
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014 5309

Local Symmetry Detection in Natural Images
Using a Particle Filtering Approach

Nicolas Widynski, Antoine Moevus, and Max Mignotte

Abstract— In this paper, we propose an algorithm to detect
smooth local symmetries and contours of ribbon-like objects in
natural images. The detection is formulated as a spatial tracking
task using a particle filtering approach, extracting one part of
a structure at a time. Using an adaptive local geometric model,
the method can detect straight reflection symmetries in perfectly
symmetrical objects as well as smooth local symmetries in curved
elongated objects. In addition, the proposed approach jointly
estimates spine and contours, making it possible to generate back
ribbon objects. Experiments for local symmetry detection have
been conducted on a recent extension of the Berkeley segmenta-
tion data sets. We also show that it is possible to retrieve specific
geometrical objects using intuitive prior structural information.

Index Terms— Particle filter, local symmetry detection, ribbon
detection.

I. INTRODUCTION

IN HUMAN perception, symmetry is a key element for
object recognition as it is one of the fundamental law of

the Gestalt theory. Its importance is easy to underline as it is
ubiquitous in nature: plants, animals, humans; as well as in
man-made objects, buildings, and art [1], [2].

In computational science, reflection symmetry detection has
received an increasing amount of attention in the last decade.
In this paper, we focus on local symmetries, which locally
approximate reflection symmetries. Two points form a local
symmetry if the angles between their outward normal and the
line joining the points are the same [3], [4]. This definition
covers global as well as purely local symmetries. The former
refers to a symmetry that holds a whole object, whereas
the latter relies on a subset of an object. In other terms,
although the definition is local, it does not mean that the
detected symmetry cannot be global. While global reflection
symmetries can be difficult to retrieve due to noise, occlusion
and local deformations, purely local symmetries offer more
flexibility and may be more suited for natural images.

A symmetry axis is a spatial characteristic of the shape.
However, the symmetry axis does not encode the scale and

Manuscript received December 14, 2013; revised May 3, 2014 and
August 18, 2014; accepted October 17, 2014. Date of publication October 30,
2014; date of current version November 6, 2014. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Adrian G. Bors.

The authors are with the Department of Computer Science and
Operations, University of Montreal, Montreal, QC H3T 1J4, Canada (e-mail:
widynski@iro.umontreal.ca; moevusan@iro.umontreal.ca; mignotte@iro.
umontreal.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2014.2365140

contours of the shape. On the other hand, contours only
can hardly describe regional properties (e.g. symmetry) and
descriptions (e.g. “elongated and curve”) [3]. Ribbon-like
objects, or simply ribbons, are a representation of 2D plane
shapes. A ribbon can be defined by a smooth local symmetry
curve, called spine (the black plain curve in Fig. 1), and a
geometric figure, such as a segment or a disk, called the
generator (the black dashed structure in Fig. 1). Ribbon shapes
benefit of a dual representation: a contour-based and a region-
based representation.

In this article, we propose to detect both contour and
symmetry curves of ribbon objects in natural images. Ribbons
being strongly related to the notion of local symmetry, they
are in fact common in natural images, as they can describe a
large amount of objects [1]. They are also of interest for the
detection of specific tubular structures, for example in med-
ical image analysis (vessels, arteries, colon, …) [5]–[9], and
remote sensing (urban structures, road networks) [10], [11].
Ribbons being a basic element structure that represents well
any local object part, their detection could also be employed to
retrieve more sophisticated non-ribbon objects using a higher
abstraction level detection framework: contours can be used
for object segmentation [12], [13]; local symmetries can serve
object recognition by providing candidates for structural-based
graph matching techniques [14], [15]; and local contours and
symmetries could be jointly exploited by a dedicated algo-
rithm, as it has been done in [16] in the context of knowledge
transfer between object classes, and in [17] and [18] in the
context of object detection using a hierarchical representation.

Our approach spatially tracks symmetries and contours
using a local geometric model of ribbons. Local symmetries
are assumed to form smooth 1D lines (spines). The use of
an iterative algorithm for this task is particularly well-suited
to extract smooth local symmetries and to preserve local
connexity properties. We propose to implement a sequential
Monte Carlo method, namely a particle filter, to extract one
piece of the structure at a time. The particle filter naturally
embeds a prior and a spatial transition, which enable to
geometrically control the structure of the shape to be extracted.
The particle filter is also able to maintain several hypotheses
during time, thus overcoming local ambiguities that may hap-
pen in occlusions and clutter, for example. The last component
of the proposed recursive Bayesian approach is the likelihood
function, which is adaptive to the image, in order to confer
more importance on visually salient geometric patterns.

This paper is organized as follows. In Section II, we
present a brief analysis of previous works proposed in the

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5310 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 1. Examples of spine’s recovery for the three well-known types of ribbons. (a) Blum ribbon does not fully recover a shape with a high local positive
curvature or strong turn. The red highlighted areas are missed and the red circles intersect at the same point, hence, this shape cannot be recovered with a
Blum ribbon. (b) With the Brooks ribbon, generators also intersect. (c) Only the Brady ribbon can fully recover the shape. It is important to notice that Brady
ribbons were specifically dedicated to recovery.

symmetry and medial axis detection literature. In Section III,
we describe our model of ribbons. Applied sequentially, our
model provides consistent and well-formed ribbons. We also
define the ribbon prior and transition probability density
functions. In Section IV, we detail the contour and object
features. These features rely on the information of local
gradient, oriented gradient, and textural color. Their purposes
are twofold: to evaluate the accuracy of the localization of a
contour pair candidate, and to ensure that the ribbon spine is
inside an object. In Section V, we explain the ribbon detec-
tion algorithm. The detection framework originates from the
recent work introduced by Widynski and Mignotte [19], [20],
in which the authors proposed to detect contours using a
particle filtering technique. We adapt this methodology to our
purpose. In Section VI, we show the results obtained on the
LS-BSDS300. We also illustrate examples of symmetrical
object retrieval using a prior information on their structure.
We finally conclude in Section VII.

II. RELATED WORK

We focus on symmetry and medial axes detection algorithms
in the recent literature, before making an overview of the
definition of a ribbon.

A. Symmetry Detection

Reflection, rotation, and translation symmetries have been
the subject of numerous detection methods these recent years.
Among the three, reflection symmetry is definitely the most
common, as it may be the most ubiquitous in the real world.
Reflection symmetry detection methods can be separated into
two groups: the first starts from segmented data, and aims
at coherently gathering pieces in order to form symmetries
with nice geometric properties. The second does not require
any pre-processing step, and thus aims at extracting local
symmetry features directly from the image, possibly using a
shape model. In this section, we mainly focus on un-segmented
reflection symmetry detection methods. The reader can find
extended bibliography on these subjects in [1] and [21].

Literature on shape representation methods has been par-
ticularly prolific these recent years [22], [23]. Their scope of
application is appealing: object detection, data compression,
tracking, segmentation, … Among these methods, Trinh and
Kimia addressed the object detection problem by extracting
medial axis of specific objects in natural images [24]. The
shape is learned from a dataset and is modeled using a

graph representation. Since they rely on a structural prior
rather than a potentially changing appearance model, such
methods are very promising in object detection. But although
skeletons contain local symmetries [23], [25], these methods
are not intented to extract them all since the detections are
driven by a specific shape model.

Detection of symmetries without integrating a model has
notably been studied in [21], [26], and [27]. These papers aim
at finding major symmetry axes from extracted feature points.
Thus, these methods are more adapted to recover global reflec-
tion symmetries rather than multiple local symmetries from
images [28]. In [29], Podolak et al. proposed a planar reflective
symmetry transform to measure the degrees of symmetries of
arbitrary 3D shapes. All the planes passing through the object
bounding volume being evaluated, this representation creates
an interesting bridge between local and global symmetries, yet
it remains to be applied to the detection problem in natural
images.

