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An Energy Based Model For The Image Edge
Histogram Specification Problem

Max Mignotte

Abstract—In this correspondence, we present an original
energy-based model that achieves the edge histogram specifi
cation of a real input image and that thus extends the exact
specification method of the image luminance (or grey level)id-
tribution recently proposed by Coltuc et al. Our edge histogam
specification approach is stated as an optimization problenin
which each edge of a real input image will tend iteratively tevards
some specified gradient magnitude values given by a target g
distribution (or a normalized edge histogram possibly esthated
from a target image). To this end, a hybrid optimization schene
combining a global and deterministic conjugate gradient-fased
procedure and a local stochastic search using the Metropdi
criterion is herein proposed to find a reliable solution to ou
energy-based model. Experimental results are presented dn
several applications follow from this procedure.

Index Terms—Conjugate gradient, edge histogram specifica-
tion, energy based model, gradient magnitude, local stoclstic
search, Metropolis algorithm.

I. INTRODUCTION

mage histogram, by its ability to represent the intensi
levels distribution of the image pixels, remains a usef

specification (or so-calledqualization is flattened but may be
far from being uniform. This comes from the fact that since
the number of pixels is usually much larger that the number of
intensity levels, there are many pixels with the same irtgns
level and these latter cannot be separated (they can only be
merged together) in order to approximate the different bins
a uniform histogram [2]. It has been finally realized that g ke
to achieve a discrete exact histogram specification mettasd w
to find a strict ordering relation separating each pixel & th
original image with the same intensity into several subsets
(in order to approximate the different bins of the desired
output distribution). Practically speaking, |étbe a discrete
image with L grey-levels andV x M pixels I(x;,y;) with
coordinates(z;, y;) representing the discrete pixel locations.
Let also H = {hg, h1,...hr—1} be the non-normalized target
histogram (i.e., the desired output intensity level disttion)
and let < be a strict ordering relation on the set of pixels
of I, defined asl(z1,y1) < I(z2,y2) if the grey-level (or
intensity value) of pixell(z1,y1) is lower or equal than the
rey-level of pixell(z2, y2) with respect to the lexicographic
rder. Then the exact specification simply proceeds asvislio

and popular statistical tool that enables information abots] [Algorithm A]:
the visual appearance of an image to be quickly and easily

obtained and/or histogram-based features (such as the, mode Order pixels:I(z1,y1) < I(w2,y2) <

mean, variance, entropy, energy, kurtosis, etc.) widegdua

region-based image segmentation, indexing or local erdianc

ment techniques to be computed. Amongst the classical
gorithms exploiting this intensity level distribution,sbogram
specification (also called histogram matching) refers ttaasc

.= I(INMayNM)

« Split this pixel ordering relation from left to right i
groups, such as grouphash; pixels.

ale For all the pixels in a group, assign gray-levej.

In this context, the structure of the image is thus distolgd
enforcing the target histogram and it yields exact restlts i

of image transforms which changes the histogram of a giveftict ordering relation is found. In practice, severalesitg
image to another desired one. It is an important and Wefk|ation strategies can be used. The simplest one consist of
known technique that can be used, for example, to watermgjie-processing the original image by adding a small amount
an image [1], enhance the contrast in only some specifi¢ uniform noise to each pixel intensity value [6], [7] or
regions (of interest) of the image (by modifying the dynamigeparating randomly each pixel of the original image with
range of the pixel values) [2]-[4] or to normalize two imageghe same intensity level [8]-[10]. Another solution, avoig!

(e.g., for fusion, mosaicing, registration, etc.).

noise, consists of separating pixels of the same-integsiyp

Although the histogram specification algorithm has exagither according to their local mean on the four horizontal

solution for continuous image (thus yielding to a perfecteha
between the input and the desired intensity level distidio)f
itis generally an ill-posed problem that does not admit aacex

and vertical neighbors [11] or to the average intensity (of
the surrounding pixels) at their location [5] or finally by
taking into account not only the local mean intensity but

solution in the discrete case. For example, in the case wh@f§o |ocal edge information [12}ia a wavelet transform

the output distribution is uniform, the resulted histografter
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(which preserves edge information and produces sharpgema
enhancement results compared to the classical local mean
model [5], [11]).

