [84] call the left-right-check (LRC) has drawn
a lot of attention. This approach stipulates that the matching
function between the left and the right image should differ only
by sign with the right-left matching function. In this context,
every pixel for which the difference between the left-right match
and the right-left match is above a given threshold is considered
as being occluded. Although the LRC can be useful within a
global energy function [83], [85], [86], many researchers have
noted that the LRC is error-prone in noisy areas [78] and in areas
having little or no texture [82], [84]. Others have also argued that
estimating the forward and the backward matching functions
can be prohibitive time wise.

Another idea that enjoys a great deal of popularity is
Marr–Poggio’s [87] uniqueness assumption. This assumption
stipulates that there is always a one-to-one correspondence be-
tween the pixels of the two frames. Kolmogorov and Zabih [88]
incorporated that assumption into their graph-cut algorithm
and stipulated that each pixel in one image should correspond

to at most one pixel in the other image. A pixel with no match
would then be considered as being occluded. A variation of
this approach has been proposed by Sun et al. [26] for which a
nonoccluded pixel must have at least one match. Although the
difference between the two approaches is conceptually slight,
Sun et al. [26] demonstrate that their method is superior in
scenes containing slanted surfaces.

Let us also mention that some authors use the so-called or-
dering constraint [26], [81], [84] which stipulates that a point

laying to the right of a point in one image should also lie
to the right of in the other image. Although this assumption
is often true, it can easily be violated by narrow front-ground
objects (what Sun et al. [26] call the “double nail illusion”).

2) Occlusion Detection and Our Framework: After thorough
evaluations of many occlusion detection criteria, we came to
realize that the ones based on Marr–Poggio’s uniqueness as-
sumption are the most accurate, at least in the context of our
framework (in their review paper, Egnal and Wildes [84] came to
a similar conclusion). More specifically, the Ince–Konrad [78]
metric was retained to compute , a “rough” occlusion map
estimate. The Ince–Konrad [78] metric can be seen as a gener-
alization of the uniqueness constraint: instead of counting the
number of matches for each pixel independently, they count the
number of matches within a given local neighborhood. Consider

the set of pixels in the reference image and
, the set of matching pixels in .1

Based on , an accumulation function is computed

(20)

where if the Euclidean distance between pixel
and is lower than or equal to , and zero otherwise. The
occlusion map is obtained by thresholding

if
otherwise.

(21)

As suggested by the authors [78], we set to 2.
The Ince–Konrad method can be intuitively understood fol-

lowing the synthetic example of Fig. 12. In this example, with
, the accumulation function equals 11 for pixel A,

5 for pixel B and zero for pixel C. With a threshold of 3 for
example, pixel C would be considered as being occluded.

Because occlusion is a mismatch between two images, the
way the region map is computed is slightly different than for
the other applications. In fact, the input frames and
are, respectively, segmented into two label fields, namely
and . These two region maps are then linearly combined
together: where is the number of classes
in which and have been segmented. This last opera-
tion results in a label field whose regions are uniform in the
sense of both input images. An example of such a region map is
presented in Fig. 11. Once and have been computed, they
can be fused with Algorithm 1.

3) Occlusion Detection Results: To validate our method, we
detected occlusion on various data sets commonly used for such

1I and I stands for the “left” and “right” image in stereovision and
for the images at time t and t + 1 in optical flow. As for d , it represents the
disparity value linking pixel I to its projection in I as shown in Fig. 12.



2546 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 10, OCTOBER 2007

Fig. 11. TSUKUBA left image with the region map r obtained after segmenting
the two input images I and I .

Fig. 12. Synthetic example of a disparity map between two images I and
I . In this example, “C” is an occluded pixel since it is visible in I but
occluded by the blue object in I .

an application. Here, our framework is compared with other
frequently used approaches, namely the left-right check (LRC)
[84], the ordering constraint (ORD) [84], and Ince–Konrad’s
[78] uniqueness-based approach.

Four sequences with ground truth taken from Middlebury
web page [89] have been used to test the methods. As men-
tioned in Section III-C, occlusion detection is closely related
to applications involving a disparity map (such as optical flow
and stereovision). A disparity map is a function that links the
pixels of one image to their projection in a second image

. In this context, an occluded area is a section of the
scene that is visible in one image but hidden in the second
image. Although a disparity map can be estimated in a variety
of ways as mentioned in most optical flow and stereovision re-
view papers [53], [76], we estimate it with a simple pixel-based
window matching strategy taken from the work of Scharstein
and Szeliski [76]. This method, called winner-take-all, is a
greedy algorithm looking at each pixel for the disparity value
that best minimizes a matching cost. Here, the matching cost is
a simple squared difference of intensity values. The resulting
disparity map is filtered out with a 3 3 shiftable aggregation
filter, i.e., a box filter that locally adapts to the scene. For more
details on this algorithm, please refer to the work of Scharstein
and Szeliski [76].