Recently, Tsogkas and Kokkinos proposed a soft local
symmetry detector using a learning-based approach operat-
ing jointly on several scales [30]. The features are based
on the well known gPb contour detection algorithm [12].
Although we compare our approach to theirs, the problems
are not exactly the same. They focus on local symmetry
detection, and not on ribbon detection, meaning that their
approach cannot recover an object nor a scale information.
The authors also proposed to use the Berkeley Segmentation
Dataset (BSDS300) [31] to learn and evaluate their local
symmetry detection algorithm. To create the symmetry ground
truth dataset, they first manually selected elongated objects
from the set of human-annotated segments available in the
BSDS300. Then, they used a skeletonization algorithm to
extract the medial structure of the objects. We further refer to
this dataset as the LS-BSDS300, which stands for Local Sym-
metries in the Berkeley Segmentation Dataset 300. As in [30],
we also compare our approach to the methods proposed by
Lindeberg [32] and Levinshtein et al. [33]. The former defines
a multi-scale ridge detector, hence yielding to a 1D output
of the structure. The latter approximates symmetrical regions
using fitted ellipses from which it retrieves the major axes.

The problem of detecting symmetries and ribbons together
has been previously addressed in the context of the detection
of thin elongated structures such as roads, vessels or other
tubular objects [5]–[8], [10], [34], but to our knowledge,
not in natural images. The comparison with our approach is

WIDYNSKI et al.: LOCAL SYMMETRY DETECTION IN NATURAL IMAGES 5311

even more relevant in the case of [5]–[7], since the proposed
methods employ a particle filtering technique to extract vessels
and arteries in 3D computation tomography data. However,
the aforementioned methods are often semi-automatic, thus
making them designed for single extraction purposes, and/or
are object-specific, which make their adaptation in natural
images not trivial.

In this work, we stress that simultaneously retrieving the
contours and their associated local symmetries into a single
framework is an interesting challenge as it aims at representing
objects by compact and consistent structures at different levels
of abstraction. Our goal is also to propose a generic geometric
model that could be easily exploited to extract specific ribbons
from natural images. This prior could be based on many
basic filtering criteria, such as the length of the symmetry,
its minimal/maximal curvature, the object area, its perimeter,
its thickness, …

B. Ribbon

The definition of a local symmetry is related to the notion
of ribbon. Past literature [1], [3], [35], [36] reports several
definitions of local symmetries, each one being associated
with a different type of ribbon [4], [37]. According to the
definition proposed in [4], a ribbon is a plane shape generated
by translating a geometric figure, the generator, along a plane
curve, the spine. To ensure that the generated shape is a proper
ribbon, the generation process should respect the following
rules [37]:

• the size and the orientation of generators should vary
smoothly along the spine;

• generators should not intersect each others;
• generators should not contain one another.

Smooth variations of the size and the orientation imply the
continuity of the shape contours. The two latter rules ensure
that the shape is well formed: the non-intersection rule forbids
objects with holes (which are not ribbons objects), and the
non-inclusion rule imposes each generator center to contribute
to the global shape of the ribbon (this way, the ribbon structure
is very similar to that of the spine).

Fig. 1 illustrates the most popular types of ribbons: Blum
ribbons, Brooks ribbons, and Brady ribbons. Each of these is
defined by a different generator: Blum ribbons use a circle as a
generator [35], Brooks ribbons use a line segment with a fixed
angle (often perpendicular) to the spine [36] and Brady ribbons
use a line segment whose extremities make equal angles with
the contour of the ribbons [3].

Rosenfeld [37] explains that these ribbons have different
properties because they were designed for different purposes.
For instance, Blum ribbons have the property to be uniquely
recoverable from the contours, i.e. only one spine can be
recovered from a given ribbon. However, these ribbons can
represent a limited class of objects. Brooks ribbons are more
flexible than Blum’s, and are easy to generate, but are locally
ambiguous due to their lack of constraint on the contour
layouts. Thus, they may not result in a unique recovery
of the spine. Finally, Brady ribbons define the most flexi-
ble class of ribbons. They describe well a wide range of

shapes, but their generation is neither unique nor obvious
compared to other ribbons. To generate Brooks and Blum
ribbons only the size (radius) of the generator, l, is required
before sweeping it out on the spine, whereas for Brady
ribbons the slope of the generator with the spine, tan θ ,
is also required. Moreover, the end points of the genera-
tor are the sides of the ribbon and their slopes are equal
to [37]:

d(y ± l sin θ)

d(x ± l cos θ)
= y ′ ± l ′ sin θ ± lθ ′ cos θ

1± l ′ cos θ ∓ lθ ′ sin θ

with u′ the local derivative of u. These slopes are referred
to by tan αa and tan αb, and they must respect the equal
angle condition, meaning that (αa + αb)/2 = θ . In practice,
this equation is generally not easy to solve and this confirms
that Brady’s intention was not to define a generative model of
ribbons.

The process of retrieving ribbons from images is different
regarding the type of ribbon considered. Blum and Brady
ribbons belong to the bottom-up category, since their detection
algorithm may be divided into the following procedures:
1) a pre-processing step is used to extract binary contours,
2) multiple local symmetries are obtained according to their
respective definitions, and finally, 3) the middle points on
the axes of symmetry, the locus, are joined all together to
obtain the medial axis. Brooks ribbons may be used in a top-
down approach, by 1) generating candidates, and 2) validating
or invalidating the candidates by matching their local char-
acteristics to the image. The former type of approach may
not be suited in the case of natural images, since retrieving
binary contours may produce erroneous results, and yet these
noisy measurements may increase the detection errors of the
ribbon extraction algorithm. Conversely, generating candidates
and then estimating their likelihood is not vulnerable to
propagation errors from a pre-processing step and may benefit
from a higher level of decision process.

To summarize, we expect that a ribbon statisfies the fol-
lowing three properties: 1) it should be expressive enough in
order to be able to model a large range of ribbon-like objects;
2) it must be generative in order to be able to propagate ribbon
candidates; 3) it should not be ambiguous (otherwise, it could
lead to an ill-posed problem). Blum ribbons offer neither 1) nor
2), since they can represent a limited class of objects and are
not generative. Brooks ribbons do not offer 3), since they
are highly ambiguous. Finally, Brady ribbons do not offer
2). Therefore, we need to define a simple generative but yet
expressive model of ribbons.

In our detection algorithm, ribbons are detected sequen-
tially: candidate parts of a ribbon are generated and then
weighted in a Bayesian framework. We base our ribbon
definition on that of Brooks, but we add the constraint that
the generator makes equal angles with the contours. This
constraint is formulated in the Brady ribbons, and results in
reducing the local ambiguities of the spine location. This way,
we define a convenient generative ribbon model which can
easily reconstruct contours of the shape and keep a good
description capacity of smooth local symmetries for a large
class of ribbons.

5312 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 2. Geometric model of a ribbon rt = (pt−1, θt , lt , ᾱt). θ̄t is the
orientation shift |θt − θt−1|, lt is the generator radius, and ᾱt the deviation
angle from θt , i.e. αt = θt ± ᾱt with αt being the angles between the contour
curves and the abscissa axis. Contour points generated at the spine points
pt−1 and pt define local symmetries. Spine and contours are interpolated
using cubic Hermite splines.

III. A MODEL OF RIBBONS

We present in this section a geometric model used to
represent ribbons. Since we want to efficiently retrieve these
structures from natural images, and be able to generate suitable
candidates, a good geometric model would confer a trade-off
between simplicity and power expressivity.