Edges are also important features of an image because they

. contain significant information; indeed, edges may cowesp

to object boundaries or to changes in surface orientation,
discontinuities in depth or material properties to name a
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few. Edges also help to extract useful information and chaterivative. To this end, lef be an input discrete image with
acteristics of an image. For example, edge-based featufés<x M pixels I, located at discrete locations= (x, ys).
of shape and texture are important for image retrieval ai@ur edge histogram specification procedure aims at finding
indexing. Consequently edge histogram may be importaatew luminance mapping in which, each|fs — I}| in this
to obtain information either about the visual appearance iofout image with pair of sitegs,t) separated by a distance
an image (coarse or highly detailed image, structure in thde= max{|xs — x¢|,|ys — y:|} = 1 pixel (i.e., with the site
image spatial configuration, spatial resolution, spatiefad ¢ located in the first nearest neighbors ofs) is considered
statistics and fractal dimension of an im&per its content as a independent random variable whose distribution fallaw
(naturally uneven or perfectly geometrically shaped) onmatarget distribution or a normalized histograthwith a desired
made objects. In the light of the discussion above, it shape (possibly estimated from a target image). If this rnmapp
fair to think that edge histogram specification of an imagkis estimated in the minimal mean square sense, fhisrthe
may be of interest for several computer vision and imagm®lution image that should minimize the following objeetiv
processing applications. If the statistical distributiohthe function E(I):
intensity value of any real images varies, the statistical d .
tribution of edges or the gradient magnitude of an image - ) 2
follows a (well-known in the denoising community [14]) long I'= argmin > > (Bl — - It)g)
tail distribution mathematically expressed by a two-pazten Tl teNd
density function of the formf (z) « exp (—|z/c|P). This is E(I)
due to the intrinsic stationary property of real-world ireag )
containing smooth areas interspersed with occasionapsh#fhereN; represents the nearest neighbors of and conse-
transitions, i.e., edges. The smooth regions produce snfd#ently the summation is over all the pair of sites (i.e.,&tr
amplitude gradient magnitudes and the transitions produ®iEess and for all the pair of sites includingwith ¢ belonging
sparse large-amplitude gradient magnitudes [14]. Due it tf© the 8 nearest neighbors of). In this case ), are the
intrinsic stationary property of any real-world images #dge Values given by an edge histogram specification method (of
histogram will be associated with a decreasing functiomwithe first order magnitude gradient) with the non-normalized
a unique mode (the value that occurs the most frequentfgyget distributionH = {ho,hi,...hz -1} (possiblya priori
at (amplitude gradient magnitude) corresponding to the Imposed or estimated from a target image) wittits number
numerous smooth regions existing in any real-world image¥. Pins. Practically speaking, 18 = 8- N'- M be the number
Except for this property, different informative distrifnts (for  Of @bsolute values of the first order differende— I;| in the
different parameter positive values pfand ) can be found original image and le be a strict ordering reIa_tlon, dgflned
or specified for a given input image. among the|l, — I, (as|l; — I| < [I, — L[ if the first

In this correspondence, an approach for edge histogré’iﬁqer differencel, —I.t| is lower or equal than the fllrst order
specification of a real image is proposed. This approa€ifference|l, — I,| with respect to the lexicographic order),
combines the ordering relation described above but applied €dge histogram specification histogram method is thus a

to the set of the gradient magnitude values of an input imaff¥0-step procedure which proceeds as follows [Algorithrh B]
(and related to each pair of pixels separated from a givene 1. Ordering relation

1)

distance). It allows us first to obtain the set of increasing  _ Normalize H in order that W = Zngfl R
gradient magnitudes of an input image and then to assign  _ Order theW = 8- N - M pairwise pixel absolute
to each of them a specified gradient magnitude value given differencesil, — I,| < [I, — I,| < ... < |I, — 1|

by a target edge distribution (or a normalized edge histogra  _ gpiit this pixel absolute difference ordering relation
possibly estimated from a target image). A hybrid optimiza- from left to right in Z groups, such as grouphas
tion scheme combining a global and deterministic conjugate h; elements, i.e.h; couples of pixels.
gradient-based procedure and a local stochastic seamlu all — For all pairs of pixels or pair of site@, t) whose the
each pair of pixel values to tend (iteratively) towards thes absolute difference is in a groypassigni . = j-