Following Egnal and Wildes’ methodology [84], we have
plotted the hit rate/false positive rate curve of every method
by varying their threshold (see Fig. 13). According to these
graphs, an optimal method is one that maximizes the surface
below its curve. Consequently, as can be seen on every graphic
of Fig. 13, our method appears to be more precise than the
others we have implemented. This is especially true for those
sequences containing large textureless areas such as VENUS and
TSUKUBA. This can be explained by the fact that, as mentioned
by Egnal and Wildes [84], most common occlusion detection
methods are error-prone in textureless areas. In this context,
using a region-based approach to eliminate isolated false posi-
tives provides a clear advantage.

Fig. 13. Hit rate versus false positive rates obtained with four different data
sets. The proposed method significantly reduces the number of false positives
and false negatives.

Fig. 14. From top to bottom, ground truth and results obtained for TSUKUBA,
SAWTOOTH, VENUS, and MAP data set. Hit rate for every result is, respectively,
60%, 90%, 45%, and 90%.

A qualitative comparison has also been made in Fig. 14. To
make the results objectively comparable, each method has been
tuned to return an occlusion map with a specific hit rate. In this
way, the results in the second and third column of Fig. 14 have,
respectively, hit rates of 60%, 90%, 45%, and 90%. Although
the hit rate is the same for both approaches, the false positive
rate is clearly better for our method.

As for the FLOWERGARDEN sequence of Fig. 15, our method
produce again a significantly lower number of false positives.
Note that for this sequence, the matching function was com-
puted with a pixel-based window-matching strategy [53].
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Fig. 15. Comparison of the proposed method with the Ince Konrad’s method
on the FLOWERGARDEN sequence.

Fig. 16. This figure illustrates the influence of the neighborhood size 	 =

L � L. In (a), occlusion maps of the SAWTOOTH sequence and in (b), motion
maps of the KARLSRUHE sequence.

IV. FURTHER EXPERIMENTAL RESULTS

A. Testing the Influence of and

Since our fusion framework depends very much on the size
of the 2-D neighborhood , we illustrate its influence with var-
ious qualitative and quantitative results. In Fig. 16, the effect of
varying the window size is shown on a synthetic and a real se-
quence. As can be seen, a modification of this variable brings
a smooth and predictive variation in the resulting image. How-
ever, it should be noted that the use of a too large window size
can cause unexpected local errors as shown in the lower right
image of both thumbnails of Fig. 16.

We also evaluated quantitatively the influence of on
the percentage of badly matching pixels for two synthetic
sequences. This is presented in the last row of Figs. 4 and
5 (and in Table I). These examples show that the use of our
fusion procedure does indeed help enhance the quality of the
results even for sequences having an imprecise region map .
However, using a too large window for sequences having an
imprecise region map can induce local errors and, thus, raise
the percentage of badly matching pixels. This being said, we
observed that for every sequence segmented in this paper, a
window size ranging between 5 5 and 11 11 produces the
most satisfying results.

As for the coefficient of (4), we tested it on three sequences
shown in Fig. 17. As we mentioned previously, the reason for
this coefficient is to give a relative influence to and to
during the fusion procedure (and, thus, make the optimization
process well posed). In fact, when exhibits sharp regions (as
is the case for the first sequence on top to Fig. 17) a small value
might be assigned to (i.e., a value that gives more weight
to than to ). However, when the region map contains
imprecise regions as is the case for the two other examples in
Fig. 17, a nonzero value for (here between
and ) is preferable. In this way, the to-be-mini-
mized energy function has a nonzero reaction that prevents the
resulting vector field from being too different from the ini-
tial guess . As mentioned previously, a nonzero value al-
lows stochastic optimizers to converge towards a meaningful so-
lution . To illustrate that assertion, we minimized (4) with
the deterministic optimizer ICM and with the stochastic simu-
lated annealing optimizer. The results are illustrated in Fig. 18.
As can be seen, although the global energy of the ICM label field
is slightly higher, the results are very much similar. This illus-
trates the fact (4) is nearly convex, i.e., not too erratic and can be
efficiently minimized with a simple (yet suboptimal) ICM min-
imization procedure.