A. Geometric Model

Let us introduce some notations. Since the detection method
is stochastic, the random variables are indexed by the time t .
However, in our case, the tracking is not spatio-temporal but
only spatial, thus, the time t is a t th step iteration of our
detection algorithm. Hence the set {pt , t ∈ N} represents a
sequence of spine points. A spine point is a local smooth
symmetry point, with respect to the Brady’s definition [3],
i.e. it is defined as the barycenter of the line segment joining
two contour points that makes equal angles with the sides
of the shape. The smooth spine is interpolated using a cubic
Hermite spline whose data points and tangents are defined by
the spine points. Hence, the tangent direction at the point pt

is equal to (pt − pt−1)/‖pt − pt−1‖.
Let θt be the angle defined by the tangent direction, i.e. θt is

the angle between pt and the abscissa axis with respect to the
center point pt−1. We consider that the distance between two
consecutive spine points is a parameter d of the method, so
that the point pt is defined by the polar system (θt , d) and with
respect to pt−1. We would also like to retrieve the symmetric
contours from the spine. To do that, we add a local symmetry
radius parameter, lt , into our model. At a certain point pt ,
the contour points are defined along the normal of (pt−1, pt),
i.e. at an angle θt ± π/2 and at a distance lt . These contour
points are the extremities of the ribbon at time t . The angles
between their respective contour curves and the abscissa axis
are defined as αt = θt± ᾱt , which is consistent with the Brady
ribbons. The angles αt are expressed as a deviation angle
from θt because we assume that for most of natural ribbons,
contours are locally parallel to the spine points, implying in
that case ᾱt = 0. Finally, the contours are interpolated using
cubic Hermite splines, whose angles of the tangent are defined
by the angles αt . The model is illustrated in Fig. 2.

B. State Model

In conformity with the notation system introduced in the
previous section, the vector state st of a spine axis at a time
t is defined as (pt , θt , d), where pt is the spine point, θt the
angular coordinate, and d the radial coordinate. These three
variables define the axis of a local symmetry. Since the point pt

is defined by the first point p0 and the polar coordinates (θt , d),
we discard it from the notation system. Plus, the distance d is
fixed, and thus does not need to be estimated. In these
conditions, the spine trajectory s1:t is simply characterized by
the sequence (p0, θ1, . . . , θt). However, in Section V, we will
see that the first point of a trajectory is not necessarily p0,
since the trajectory corresponds to a set of spines instead of
only one spine.

From the spine axis st , we can define a ribbon portion, rt ,
as rt = (st , lt , ᾱt) = (θt , lt , ᾱt), where lt is the radius of the
ribbon, and αt = θt ± ᾱt the angles at the contours.

C. Probabilistic Model

There are two ways to define the prior and transition
distributions p(rt) and p(rt |rt−1). The first one is to learn
these distributions on a ribbon shapes database. The spine can
for example be retrieved using the Brady’s algorithm [3], and
the other conditional distributions can be approximated using a
shape reconstruction error criterion. However, in this work, we
propose to define generic distributions whose parameters are
estimated by a trial-and-error procedure on the LS-BSDS300
training dataset. The reason is that in this way, the shape
parameters can intuitively be tuned, which is suitable when
one wants to detect a specific category of objects based on
some shape criteria, as we will experiment in Section VI.

1) Prior Model: We define the prior distribution p(r) as a
product of independent terms:

p(r) = p(p0) p(ᾱ) p(θ) p(l)

= U(p0;�)N (ᾱ; 0, σᾱ)U(θ; [0, 2π[)U(l; [lm, l M]) (1)

Here we assume that the prior distribution of the spine point
p0 follows a uniform distribution in the image domain �. The
distribution of the angle θ is uniform in [0, 2π[, meaning that
no initial direction is suggested. The prior distribution p(l) is
uniform in the interval [lm, l M]. The angle ᾱ on the contours
follows a normal distribution centered in 0 (in that case the
tangent contours are equal to the one of the spine), and of
standard deviation σᾱ .

2) Transition Model: The joint transition distribution is used
to propagate a spatial information from t−1 to t and is defined
as:

p(rt |rt−1) = p(lt , ᾱt |st , lt−1) p(st |st−1)

= p(ᾱt) p(θt |rt−1, θt−1, lt) p(lt |lt−1)

= N (ᾱt ; 0, σᾱ) N̄ (θt; θt−1, σθ) N̄ (lt ; lt−1, σl)

(2)

The transition of the radius is defined as a truncated nor-
mal distribution N̄lm ,lM (lt ; lt−1, σl), with [lm, l M] the support
interval. The transition of θt is then defined as a normal
truncated distribution N̄rt (θt ; θt−1, σθ) whose endpoints are

WIDYNSKI et al.: LOCAL SYMMETRY DETECTION IN NATURAL IMAGES 5313

Fig. 3. Simulation of ribbons using different parameters for the prior and transition models. Other parameters have been set to d = 9 pixels, t = 1, . . . , 5,
for all the simulations. Each simulation has been laid out on a 75 × 75 pixel grid. The simulations in (b) correspond to the estimated parameters on the
LS-BSDS300 training dataset. (a) (σᾱ = π/4, σθ = π/2, σl = 1.5). (b) (σᾱ � π/8, σθ � π/16, σl = 0.18). (c) (σᾱ = 0, σθ = π/32, σl = 0.05).

computed using (rt−1, θt−1, lt) in order to induce a generator
(connecting line of the two contour point extremities at t)
that does not intersect with the one at t − 1. This ensures
generating locally well formed ribbons, and implies that the
thickness of a generated ribbon cannot exceed twice the radius
of curvature of its spine. Fig. 3 illustrates ribbons generated
using the prior model (Eq. 1) and the transition model (Eq. 2)
for several combinations of parameters.

IV. COMPUTING FEATURES ON RIBBONS

In this section, we propose to extract five symmetry features.
We note←−c (r), −→c (r), the left and right contours, respectively,
associated with the medial axis r, and ←→c (r) whether it can
be one or the other. The sides of the contours are arbitrarily
defined relatively to the direction of traversal of the ribbon.
The time subscript t is omitted for more clarity. The first three
features are computed near the contours: the local gradient f 1,
the oriented gradient f 2, and the textural gradient f 3. The
textural features f 4 and f 5 ensure that the medial axis
is correctly located inside an object. All the features are
illustrated in Fig. 4.

A. Contour Features

First, we need to define a merging operator to combine a
pair of contour features

(
f i (←−c (r)), f i (−→c (r))

)
. We define it

as the harmonic mean between these two quantities:

f i (r) = 2 f i (←−c (r)) f i (−→c (r))

f i (←−c (r))+ f i (−→c (r))
, ∀i = 1, 2, 3

The choice of a harmonic mean relies on the fact that when
computed on just two values, this merging operator is a
good trade-off between a minimum and an average operator.
It forces the contour features to get a high and consistent
response, but it is also less drastic than a minimum operator
when one of the two contours is cluttered or occulted.

1) Local Gradient: The local gradient is a smoothed gradi-
ent norm |g ∗ ∇ I | of the image I . The feature f 1(←→c (r)) is
computed along a contour ←→c (r) of length L:

f 1(←→c (r)) = 1

L

L∑

i=1

∣
∣
∣∇g ∗ I

(←→c i (r)
)∣
∣
∣

where ←→c i (r) is the i th point of the contour ←→c (r). For an
image I , we take the maximum gradient value on each point
among the different channels.

2) Oriented Gradients: We propose to compute a histogram
distance between two oriented gradient patches. The histogram
of oriented gradients [38] summarizes a textural information.
The distance between two adjacent patches of oriented gra-
dients is known to give a good indication of the presence
of a contour [12]. The procedure proposed here is slightly
different from that of the pioneers Dalal and Triggs [38] and
has been used in [39]. For a point←→c i (r) of a contour←→c (r),
we consider the two sides of its normal segment, one related to
the outside the object, nout, and one related to the inside, nin.
Let hO[a] = {hr

O[a]}Rr=1 be the histogram of a set of pix-
els a, where r is the bin index of a histogram of length
R = 4 × RM, with 4 the number of considered orientations
(vertical, horizontal, and two diagonals) and RM the number of
magnitude bins. The distance between two adjacent oriented
gradient patches is defined as:

f 2(←→c (r)) = 1

L

L−1∑

i=2

dB
(
hO[nin(

←→c i (r))], hO[nout(
←→c i (r))])

with

dB(h[a], h[b]) =
[

1−
R∑

r=1

√
hr [a] hr [b]

]1/2

the Bhattacharyya distance between two histograms. In prac-
tice, we consider normal segments with 5 pixels width in order
to get enough samples to compute the histograms.