specified gradient magnitude levels. The remainder of this
correspondence is organized as follows: Sections Il and llI
describe respectively the proposed model and the optiiizat This model can easily be generalized in order to ensure an
strategy. Finally, Section IV presents the set of expertalen®dge specification histogram in the = 2 (for example)

results and applications of this edge histogram specificati
method. 2Algorithm B corresponds to the cases where the input ancttangages
have integer luminance values ranging fr¢on: 255] and we also consider
Z = 256 bins for the luminance histogram and for the target histogod
Il. PROPOSEDMODEL the absolute value of the first-order difference (first-oghadient magnitude).
Consequently, if the target image has the same size of the inmage, h;
Let us first consider the case of an edge histogram sp@crecessarily a natural number (ranging fron: 8N M]). Nevertheless, if

ification procedure in the first order sense, i.e., using tif target image has not the same size of the input image, \@s#/; of
the distribution H, after the first step of Algorithm B (i.e., the step ensuring

absolute value of the grad|ent magthde with the first Ordﬁ'lrét this histogram integrates &x N x M) must be rounded to the nearest
integer and this then ensures that remains a natural number. Let us also
1The fractal dimension of an image surface corresponds tohtitean note that after rounding up to the nearest integer, the hewdon't add up
perception of image roughness [13]. W but this is not a problem in practice.

o 2. Optimization : Optimize (1) (see Sect. IlI)
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order sense (i.e., with a gradient magnitude using the sec- luminance or grey value:

ond order derivative). To this end, the summation of (1) I(z1,11) < I(z2,y2) < ... < I(Tyw, Yam)

should be all the pair of siteés,t) with t € N2 and N2 « Order color pixels of the target imag&) from their
designating thel6-pixel-neighborhood ofs separated by a luminance or grey value:

distanced = 2 pixels @ = max{|zs; — 2¢|, |ys — y¢|}) and T(uy,v1) < T(uz,v2) < ... < T (tnm, Unu)

W=16- N - M pairs of pixels or3y,, values. In the same Note that if the size of the target image is different
way, this model can easily be generalized in order to ensure from the size of the input image, an up-sampling or
simultaneously an edge specification histogram following a sub-sampling procedure should be used.

different distributions for respectively the set of gradient o Assign tol(xzs,ys) the color valuel (us, vs) for all
magnitudes in the; order senses. To this end, lgt,,) be the s < NM.

vector associated to the non-normalized target distributions  Since two luminance values can be identical for different
Hyy = {hp,0, b1, by, z—1} with 1 € [0...m[ (possibly color values, the first strategy thus seems to be more appro-

a priori imposed or estlmated from a target image), Mt priate if we want to preserve the different hues of an image
represents the; neighbors ok separated by a distande= I 1o be specified in the color histogram sense. Nevertheless, t
pixels, the procedure will commence as follows [Algorithth C second strategy seems also well suited if the target imagie ha

« 1. Specification with ordering relation a dominant hue as is the case in a texture transfer procedure
— Forl=1ton such as that presented in Section IV-C.
« Wy =8-1-N-M
* Normalize Hj; such that Wy, = >~ 5 lh[l],k I11. OPTIMIZATION STRATEGY

* Order thelV};) pairwise pixel absolute differences:
[Is = It| < |Iy — Iy < ... < |Ip — L]

x Split this pixel absolute dn‘ference ordering rela-
tion from left to right inZ groups, such as group
j hashy; ; elements, i.e.hy; ; couples of pixels.

The objective function to be minimize# may be more or
less complex according both to the shape of the target edge
distribution and the edge structure of the input image, (ite
edge distribution shape of the input image). This cost fonct
J . . may be sometimes nearly convex if the two edge histograms

¥ F_or all pairs O.f pixels 0r15|te$s., t) whose apsolute are close or very complex with several loealtrema if the
_dl_ffer(_ance IS |_n "fl group’, assignfy s, = J. shape of the two edge histograms are different or if one of
« 2.Optimization : Optimize (1) for € NJUNZU...UN!  these two edge histograms exhibits some discontinuities or
(see Sect. Il) an unusual shape (i.e., a shape far away from the classical
Finally, this model can easily be generalized in order taie®s density function of the formH (z) o« exp(—|z/c[’) put
simultaneously:; edge histogram specifications (following  forward by Simoncelliet al. in [14]). In order to ensure a
given different distributions) and an exact histogram spegood minimization and thus an accurate edge specification
ification of the luminance (or intensity) level. The methogyrocess in all cases, we have proposed the following hybrid
[Algorithm D] simply consists in alternating Algorithm C and adaptive optimization strategy:
and Algorithm A until a stability criterion is reached (i.e. o Since an analytical expression of the derivative of this
the output image does not change too much between tction E to be optimized is easily available we first use a
iterations). We would like to add that extending our apploagonjugate gradient procedure initialized with the inpuigioral
to color images is straightforward: image. For the conjugate gradient, the step size is fixed to