B. Real-Time Processing

Since our fusion framework process every pixel indepen-
dently, it can be implemented on a parallel architecture. To this
end, we implemented our method on a graphics processor unit
(GPU) [90]. A GPU is a processor embedded on most graphics
card nowadays available on the market which, among other
things, can load, compile and execute programs implemented
with a C-like language. The key feature of the GPUs is their fun-
damental ability to process in parallel each pixel of the scene,
making all kinds of applications much more efficient than when
implemented on traditional sequential CPUs. For example, the
fusion procedure (with ) can process at a rate of
25 fps a scene of size 384 288 such as TSUKUBA.2 Also,
the region map of this scene can be computed in 1 second
or, if the Gaussian parameters are re-used from a previous
calculation, in 0.05 s. These processing rates outperformed
by a factor of almost 100 what we obtained with a traditional
CPU implementation. For an application such as motion esti-
mation/segmentation (Algorithm 2), computing requires
approximately 50 s whereas estimating
requires no more than 52 seconds for a 256 256 scene. For
more details on how can be computed with a GPU, please
refer to [46].

V. CONCLUSION

In this paper, we considered the issue of fusing label fields
instead of features as is usually the case. The core of our method
is a fusion framework that blends together a region map and an
application label field . With the assumption that the color
regions in are more detailed than the regions in , the goal
of the fusion procedure is to iteratively modify the application

2Since there are no efficient ways to access the framebuffer content to verify
if the ICM algorithm has converged (see part 2 of Algorithm 1), a predefined
number of ten ICM iterations has been used.
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Fig. 17. Three sequences segmented with different � values. The fusion procedure has a window size 	 = 11� 11 and the percentage of badly matching pixels
is shown below the synthetic label Fields. Among the three region maps, the first one exhibits precise regions, the second one less precise regions and the last one
very imprecise two-class regions.

Fig. 18. Results obtained after minimizing eq. (4) with ICM and Simulated
annealing. In this example, 	 = 9 � 9 and � = 0:01 � (9 � 9). The ICM
label field has been obtained after 24 iterations whereas 250 iterations have been
needed for simulated annealing.

field to make its regions fit the color regions. In this way,
false positives and false negatives are filtered out and blobby
shapes are sharpened resulting in a more precise label field .
The fusion is performed by an ICM optimization procedure that
minimizes an energy function that may be a pure fusion function
(and, thus, works at each ICM iteration in a similar way to the
well-known -nearest neighbor algorithm) or a fusion-reaction
energy function involving a data-related term.

Although such a segmentation framework based on pre-esti-
mated label fields might appear as a step backward when com-
pared to methods that minimize one large multidimensional en-
ergy function [4], [25] or to methods using dimensionality re-
duction algorithms [14], [15], our method has decided advan-
tages. To start off with, traditional multidimensional methods
often rely on weighting factors that give more or less influence
to some features. Since a bad choice of these weighting param-
eters can lead to a bad segmentation, they must be carefully
adjusted at runtime which, of course, can be cumbersome for
most unsupervised applications. Also, because these parame-
ters generally depend on the sequence content, they need to be
re-estimated when a new sequence is processed. Furthermore,
tweaking these weighting factors is not a small task, especially
when their number is large. For instance, the method proposed
by Black requires that a number of eight weighting factors need
to be tweaked [25]. Moreover, large energy functions are gen-
erally less stable than smaller ones and, thus, often need to be

implemented with a stochastic (and slow) optimizer such as sim-
ulated annealing.

The point of our method is to alleviate these problems by indi-
vidually minimizing two energy functions in order to blend their
label fields. Thus, our method does not rely on weighting fac-
tors, scaling functions or projection functions often used when
blending features. Our method uses simple energy functions that
can be minimized with a deterministic optimizer (such as ICM)
which is much faster than say, simulated annealing. Finally, we
believe our fusion method is simple to implement and can be
easily transposed to a parallel architecture such as a GPU.

Results obtained on real and synthetic image sequences show
that our algorithm is stable and precise. It reacts well to changes
of its parameters and and performs well even when supplied
with poorly estimated region maps .

As mentioned previously, our method mostly depends on two
parameters, namely the window size and the coefficient .
In our implementation, these two parameters are specified by
the user in a supervised way. However, if an application had
access to a corpus of images with ground-truth data, it would
be possible to automatically estimate an “optimal” value for
and . In this context, the search for the “best” value for
and could be done by successively segmenting every image
of the corpus and comparing the resulting segmentation maps
with the ground-truth maps. This search could be done in a brute
force way by testing a large number of values for and and
keeping the ones associated to the best results. On the other
hand, a simplex optimizer could also be implemented to reduce
the computational cost.
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