3) Textural Gradients: The last contour feature integrates
the color distribution of the neighborhood of a contour to help
determine whether the candidate is located on a true contour
or not. We consider two CIE Lab color histograms of adjacent
patches, ideally one located inside the contour, the other
one outside. The dimension of the outside patch is fixed, while
the inside patch depends on the radius of the object. Let hT be
a textural color histogram of length R equals RT × RT × RT,
with RT the number of bins by channel. The distances between
the pair of histograms along the barycenter contour curve is
defined as:

f 3(←→c (r)) = dB
(
hT[nin(

←→c b(r))], hT[nout(
←→c b(r))])

5314 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 4. Features. ←−c (r) and −→c (r) are the left-side and right-side contours, respectively. The figures represent the five proposed features f j , j = 1, . . . , 5.
(a) f 1 is the local gradient on both sides of the contours. (b) f 2 is a combination of two histogram distances of the oriented gradients computed inside
and outside the object. (c)-(e) The three last features are extracted from the color histograms of these regions: f 3 ensures the presence of the contours by a
combination of the two distances inside / outside the object, the other ones ensure the presence of an object by a distance inside / inside (f 4) and another
outside / outside (f 5).

with ←→c b(r) the barycenter point of the contour ←→c (r).
In practice, to limit the additional computational cost of
considering a radius-dependent patch size, the regions are
approximated by considering rectangles centered on the
barycenter points, and 16 possible orientations in [0, π]. This
feature is computed at four different size patches in order to
integrate a more global information.

B. Object Features

The feature f 4 ensures that the medial axis divides a region
into parts sharing the same textural information. It helps
detecting symmetries inside consistent regions. This is done
by considering color histograms extracted from two patches
located on the inner sides of the contour:

f 4(r) = 1− dB
(
hT[nin(

←−c b(r))], hT[nin(
−→c b(r))])

Finally, the feature f 5 assumes that the object is superposed
to a unique background. The same hypothesis is made in [30],
and from experiments, we found that it greatly reduces the
number of undesired symmetry detections in the background.
We also use color histograms to check that the background
histograms on each contour side match:

f 5(r) = 1− dB
(
hT[nout(

←−c b(r))], hT[nout(
−→c b(r))])

V. RIBBON DETECTION ALGORITHM

In this Section, we present a local symmetry detection
algorithm using a particle filtering technique. The algo-
rithm is based on previous developments in which we pro-
posed the PFCD framework [19], [20], standing for Particle
Filter for Contour Detection, in order to detect contours in
natural images. We turn the ribbon detection problem into
the estimation of the distribution of the joint local reflection
symmetries and radiuses r1:t = (θ1:t , l1:t , ᾱ1:t) considering a
set of observations y. The detection algorithm is composed of
three estimation steps:

(a) The approximation of the likelihood functions, which
are defined using the features described in Section IV.

(b) The approximation of the initialization distribution of
the local symmetries p(r1|y) is performed using a
Monte-Carlo sampling approach. Ribbons are first gen-
erated using the prior distributions defined in Section III,
and are then weighted using the likelihood functions.

The joint likelihood function and the initialization dis-
tribution are both estimated during this step.

(c) The approximation of the trajectory distribution
p(r1:t |y) is performed using a sequential Monte-Carlo
technique, the so-called particle filter. For each step t ,
ribbons are first generated using an importance function
that is related to the transition distributions defined in
Section III, and are then weighted using, in particular,
the same joint likelihood function that was used in the
initialization step. Each time a ribbon has been entirely
extracted, the detection is automatically reinitialized on
a new ribbon. Local symmetries are therefore iteratively
and spatially tracked until the particle filter reaches a
stopping criterion.

A. Likelihood Function

This section presents how estimating tail distributions of the
features, or complementary cumulative distribution functions
of the features, are used to overcome two classical drawbacks
of particle filtering techniques. First, if a particle gets lost,
there is no mechanism in the particle filter to handle it. This
may happen, for example, when the extraction of the last
ribbon was completed at t−1, and then needs to move on a new
spine. This is partially due to the weight normalization step,
intrinsic to particle filters, which avoid any global comparison.
Second, particle filters do not embed a stopping criterion,
which is necessary in our application. We denote by y j (r) the
observation associated to the ribbon r. The observation y j (rt)
is given by the tail distribution associated to the feature j :

y j (rt) = P
(
μ j > f j (rt)

)
(3)

where μ j is a random variable taking values in R
+ and f j

is the j th feature previously defined in Section IV. In this
case, the tail distribution of the j th feature response can be
seen as a false alarm distribution. Its value tends to 0 as the
feature response tends to +∞. In this last example, we say
that the feature response is meaningful, conveying the idea that
significant events, according to the human perception, are rare.
This is the idea of the Helmholtz principle, and has notably
been used in an a contrario framework [40], [41]. Using this
contextual information, these J distributions will be exploited
to decide whenever some particles need to be reassigned to
new objects, and when to stop the detection algorithm.

We define the likelihood joint p(y|rt) which measures the
adequation between the joint observation y = (y1, . . . , yJ),

WIDYNSKI et al.: LOCAL SYMMETRY DETECTION IN NATURAL IMAGES 5315

and the state rt at a time t . Although the vector observation y j

designates observations from the whole set of ribbons included
in an image, the likelihood is only evaluated on the ribbon
rt [20], [42]:

p(y|rt) =
J∏

j=1

p(y j (rt)) (4)

where the observations (y1, . . . , yJ) are assumed conditionally
independent given (rt). The marginal likelihood p(y j (rt)) is
defined using its associated tail distribution:

p(y j (rt)) ∝ exp
(
− λ j P

(
μ j > f j (rt)

))
(5)

where f j is the j th feature defined in Section IV, and λ j ∈ R
+

a coefficient that weights the importance of the feature j .
The marginal likelihood p(y j (rt)) gives low density values
for high values of the tail distribution, i.e., the density values
are low for common events, thus giving more weight to rare
relevant events. The tail distributions are estimated using a
Monte Carlo procedure, along with the initialization distribu-
tion, as we will see in the next section.

B. Initialization Distribution

Particle filters assume that an initialization distribution is
known. In real-world applications, this might not be the case,
so we need to estimate it. We could also simply use the prior
distribution p(r1) defined in Section III, but since by defin-
ition they are not conditioned by the observation y, it could
be inefficient. This leads the estimating of the initialization
distribution p(r1|y) using a classic Bayesian decomposition:

p(r1|y) ∝ p(y|r1) p(r1)

= p(y|r1) p(ᾱ1) p(θ1) p(l1) p(p0) (6)

with the prior distribution p(r1) defined in Equation 1 and
the likelihood p(y|r1) defined in Equation 4. To alleviate the
problem of dimensionality, generated ribbons from the initial-
ization distribution are rectangular, i.e. l0 = l1 and ᾱ0 = ᾱ1.
The tail and initialization distributions are approximated using
a Monte Carlo importance sampling procedure by:

• Generating samples {r(n)
1 }n=1,...,Ni according to the prior

distribution p(r1);
• Evaluating the feature responses { f j (r(n)

1),∀ j =
1, . . . , 5}n=1,...,Ni of every sample, which results in
the approximation of the tail distributions {P(

μ j >

f j (rt)
)
,∀ j = 1, . . . , 5};

• Computing the joint likelihood p(y|r(n)
1) of every sample,

which results in the approximation of the initialization
distribution p(r1|y).

The initialization distribution implies that the spatial track-
ing of the ribbons can begin at any location of an object. As we
will see in Section V-C, the potential negative effect of this
behavior is coped by the sequential aspect of the detection
algorithm that allows the tracking to pursue the detection on
other object parts at different times, and by the use of multiple
particle filters to add diversity to the posterior distribution
Moreover, the method implicitly favors to find the longest

symmetry axis of a ribbon: if the probability of initialization
is identical at any location of the ribbon axes, the effect of this
tendency is proportional to the length of the symmetry axes.
This means that minor axes can still be detected, but with a
lower probability. From a ribbon representation perspective,
this is consistent with the fact that one generally wants to
limit the ambiguities of the ribbon model, and that the longest
axes should be prefered, since they represent the object more
intuitively [37].