e In the case where the input image is specified directyhd adaptively decreased by a factor of two if the energy to
from a target distribution law, it consists first of reprei@® pe minimized increases between two iterations. We stop the
the input image (originally expressed in the RGB color spacgptimization procedure if a fixed number of iterations2()
in a color space where one coordinate is intensity or lunéeangr the convergence is reached.
value, such as the perceptual LAB color space and processing |n order to refine the estimation given by the above-
only on the Luminance value. After treatment, letbe the mentioned deterministic optimization method, we use the
output (edge-specified) luminance map, it then continues Byevious optimization result as the initialization of actastic
converting back the, AB into the classical RGB color spacejocal search. To this end we use a local exploration aroued th

e In the case where the input image is specified from @rrent solution using the Metropolis criteria [15] and aatim
target image for which we want to keep its color palette,ehefadijus of exploration (see Algorithm 1).
are two different ways: After this hybrid optimization procedure, it is possibleth

1) either the histogram of the componerits A and B a local minimum of the energy functio& is reached (in

of the input image is specified (Algorithm A) from thethis case, at convergenc&, > 0 and practically speaking,
components., A and B of the target image the histogram to be specified is yet far from being the

2) or as proposed in [5], one has to define a strict orderifgrget histogram; the value df being proportional to this

relation among color image pixels and a possible soldistance). In order to avoid being trapped in a local minimum
tion is to use the luminance or the gray value for thahnd to be closer to the global minimum, a strategy (that
In this case, the color histogram specification procedufgas empirically tested and relatively efficient) consisfs o
proceeds as follows: alternating the specification procedure (ordering refgtand

o Order color pixels of the input imagé)(from their this hybrid optimization method until a given criterion is
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reached such as when the value of the energy cost funct®nEdge Histogram Specification

E and/or the similarity between the target and output edgegyr initial experiment with Algorithm B was with a target
histograms (e.g., estimated by a Bhattacharya distan@®tis gjstribution (for the edge histogram using the first ordeive
too high. Let us note that a global minimum is not ensured We) with a desired shape. For this experiment, it is worth
this strategy. For certain images, the image structure tnd riecalling that the set of possible shapes for the edge histog
properties do not allow a perfect match between the input agelan image (see Sect. 1) are the set of decreasing functions
the desir_ed distribution _(i.e., thus inducing an erfor 0)  \with a mode at (amplitude gradient magnitudejdue to the
to be arrived at every time. Consequently, our strategy th@imerous smooth regions which necessarily exist in any real
consists of alternating the ordering relation and the psego \yor|d images and that induce, statistically and more géiyera
hybrid optimization method has to be stopped when a maximg original edge histogram with a density function of the
number of iterations is reached. form H(z)  exp (—|z/c[’) [14]). We have thus considered
the following three uni-modal (a0) decreasing (envelope)
distributions ¢ denoting the Heaviside step function).

1) First, the semi-Gaussian function:

E Energy function to be minimized H. z) = 1 exp(—20z 2 H(z
T Temperature at Iteration stép Target( ) Zh p( ) ( )
a Cooling schedule parameter

Algorithm 1
Local exploration with Metropolis

. Radius of exploration, reat]0. 1] 2) Second, the semi-triangle function:

To Initial Temperature HTa,gel(Z) = ZL (1 — 32) H(l — 32) H(Z)
Ty Final Temperature h
L3, Maximal number of iterations

3) Third, the (non unimodal &) shifted Gaussian function:
Hipog 2) = N(256 % z; mean= 0.1, var = 0.0001)

1. Initialization (Tf>#
e (11 i
0

2. Local Exploration

while I < L7, do 4) Fourth, a decreasing exponential function:
for each pixel with valuer, at site s do HTarget(Z) = ZL exp(—8 Z) H(Z)
h

o ComputeAEnergy= E(y,) — E(x,) with
ys € [zs — 7 : x5 + 7] and ys (pixel value)