C. Detection Algorithm: Trajectory Distribution

First, we need to make an adjustment of the hidden state.
In order to detect all the ribbon objects of an image, the
algorithm needs a mechanism to detect when the extraction
of a ribbon has been completed. Let jt be a binary random
variable that designates the current work state of the ribbon
extraction. If jt = 0, the spatial tracking goes on normally.
Otherwise, it means that the extraction of the current object
is completed and needs to be reassigned to a new object.
This point will be further clarified in the current section.
The purpose of this section is to estimate the trajectory
distribution p(x1:t |y) using a particle filtering technique, with
xt = (rt , jt) = (θt , ᾱt , lt , jt). The modeling of the state and
the definition of the prior and transition distributions in the
original PFCD approach [19] are conceptually different from
the one proposed here.

In sequential Monte Carlo methods, (xt)t∈N+ and (yt)t∈N+
are modeled as stochastic processes, where the index t rep-
resents the time. In image processing, particle filters are
essentially known for tracking applications. Basically, the goal
is to estimate the position of an object over time by empirically
approximating the posterior density distribution and next by
computing the Monte Carlo expected value. However, in the
context of symmetry and ribbon detections, the tracking is
purely spatial as it aims at estimating the positions of ribbons
by locally propagating small parts of ribbons. Thus, the
time index is removed from (yt), as the observations could
all be gathered at the beginning of the estimation process.
The recursive trajectory estimation consists in estimating the
following posterior distribution:

p(x1:t |y) ∝ p(x1:t−1|y) p(y|xt) p(xt |xt−1) (7)

where the likelihood function p(y|xt) = p(y|rt) has been
defined in Equation 4. The transition density distribution
p(xt |xt−1) is defined as:

p(xt |xt−1) = p(rt |rt−1) p(jt) (8)

with the ribbon transition p(rt |rt−1) as defined in Equation 2.
We assume that the transition of the jump variable is indepen-
dent from its past state, i.e. p(jt | jt−1) = p(jt). This way,
p(jt) implicitly controls the length of the detected spines.
We note κ = p(jt = 1) the probability to make a jump.

The particle filter aims at recursively approximating the
posterior distribution p(x1:t |y) using a finite set of N samples
{x(n)

t }n=1,...,N . The resulting empirical distribution is [43]:

PN (dx1:t |y) =
N∑

n=1

w
(n)
t δx(n)

1:t
(dx1:t) (9)

5316 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

where δx(n)
1:t

(·) is a Dirac mass centered on a hypothetical state

realization x(n)
1:t of the state x1:t , also called particle, w

(n)
t

is its weight, and dx1:t is an event of infinitesimal support.
The recursion estimation of the trajectory distribution can be
carried out by three steps: 1) propagating the particle set from
t−1 to t using an importance function; 2) updating the particle
weights using in particular the likelihood, and resampling
the particles if needed [43]; 3) checking if the particle filter
has completed its task, i.e. if no further ribbon needs to be
extracted. These three steps are detailed below.

1) Generating the Particles: The first step of a particle
filter algorithm consists in propagating the particles from the
previous particle set {x(n)

t−1}n=1,...,N . Particles are generated
using a function of importance q(xt |x1:t−1, y):

q(xt |x1:t−1, y) = q(rt |r1:t−1, jt , y) q(jt|xt−1, y) (10)

The ribbon proposal density is proportional to the initialization
density (Eq. 6) if a jump is made. Otherwise, the proposal
density is proportional to the ribbon transition (Eq. 2). Also,
it depends on a trajectory term that gives little probability to
echo detections:

q(rt |r1:t−1, jt , y) = 1

nq
f (st , s1:t−1)

× [jt p(rt |y)+ (1− jt) p(rt |rt−1)] (11)

The trajectory constraint f (·) is set to 10−5, if any point
of the spine curve defined by st is closer than a Manhattan
distance of 5 with any spine point of the past ribbons s0:t−1−k ,
with k the length of the current ribbon, otherwise f (·) is
set to 1. While the spines from current and past ribbons
cannot intersect, the ribbons themselves can. This way, the
algorithm can detect symmetries at different scales, which may
for example happen with objects presenting local and global
symmetries. There is no restriction on the current ribbons,
since it is already done for the past state in the definition
of p(rt |rt−1). Hence, self-crossing ribbons are unlikely, but
remain possible in order to add a little flexibility in the
detection process. Generating the particles can be done using
a rejection sampling, i.e. generating a candidate s(n)

t with the
right-side of Equation 11, and accepting it with a probability
of f (s(n)

t , s(n)
1:t−1). Finally, the normalizing term nq can be

approximated using an importance sampling method, but we
found in practice that ignoring it resulted in a non-significant
bias, while saving great computational time.

The jump proposal density q(jt |xt−1, y) uses the probabil-
ities of the tail distributions (Eq. 3) computed at t − 1 to
determine if the ribbon rt−1 is still relevant. Therefore, a jump
is made with probability

∑J
j=1 λ̃ j P(μ j > f j (rt−1)), where

λ̃ j = λ j/
∑J

k=1 λk .
2) Computing the Particle Weights: The joint likelihood

(Eq. 4), the transition model (Eq. 8) and the proposal dis-
tribution (Eq. 10) are used to weigh the particles:

w
(n)
t ∝ w

(n)
t−1

p(y|r(n)
t) p(x(n)

t |x(n)
t−1)

q(x(n)
t |x(n)

1:t−1, y)
(12)

with
∑N

n=1 w
(n)
t = 1. Thus, a particle is assigned to a

high weight when its likelihood is high, and when prior and

importance function are in agreement. This shows the impor-
tance of defining an importance function dependent on both
the transition and the observation, and whose support includes
the one of the filtering distribution. The particles may then
be resampled when their effective number

[∑N
n=1

(
w

(n)
t

)2]−1

becomes lower than a threshold, typically 0.75× N [43].
3) Algorithm Completion: A particle filter is automati-

cally stopped when the number of jumps reaches a learned
threshold. The number of jumps being related to the mean-
ingfulness of an extracted ribbon, this means that the
algorithm automatically stops when all relevant ribbons have
been extracted from the image. Also, L several independent
particle filters are used to estimate the trajectory distribution
in order to add diversity to the trajectory, hence yielding
{rl

t = (pl
t , θ

l
t , ll

t , ᾱ
l
t , j l

t)}l=1,...,L; t=1,...,tl , with tl the last step
performed by the l th particle filter. Let r̄l

1:tl be the ribbon
trajectory of the particle of maximum weight of the l th particle
filter, and w̄l

tl its associated weight. The soft ribbon map is a
real-valued image in [0, 1], giving the probability of a pixel
z ∈ � to be part of a ribbon:

O(z) = 1

L

L∑

l=1

w̄l
tl 1r̄l

1:tl
(z) (13)

with l the index of a particle filter, and 1r(z) = 1 if z belongs
to the ribbon r, 0 otherwise. Contour and spines soft maps can
be accordingly computed replacing r by the adequate variables
in Equation 13.

VI. EXPERIMENTS

This section presents some experimental results in sym-
metry, contour, and ribbon detections. First, we talk about
implementation details, parameters tuning, and their influence.