€ [0.0: 1.0 with Z;, a normalizing factor ensuring that these functions

o If (AEnergy< 0) Replacez, by y, integrate to one (these above-mentioned target distoibsiti

« Else Replacer, by y, with are graphically shown at bottom right of Fig. 1). The vali-

probability > cxp(JEgﬁ dation and the efficiency of our algorithm is then achieved
| 1141 andT— Ty ! qualitatively by visually comparing the output and the dedi

edge histogram shapes and quantitatively by estimating the
Bhattacharya distance (ranging franto 1):

Z-1 1/2
IV. EXPERIMENTAL RESULTS Dg[Hragel2), H(2)] = (1 _ Z /Hrwgel 2) H (2) H(z)> )
z=0

A. Set Up between the two (normalized) edge histograms before and

In all the experiments, the input image is assumed to B&er the specification process. Fig. 1 (and Fig. 3) shows
toroidal (i.e., wrapping around at the borders; [this prope the qptalr_led results. W_e can notice that our edg_e histogram
only simplifies the implementation, but we can also repﬁca{spemflgatlon procedure is net(ac_tsmce the output histogram
the border pixels or use a different strategy]) with colors ¢hape is not a perfect match with the target histogram shape.
luminance values or magnitude gradient ranging frigm :  1his may derive from the fact that the edge image structure
1.0]. We have used56 bins for the histogram of the luminancecould not be geometrically more distorted in order to better
values and for the histogram of the magnitude gradient. ~Match the desired target edge histogram (or equivaletigy, t

For the conjugate gradient, the step is setite- 0.5. The gradient descent pr_ocedure has rea_cheql the global minimum
maximal number of iterations is set I’ = 20. For the local ©f th€ €nergy function” and £ 7 0 in this case). Another
exploration search, using the Metropolis criteria, theiahi possibility is that the gradient procedure is stuck in a loca

temperature and the final temperature are respectivelyosefinimum. Nevertheless, in all tested cases, the estimation
Ty =3-10~% and Ty = 5-10~10. The radius of exploration the Bhattacharya distance shows us that the similarity be-

is » — 0.04 and the maximal number of iterations is set tQVe€N these two histogram shapes noticeably increasesg(or t

L3 =1003% Finally, in order to obtain a final edge specifie(?h"“‘ttacharya distance decreasgs) after our edge spéo_'riicat
image which will be close enough to a reliable solution, wBlOc€SS except for the non-uni-modal (ashifted Gaussian
have respectively se,,, — 0.1, Dz, = 0.1 and L. = 6. istribution for which the output histogram remains far gwa
from the target distribution and the Bhattacharya distance
remains high Dz = 0.544). We can notice that the resulting
“Due to the small radius of exploration, the computationalplexity  output images are, in these three cases, visually different
of this optimization step (in fact a simple local search acbthe gradient with different edge statistic properties (and this will alse

estimation) is considerably reduced and this explains whywanumber of ) g . ’
iterations is herein performed. confirmed in the following experiments).
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Fig. 1. Algorithm B.Edge histogram specification procedure with a target distibution model. From left to right, the original input image, the four edge
histogram specification results and at bottom right, the fautput edge histograms (with the target and original bist;m superimposed on the output edge
histogram). The Bhattacharya distanBg; is respectively for these four experimerits312, 0.257, 0.783 and 0.264 before the edge specification process
and0.091, 0.061, 0.544 and0.190 after the edge specification process.

Fig. 2. Algorithm B. Detail enhancement and detail exaggeration proceduren the input image shown at top and bottom left. From top tdobwot
Cathedral (Notre Dame, Lyon, France) and Statue imagesé®sr database) and results for two different decreasimgesaof the Bhattacharya distance
(respectively0.85 x Dp,, and0.78 x Dg,,, as stopping criterion of Algorithm B withraqe: being the uniform distribution), namely; Cathedral image
Dg,,, = 0.57 (original image),Ds = 0.48 and D = 0.44. Statue imageDp,,, = 0.54 (original image),Dp = 0.44 and D = 0.41.