A. Implementation

The proposed algorithm uses parameters of three different
kinds. They originate from: 1) the geometric model, 2) the
likelihoods, 3) the particle filter framework. For the geometric
model, parameters were either optimized using a trial-and-
error procedure on the LS-BSDS300 training dataset for the
detection of local symmetries (Section VI-B) or manually set
(although they also could be learned) for the detection of
specific ribbons (Section VI-C). The trial-and-error procedure
gave the best results for (d = 9, σᾱ = 0.4, σθ = 0.2,
σl = 0.18). Closely related to the geometric model since
it controls the length of the spines, the prior probability of
making a jump was estimated to κ = 0.0005. The minimal
radius lm was manually set to 3 and the maximal radius l M

to max(w, h)/2, which ranges the detection thickness from
thin tubular objects to objects as wide as the image. For the
likelihoods, the weights {λ j } j and the histogram computation
internal parameters have also been optimized using a trial-
and-error procedure, and were found optimal for (λ1 = 25,
λ2 = 10, λ3 = 25, λ4 = 13, λ5 = 13), for color histograms of
6× 6× 6 bins and for oriented gradient histograms of 8 bins
by direction, respectively. These parameters have been fixed
for all the different experiments. As for the particle filters,
Ni = 107 samples in the tail and initialization distributions

WIDYNSKI et al.: LOCAL SYMMETRY DETECTION IN NATURAL IMAGES 5317

Fig. 5. Scores obtained by state-of-the-art methods and our proposed
approach on the LS-BSDS300. The F-Measure curves correspond to the
harmonic means of the recall and the precision scores. The final score is
the optimal threshold computed among the 89 test images.

and 150 particle filters of 150 particles were needed to achieve
the estimation of the posterior distribution. These parameters
have been set to offer a good trade-off between estimation
accuracy and computation time. Finally, a particle filter stops
when t ≥ 100 and its proportion of jump on the last 200 steps
reaches 14%. These parameters have been estimated using a
trial-and-error procedure.

The algorithm is well suited for parallel programming: the
samples in the approximation of the tail and initialization
distributions are independent and identically distributed (i.i.d.),
the samples in a particle filter are also i.i.d. (before the normal-
ization step), and the particle filters are mutually independent.
Hence, the algorithm has the advantage of getting benefits
from any hardware based on multi-threaded CPUs and/or GPU
cards. Our implementation has been done in Cuda, and runs in
about 22 seconds on a Nvidia GTX 670 GPU card. In contrast,
the code of Tsogkas and Kokkinos [30] is a mixed C++ and
Matlab implementation and takes about 270 seconds on a
quad cores i7-920 (2.66 GHz) processor. Code and results are
available at http://www.iro.umontreal.ca/~mignotte/pfsd/.

B. Local Symmetry Detection

Since our approach deals with local symmetry detection,
we first compare our results on the LS-BSDS300 to the
ones of [32], [33], and [30]. The LS-BSDS300 test dataset
contains 89 of the 100 test images of the BSDS300 [30].
The LS-BSDS300 ground truth is extracted from an automatic
skeletonization algorithm from the manual selections of sym-
metrical objects. For these objects, the skeleton medial axes
are assumed to be good approximations of the local symmetry
curves. The ground truth score is indicated by a plain red curve
at F = 0.73. The results of Lindeberg’s method [33] come
from the implementation proposed in [17]. The F-Measure
curves are illustrated in Fig. 5, and pairwise score comparisons
are presented in Table I. We performed the experiment several

TABLE I

ONE-TO-ONE AND ONE-AGAINST-ALL COMPARISONS OF SYMMETRY

DETECTION METHODS ON THE LS-BSDS300. SCORES ARE COMPARED

BASED ON THE OPTIMAL THRESHOLD OBTAINED BY EACH IMAGE. EACH

ROW POINTS OUT THE NUMBER OF IMAGES THAT OBTAIN BETTER

SCORES THAN THE METHOD IN THE CORRESPONDING COLUMN. THE

LAST COLUMN PRESENTS A ONE-AGAINST-ALL COMPARISON

times and obtained a variance of 2.3× 10−6 attributed to the
stochastic nature of our algorithm. Our approach (FM: 0.422)
compares favorably to Levinshtein et al. [33] (FM: 0.356)
and Lindeberg [32] (FM: 0.36) algorithms, and obtains a
slightly inferior F-Measure score compared to the one obtained
by Tsogkas and Kokkinos [30] (FM: 0.434). One-against-
all comparisons show that Tsogkas and Kokkinos method
obtains the best performance on 47 of the 89 test images.
Our approach obtains the highest scores for 29 images. Fig. 6
depicts the ground truth for several images and their associ-
ated results for the comparison methods and ours. For Lin-
deberg, Tsogkas and Kokkinos, and our method, thresholds
were optimized over the whole dataset. The strength of the
approach proposed by Tsogkas and Kokkinos is to result
in well structured spine detection, even for the thresholded
maps. In comparison, our method produces less misleaded
spines originating from textures and contours. Fig. 7 presents
several grayscale results of the extracted spines and their
corresponding contours. The detected spines are the ones
evaluated by the LS-BSDS300. We also display a degree of
symmetry in an image by defining it as the ratio between
the area of the extracted ribbons and the number of pixels
in the image. We can especially see that images of human
constructions, such as statues and buildings, have high degrees
of symmetry.

As mentioned in [30], it is relevant to compare the algo-
rithms [30], [32], [33] with ours since all these algorithms aim
at detecting local symmetries. However, it is worth noticing
that these algorithms produce different outputs: the detector
proposed by Levinshtein et al. [33] approximates symmetric
objects by fitted ellipses from which symmetric axes are
retrieved, thus the output is binary, whereas in [30]–[32],
the outputs are 1D, and in grayscale. For the proposed
method, the output is also a probability, but on ribbons,
not just spines. The two-scale parameters and the symmetry
axes extracted by the Levinshtein et al. approach could
be directly used as a preprocessing step of a segmentation
algorithm. As for the other approaches, which include
ours, a thresholding step may be needed before applying a
segmentation algorithm. As it happens, this threshold may
be the one maximizing the F-Measure score in Fig. 5. Our
approach not only provides the spines but also the structural
information of the object, namely its scale and its contours
(Fig. 7). Finally, although the precision-recall curves obtained
by Tsogkas and Kokkinos [30] and our approach are very

5318 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 6. Local symmetry ground truth (1st column on the left) and several thresholded detection results obtained by (2nd to the last column on the right):
Levinshtein et al. [33], Lindeberg [32], Tsogkas and Kokkinos [30], and our approach, respectively. Thresholds were optimized over the whole dataset.

different, the F-Measure scores are quite similar. Moreover,
we can see from Table I that these methods perform well
for different images. This can certainly be explained by the
distinct natures of these two algorithms: one is a data-driven
learning method, the other is a geometric-based model method.
This could suggest that the former could be embedded as a
likelihood into our Bayesian approach to achieve better results.

Failure modes of the proposed approach include incorrect
and meaningless symmetry axis detections, e.g. between the
raven and the vertical twig (last image of the third row in
Fig. 7), or in the snow (in the middle of the second row in the
same figure). This behavior can be explained by our definition
of symmetry, which is purely local, and thus both the geomet-
ric model and the likelihood functions have not the adequate
level of abstraction to discriminate relevant from insignificant
symmetry axes. To overcome these limitations, we propose to
integrate prior geometric information in order to detect specific
ribbons. This is the subject of the following section.

C. Ribbon Detection

In this section, we address the problem of detecting symmet-
ric objects. As opposed to state-of-the-art symmetry detection

methods [21], [26], [27], [30], [32], [33], our approach yields
to a ribbon detection output.

1) Filtering the Posterior Trajectory: A first way to recover
specific ribbons from an image is to filter the output trajectory
{rl

t }l=1,...,L; t=1,...,tl using some geometric criteria. This is
illustrated in Fig. 8. The ribbons have been detected from
the trajectories displayed in Fig. 8(b) using criteria such as
minimum/maximum ribbon radiuses, and minimum/maximum
spine lengths. In Fig. 8(d)–(f), radius and length have been
measured for specific objects of the image, and their corre-
sponding range parameters have been set to ±10% of their
values. The analysis of the posterior trajectory distribution
could also be exploited in an object recognition system based
on symmetric-, or ribbon-object parts.

2) Constraining the Geometric Model: The proposed geo-
metric model is designed in such way that each component
can be intuitively tuned in order to constrain the detec-
tion. In Fig. 9, we study the effect of tuning the geo-
metric model parameters on the detected spines. Fig. 9(b)
shows the results obtained using the parameters optimized
on the training set of the LS-BSDS300 (Section VI-B). This
set of parameters detects curved and local symmetries. As
expected, lowering the probability of jumps κ leads to longer

WIDYNSKI et al.: LOCAL SYMMETRY DETECTION IN NATURAL IMAGES 5319

Fig. 7. Examples of local symmetry (black) and contour (color) detections obtained by the proposed algorithm on the BSDS300. Values correspond to the
degrees of symmetry estimated on the images. Contour points associated with the same spine point share the same color.

spines (Fig. 9(d)). Straight and more global symmetries can
be retrieved by tuning the spine curvature and the distance
parameter d (Fig. 9(g)). By also tuning the radius parame-
ter, one can obtain a cone or a cylinder geometric model
(Fig. 9(h)).