Our edge specification process may also be efficiently usedginal detail exaggeration procedure that goes muchéurt
for detail enhancement of an input image or even as #mn the results usually obtained with classical high-boos
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Fig. 3. Algorithm B.Edge histogram specification procedure with a target §
distribution model. From left to right, magnified regions from Fig. 1 and 2.

filters for which artifacts due to the noise amplification
the high pass filter (in the case of high value of the boost
parameter) quickly appear and may degrade the image qualit
In our case, this detail exaggeration procedure simplyistmg
of the use of Algorithm B in order to realize an edge
histogram equalization technique (i.e., by consideringrgett
distribution Hr.. simply equal to the uniform distribution)
Our iterative minimization-based edge histogram speti€ina
procedure then will aim at flattening, as much as possible,
the gradient magnitude distribution of the input image.His t
latter procedure, the desired level of detail in the outmage § o
can also be easily controlled, for example, by estimatirig, a @ ,
each iteration, the Bhattacharya distance between thaibutp nsan e v
and the desired uniform distribution and simply by stopping
our iterative procedure when this parameter reaches a gi\ﬁiﬁh 4._ Algorithm B.Image rendering procedure with dif_“feren_t classes
P i . . of detail accuracy levels From top to bottom and left to right, images and
S'm'lar'ty value: in this SuPerV'Sed procedure, the deslevel edge histogram specification results (with the target bistm superimposed
of detail in the output image will increase as the user irgeea on the output edge histogram) for respectively one, two 4melet different
the value for this, namely the Bhattacharya distance basgagses of detail accuracy levels (by specifying the ougnige histogram to
similarity measure between the output edge histogram ai’ﬁéﬁpgf tF'\i’gLyreusn'in;?%a; bimodal and three modal). Thgira images are
the uniform edge distribution. Fig. 2 and Fig. 3.[f-g] show
the obtained results for two different increasing valueghis
above-mentioned Bhattacharya (similarity) value as stapp
criterion.

urence Probabilty

o
o

03 0 01 02 03
Gradient Magnitude Level

two images of (possibly) the same scene. This correction
can be useful in order to normalize an image set (e.g., for
ﬁ?osaicing generation, fusion, registration, lightingreation,
indexing, retrieval systems or other applications). Fighbws
Yitferent views and icons of the cathedral church of Notre-
me-de-Fourviere (Lyon, France) taken by different camer

be used in order to render an input image with differe
detail levels or more generally into a specified number
separate levels of detail depths. This rendering is passibl

one specifies the output edge histogram with a multimo different times (thus with different resolution levelada

(e_dge) distribution. This allows us to render an image wi lor palettes). One of these images is the cathedral image
different classes of edge magnitude values or to enhanceollraeady used in the preceding experiments and considered, i

speclme? class of .deltall. Fig. 4 Sh%WSh the (;)_gtalned(éma%s test, as the target high resolution color image on whieh
results for respectively one, two and three different @asSyeire 1o normalize the other images in the color and resolut

of detail accuracy levels (thus by specifying the outputeed%egree senses. The results of our edge and color histogram

histogram to be respectively uni-modal, bimodal and thres%ecification method (Algorithm D with, — 2, i.e, in the two
modal). first order senses and exploiting the first algorithm, prisbn

at the end of Sect. Il, to ensure a specification of the color
C. Specification of Multiple Edge Histograms histogram) on the three original images are shown in Fig. 5.
Our edge histogram specification model can also be usedrhe proposed edge specification method can also be used
to somewhat eliminate an effect of unequal resolution,(i.@¢o transform one input image into another with differentedg
loss of accuracy, contrast or details) possibly created bygaometric and textural properties. To this end, we haveiegpl
blurring degradation (such as a motion or focal blur) betwe¢he Algorithm D on a portrait image exploiting the three first
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Fig. 5. Algorithm D.Image (resolution and color) normalization procedure From left to right, two original images and target imaged autput edge
and color normalized result images obtained by our algorifvith n; = 2).

edge distributions (i.en; = 3 in Algorithm D along with the D. Sensitivity to Internal Parameters
second specification method for color histogram) estimated
from a target image representing a certain drawing style. Th *
resulting images are shown in Fig. 6.