The last experiment is an attempt to demonstrate the ability
of the approach to only detect class-specific ribbons using local
prior geometric information. This prior geometric information
is directly embedded into the geometric model. Hence, only
the objects satisfying this prior information are detected by
the algorithm. This is illustrated in Fig. 10. The top row is
especially challenging as the original image contains a lot of

symmetric objects with comparable structures. The pepperpot,
the box, and the bottle have been detected on three independent
runs of the algorithm, each one corresponding to specific con-
straints on the geometric model. This figure also illustrates the
detection of ribbon objects from the BSDS300. Objects have
been detected by tuning several parameters of the detection
algorithm: the geometrical parameters (lm , l M , σl , σθ), and the
probability of jumps κ , the latter having an impact on the
detected spine lengths. The other parameters have been set
identically for all the images. Namely, σα equals 0.4, and
the particle filter stops when t ≥ 20 and its proportion of
jump on the last 200 steps reaches 6%. Moreover, detections

5320 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 8. Ribbon detection. Contours (blue), symmetries (black), and objects
(yellow). The brightness of the color indicates the probability of detec-
tion. (b) Result using the parameters optimized on training data of the
LS-BSDS300. (c) Trajectories with a spine length less than 36 pixels have
been filtered from (b). (d-f) Trajectories with a spine length between 45 and
72 pixels and radiuses between (d) 10 and 15, (e) 15 and 25, and (f) 35 and
50 have been kept from (b).

Fig. 9. Parameter influence. (b) Parameters have been optimized on the
training set of the LS-BSDS300. (c)-(f) These results have been obtained
by changing one parameter of (b). (g),(h) These results have been obtained
by changing several parameters of (b): (g) (d = 20, σθ = 0), and
(h) (σᾱ = 0.04,σθ = 0.02, σl = 0.02).

with a spine length of less than 45 pixels have been filtered.
The other parameters remained unchanged from the set of
optimized parameters. For example, the doll in the first image
of this set has been detected by setting the radius interval
[lm, l M] at [25], [40], the standard deviation of the radius σl

at 5, and the standard deviation of the orientation σθ at 0.005.
Compared to filtering the posterior trajectory, constraining the
geometric model to detect specific ribbons has the advantage
of being computationally efficient: the detection is stopped
earlier as it focuses only on the ribbons satisfying the geo-
metric model. This experiment suggests that constraining the
geometric model could be employed to detect class-specific
ribbon objects. For practical purposes, these local geometric
parameters could also be learned directly from a dataset of
specific objects.

Fig. 10. Ribbon detection. Contours (blue), symmetries (black), and objects
(yellow). The brightness of the color indicates the probability of detection.
Ribbons are detected by tuning the geometric model parameters and the prior
probability of jumps.

VII. CONCLUSION

We proposed in this article a ribbon detection algorithm
using a particle filtering method. Ribbons have the particularity
of exhibiting smooth local symmetries. Our contributions were
threefold: the generative geometric model, which can represent
a large quantity of objects; the feature extraction, which is
designed for the local reflection symmetries in natural images;
and the ribbon detection algorithm, which is an adaptation
of the work proposed in [19] and [20]. Experiments conducted
on the LS-BSDS300 [30] and on ribbon detection demon-
strated the ability of the approach to extract low level features
(local symmetries and contours) and symmetric, ribbon-like
objects. These results could be used as an input of a segmen-
tation or class-specific object detection algorithm.

The aim of this article is to detect local symmetries using
local geometric models. In contrast to a global geometric
model, the use of a local geometric model is suitable to
represent a large variety of ribbon objects. However, a local
geometric model is often poorly specific, which can be a limi-
tation when one wants to recover complex ribbon shapes. It is
also a limitation when one is only interested by the detection of
global symmetries. In this case, state-of-the-art global symme-
try detection algorithms proposed in [21], [26], and [27] are
more naturally suited.

These limitations bring several perspectives to this work, in
which the geometric model could be adapted to serve differ-
ent aims. First, modeling more global structural information
would enable to detect class-specific ribbons. This global prior
information could be, for example, structure-based [23], [24],
contour-based [44]–[46], or appearance-based [47], [48].
Second, adapting the likelihood in order to integrate
spatial texture information, such as it has been done
in [26], [27], and [21] using SIFT points, would be relevant
for global symmetry detection and for 3D shape detection.

WIDYNSKI et al.: LOCAL SYMMETRY DETECTION IN NATURAL IMAGES 5321

In this latter case, it would also require to model skewed
symmetries as a subclass of Brooks ribbons [36], as proposed
in [4].

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments that greatly contributed to improve
this paper.

REFERENCES

[1] Y. Liu, H. Hel-Or, C. S. Kaplan, and L. Van Gool, “Computational
symmetry in computer vision and computer graphics,” Found. Trends
Comput. Graph. Vis., vol. 5, nos. 1–2, pp. 1–195, 2010.

[2] G. Kootstra, A. Nederveen, and B. De Boer, “Paying attention to
symmetry,” in Proc. Brit. Mach. Vis. Conf., 2008, pp. 1115–1125.

[3] M. Brady and H. Asada, “Smoothed local symmetries and their imple-
mentation,” Int. J. Robot. Res., vol. 3, no. 3, pp. 36–61, 1984.

[4] J. Ponce, “On characterizing ribbons and finding skewed symmetries,”
Comput. Vis., Graph., Image Process., vol. 52, no. 3, pp. 328–340, 1990.

[5] C. Florin, N. Paragios, and J. Williams, “Particle filters,
a quasi-Monte Carlo solution for segmentation of coronaries,” in Proc.
8th Int. Conf. Med. Image Comput. Comput. Assist. Intervent., 2005,
pp. 246–253.

[6] C. Florin, N. Paragios, and J. Williams, “Globally optimal active
contours, sequential Monte Carlo and on-line learning for vessel seg-
mentation,” in Proc. 9th Eur. Conf. Comput. Vis., 2006, pp. 476–489.

[7] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “Medial-based
Bayesian tracking for vascular segmentation: Application to coronary
arteries in 3D CT angiography,” in Proc. 5th IEEE Int. Symp. Biomed.
Imag., May 2008, pp. 268–271.

[8] M. Schaap, R. Manniesing, I. Smal, T. Van Walsum, A. Van Der Lugt,
and W. Niessen, “Bayesian tracking of tubular structures and its appli-
cation to carotid arteries in CTA,” in Proc. 10th Int. Conf. Med. Image
Comput. Comput. Assist. Intervent., 2007, pp. 562–570.

[9] J.-H. Jang and K.-S. Hong, “Detection of curvilinear structures and
reconstruction of their regions in gray-scale images,” Pattern Recognit.,
vol. 35, no. 4, pp. 807–824, 2002.

[10] C. Steger, “An unbiased detector of curvilinear structures,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 20, no. 2, pp. 113–125, Feb. 1998.

[11] X. Hu and C. V. Tao, “A reliable and fast ribbon road detector using
profile analysis and model-based verification,” Int. J. Remote Sens.,
vol. 26, no. 5, pp. 887–902, 2005.

[12] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[13] M. Mignotte, “A non-stationary MRF model for image segmentation
from a soft boundary map,” Pattern Anal. Appl., vol. 17, no. 1,
pp. 129–139, 2012.

[14] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker,
“Shock graphs and shape matching,” Int. J. Comput. Vis., vol. 35, no. 1,
pp. 13–32, 1999.

[15] M. Pelillo, K. Siddiqi, and S. W. Zucker, “Matching hierarchical
structures using association graphs,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 21, no. 11, pp. 1105–1120, Nov. 1999.