First, it is worth mentioning that our algorithm is rela-
tively insensitive to high values of the step sizbecause
of our adaptive decreasing schedule which adaptively
adjusts, and reduces this value in the conjugate gradient
We have compared our;-edge and color histogram spec- procedure if this parameter is set mistakenly too high.
ification method (Algorithm D) with a classical method that « Second, it is also worth mentioning that our overall min-
exploits only color information. Fig. 7 shows for a magnified  imization procedure is relatively insensitive to the three
region of the cathedral image (shown at Fig. 5a), that a parametersL?, L5 and LE, related to the different
single color histogram specification strategy (first altion of number of iterations of the minimization procedures,
Sect. Il, i.e., the same as that used in our algorithm D) does since the final stopping criterionEf,, and Dg,;,) will
not allow to get an output image with the same statistical ultimately check if the final solution is close enough to
edge geometric properties and level of detail of the target a reliable solution.
image (which is more detailed that the original image). This « Third, £, = 0.1 and Dg,_, = 0.1 (except for Algo-
“detail level specification” can also be quantified with the rithm B, used as a detail enhancement or exaggeration
Bhattacharya distand@p (between the edge histograms of the  procedure, for whichDg, . has to be set by the user)
output and the target image) which is respectivei0, 0.058 must not be considered as two internal parameters of our
and0.534 for the original image (i.e., before any specification  algorithm but rather as a criterion (for example, required
method), after our edge and color histogram specification by the schedule of conditions) for the expected estimation
method and after a classical color histogram specificaton. accuracy of the final result.
our algorithm, the similarity of the edge histogram shapese« Fourth,T is easily findable in our case, since a good final
of the resulting and target image thus noticeably increases temperature for a simulated annealing-like minimization

demonstrating that our algorithm allows to transfer, nayon

the color information but also the edge geometric propgrtie

of the target image (more precisely the shapes of its edge
distributions). Another consequence of our algorithm &t ih
does not distribute the different colors of the target image

procedure has to ensure that, at the end of the stochastic
search, very few sites change their luminance values

between two complete image sweeps. In our algorithm,

this parameter has been easily found after a few trials.

We have found thafy = 5 - 107!° was appropriate for

all the experiments presented in this correspondence.

the same way of our edge and color histogram specification
method, since our algorithm D seems to find a compromises Finally, two internal parameters are sensitive and crucial
between a similarity between the distribution of color leve for our algorithm, namely the radius of exploratioand,
and also the distribution of gradient magnitudes of thedfrg in a least measure, the starting temperafyref the local
image. These remarks can also be confirmed in the case of a stochastic search. The first one was set in order to locally

texture transfer technique only using a single color histoy
specification strategy (second algorithm of Sect. Il), whil®

not allow to copy the edge textural property of a given drawin

style. This is particularly visible in the case of the pdirst
style transfer technique for which its edge distributioms a
specific and far away from those of a natural image.
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Fig. 7. From top to bottom: magnified region of the image shawrrig.

5a for a single color histogram specification strategy andeolge and color
histogram specification method. Texture transfer techmigeing the input
image shown at top of Fig. 6 and a drawing style and exploitinly a single
color histogram specification strategy (to be compared ¢orésults shown
in Fig. 6, last row).

Fig. 6. Algorithm D.transfer procedure of the edge textural properties

belonging to an image to another From top to bottom and left to right.
Original image and a set of pairs of images including a drgwatyle

(respectively, the ink painting, sanguine, pointillistdapainting style) and
the obtained transfer result with Algorithm D (withy = 3).

comprised in[0 : 255]. Ty is set in order to ensure that,ywe|| suited to our energy based edge histogram specification
at the beginning of the stochastic search, approximatgfjpdel. Concretely, this energy based model iteratively and
50% of sites change their luminance values between tW.ometrically distorts the edge structure of the input ienag

complete image sweeps. during the minimization process, in order to transform its
edge histogram, as much as possible, to another desired edge
E. Algorithm histogram. Several applications of this model, such as aildet

The computational times of our procedure vary great aggeration procedure, an edge .high-boost or enhancement
depending on the shape of the input and target edge histsgr Wer a_md a texture transfer technique, have been presented
(i.e., between10 and 300 seconds) for an AMD Athlon @nd discussed.

64 Processor 3500+.2 GHz, 2010.17 bogomips and non-

optimized code running on Linux. Besides, it must be noted ACKNOWLEDGMENT

than our energy minimization can be efficiently implemented The author would like to thank the anonymous reviewers for
by using the parallel abilities of a graphic processor UBRU) their many valuable comments and suggestions that helped to
(embedded on most graphics hardware currently available iomprove both the technical content and the presentatiolitgua
the market) and can be greatly accelerated (up to a factoradfthis paper.
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