[16] M. Stark, M. Goesele, and B. Schiele, “A shape-based object class model
for knowledge transfer,” in Proc. 12th IEEE Int. Conf. Comput. Vis.,
Sep./Oct. 2009, pp. 373–380.

[17] I. Kokkinos, P. Maragos, and A. Yuille, “Bottom-up & top-down object
detection using primal sketch features and graphical models,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2. 2006,
pp. 1893–1900.

[18] I. Kokkinos and A. Yuille, “Inference and learning with hierarchical
shape models,” Int. J. Comput. Vis., vol. 93, no. 2, pp. 201–225, 2011.

[19] N. Widynski and M. Mignotte, “A particle filter framework for contour
detection,” in Proc. 12th Eur. Conf. Comput. Vis., vol. LNCS-7572. 2012,
pp. 780–794.

[20] N. Widynski and M. Mignotte, “A multiscale particle filter framework
for contour detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 10, pp. 1922–1935, Oct. 2014.

[21] S. Lee and Y. Liu, “Curved glide-reflection symmetry detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 2, pp. 266–278, Feb. 2012.

[22] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 24, no. 4, pp. 509–522, Apr. 2002.

[23] N. H. Trinh and B. B. Kimia, “Learning prototypical shapes for object
categories,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. Workshop, Jun. 2010, pp. 1–8.

[24] N. H. Trinh and B. B. Kimia, “Skeleton search: Category-specific object
recognition and segmentation using a skeletal shape model,” Int. J.
Comput. Vis., vol. 94, no. 2, pp. 215–240, 2011.

[25] S. Thrun and B. Wegbreit, “Shape from symmetry,” in Proc. 10th IEEE
Int. Conf. Comput. Vis., vol. 2. Oct. 2005, pp. 1824–1831.

[26] J. Liu and Y. Liu, “Curved reflection symmetry detection with
self-validation,” in Proc. 10th Asian Conf. Comput. Vis., 2010,
pp. 102–114.

[27] G. Loy and J.-O. Eklundh, “Detecting symmetry and symmetric con-
stellations of features,” in Proc. 9th Eur. Conf. Comput. Vis., 2006,
pp. 508–521.

[28] M. Park, S. Leey, P.-C. Cheny, S. Kashyap, A. A. Butty, and Y. Liu,
“Performance evaluation of state-of-the-art discrete symmetry detec-
tion algorithms,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1–8.

[29] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and
T. Funkhouser, “A planar-reflective symmetry transform for 3D shapes,”
ACM Trans. Graph., vol. 25, no. 3, pp. 549–559, 2006.

[30] S. Tsogkas and I. Kokkinos, “Learning-based symmetry detection in
natural images,” in Proc. 12th Eur. Conf. Comput. Vis., vol. LNCS-7572.
2012, pp. 41–54.

[31] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis., vol. 2. 2001, pp. 416–423.

[32] T. Lindeberg, “Edge detection and ridge detection with automatic
scale selection,” Int. J. Comput. Vis., vol. 30, no. 2, pp. 117–156,
1998.

[33] A. Levinshtein, S. Dickinson, and C. Sminchisescu, “Multiscale symmet-
ric part detection and grouping,” in Proc. 12th IEEE Int. Conf. Comput.
Vis., Sep./Oct. 2009, pp. 2162–2169.

[34] D. Terzopoulos, A. Witkin, and M. Kass, “Symmetry-seeking models
and 3D object reconstruction,” Int. J. Comput. Vis., vol. 1, no. 3,
pp. 211–221, 1988.

[35] H. Blum, “A transformation for extracting new descriptors of shape,”
Models Perception Speech Vis. Form, vol. 19, no. 5, pp. 362–380, 1967.

[36] R. A. Brooks, “Symbolic reasoning among 3D models and 2D images,”
Artif. Intell., vol. 17, nos. 1–3, pp. 285–348, 1981.

[37] A. Rosenfeld, “Axial representations of shape,” Comput. Vis., Graph.,
Image Process., vol. 33, no. 2, pp. 156–173, 1986.

[38] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 1. Jun. 2005, pp. 886–893.

[39] M. Mignotte, “MDS-based multiresolution nonlinear dimensionality
reduction model for color image segmentation,” IEEE Trans. Neural
Netw., vol. 22, no. 3, pp. 447–460, Mar. 2011.

[40] A. Desolneux, L. Moisan, and J.-M. Morel, “Edge detection by
Helmholtz principle,” J. Math. Imag. Vis., vol. 14, no. 3, pp. 271–284,
2001.

[41] N. Widynski and M. Mignotte, “A contrario edge detection with
edgelets,” in Proc. IEEE Int. Conf. Signal Image Process. Appl.,
Nov. 2011, pp. 421–426.

[42] P. Pérez, A. Blake, and M. Gangnet, “JetStream: Probabilistic contour
extraction with particles,” in Proc. 8th IEEE Int. Conf. Comput. Vis.,
vol. 2. 2001, pp. 524–531.

[43] A. Doucet, N. De Freitas, and N. Gordon, Eds., Sequential Monte Carlo
Methods in Practice. New York, NY, USA: Springer-Verlag, 2001.

[44] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent
contour segments for object detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 1, pp. 36–51, Jan. 2008.

[45] C. Xu, J. Liu, and X. Tang, “2D shape matching by contour flexibility,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1, pp. 180–186,
Jan. 2009.

[46] T. Ma and L. J. Latecki, “From partial shape matching through
local deformation to robust global shape similarity for object detec-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011,
pp. 1441–1448.

[47] T. Deselaers, B. Alexe, and V. Ferrari, “Localizing objects while
learning their appearance,” in Proc. 11th Eur. Conf. Comput. Vis., 2010,
pp. 452–466.

[48] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,
pp. 594–611, Apr. 2006.

5322 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Nicolas Widynski received the Engineering degree
from the École Pour l’Informatique et les Tech-
niques Avancées, Paris, France, the master’s degree
in image processing from Pierre and Marie Curie
University, Paris, in 2007, and the Ph.D. degree
from Télécom ParisTech, Paris, and the Labora-
toire d’Informatique de Paris 6, Paris, in 2010. He
was a Post-Doctoral Fellow with the Département
d’Informatique et de Recherche Opérationnelle, Uni-
versity of Montréal, Montréal, QC, Canada, from
2011 to 2013. He is currently a Post-Doctoral Fellow

with the Centre de Recherche du Centre Hospitalier de l’Université de
Montréal, Montréal.

Antoine Moevus received the dual bachelor’s
degree in electrical engineering and computer sci-
ence from the École Polytechnique de Montréal,
Montréal, QC, Canada, and the École Supérieure
d’Électricité, Paris, France, in 2012, and the master’s
degree in computer vision from the Département
d’Informatique et de Recherche Opérationnelle, Uni-
versity of Montréal, Montréal, QC, Canada, in 2014.

Max Mignotte received the D.E.A. degree in dig-
ital signal, image, and speech processing from the
Grenoble Institute of Technology, Grenoble, France,
in 1993, and the Ph.D. degree in electronics and
computer engineering from the University of Bre-
tagne Occidental, Brest, France, and the Digital
Signal Laboratory, French Naval Academy, Brest, in
1998.

He was an INRIA (French Institute for Research
in Computer Science and Automation) Post-Doctoral
Fellow with the Département d’Informatique et de

Recherche Opérationnelle, University of Montréal, Montréal, QC, Canada,
from 1998 to 1999, where he is currently an Associate Professor with the
Computer Vision and Geometric Modeling Laboratory. He is also a member of
the Laboratoire de Recherche en Imagerie et Orthopédie, Centre de Recherche
du Centre Hospitalier de l’Université de Montréal (CHUM), Hôpital Notre
Dame, Montréal, and a Researcher at CHUM. His current research interests
include statistical methods, Bayesian inference, and hierarchical models
for high-dimensional inverse problems, such as segmentation, parameters
estimation, fusion, shape recognition, deconvolution, 3D reconstruction, and
restoration problems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

