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Multimodal Change Detection in Remote
Sensing Images Using an Unsupervised

Pixel Pairwise-Based Markov
Random Field Model

Redha Touati , Max Mignotte , and Mohamed Dahmane

Abstract— This work presents a Bayesian statistical approach
to the multimodal change detection (CD) problem in remote
sensing imagery. More precisely, we formulate the multimodal
CD problem in the unsupervised Markovian framework. The
main novelty of the proposed Markovian model lies in the use
of an observation field built up from a pixel pairwise modeling
and on the bitemporal heterogeneous satellite image pair. Such
modeling allows us to rely instead on a robust visual cue, with
the appealing property of being quasi-invariant to the imaging
(multi-) modality. To use this observation cue as part of a sto-
chastic likelihood model, we first rely on a preliminary iterative
estimation technique that takes into account the variety of the
laws in the distribution mixture and estimates the parameters
of the Markovian mixture model. Once this estimation step is
completed, the Maximum a posteriori (MAP) solution of the
change detection map, based on the previously estimated para-
meters, is then computed with a stochastic optimization process.
Experimental results and comparisons involving a mixture of
different types of imaging modalities confirm the robustness of
the proposed approach.

Index Terms— Change detection, heterogeneous sensors, itera-
tive conditional estimation (ICE), Markov random field (MRF),
multimodal remote sensing, multisource data, multisensors, para-
meter estimation, pixel pairwise modeling, stochastic optimiza-
tion, unsupervised Markovian segmentation.

I. INTRODUCTION

MULTIMODAL Change Detection (CD) [1] is a pro-
cedure used to identify any land cover changes that

occurred between two satellite images acquired at different
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times, in the same geographical area but by different kinds
of sensors. Multimodal CD is a growing interest task which
can be considered as a generalization of the basic and classic
monomodal CD problem as it requires less stringent require-
ments about the characteristics and origin of the acquired
data. It is also a challenging task since, such a procedure
must be powerful and flexible enough to model any existing
heterogeneous data types (thus sharing different statistics) in
remote sensing imagery and to handle the same problems
that have been already solved by monomodal CD techniques
[2]–[5] such as anomaly and target detection (eventually in
the presence of diurnal and seasonal variations), natural, land
or environmental monitoring, damage monitoring (earthquake,
flooding, landslides, etc.) or urban planning, to name a few.

Multimodal CD has recently aroused a growing interest,
in the remote sensing community since this technique allows
to relax the assumption of homogeneous and co-calibrated
measurements and consequently to exploit the huge amount
of heterogeneous data, we can now get from various archives
or from different types of existing Earth observing satellites. In
addition, the practical and technical advantages of such multi-
modal analysis procedure are obvious and are widely described
in the literature, for instance [6]. Finally, let us add that the dif-
ferent imaging modalities may be complementary and this sen-
sor fusion technique could potentially be exploited (not only
in Geoscience imaging [7]) for further improving the change
detection and analysis of land surfaces with complex properties
subject to extreme conditions (e.g. temperature, fire, ice, etc.).

Despite its undeniable potential, there are relatively few
research works that have been devoted to heterogeneous or
multimodal CD using machine learning or image processing.
Nevertheless, we can identify four main categories. First
non-parametric based techniques such as learning machine
algorithms (since these techniques do not assume explicitly a
specific parametric distribution for the data) [8]–[13] or unsu-
pervised non-parametric based procedures, that do not require
supervised training step, such as the energy based model,
in the least-squares, sense proposed in [6] and satisfying an
overdetermined set of constraints, expressed for each pair of
pixels existing in the before-and-after images. Secondly, algo-
rithms relying on similarity measures with invariance prop-
erties according to the imaging modality [14]–[16]. Thirdly
procedures mainly based on a transformation or projection of
the two multimodal images to a common feature space, in
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which the two heterogeneous images share the same statistical
properties and on which classical monomodal CD methods can
then be applied [17]–[23]. Finally parametric models that we
now describe in more details since the proposed model fits
into this category. In parametric techniques, a set (or mixture)
of multivariate distributions are generally used to model the
joint statistics or the dependencies between the two imag-
ing modalities. More precisely, local models of dependence
between unchanged areas are modeled according to the copula
theory in [24] and based on these models, Kullkack-Leibler-
based comparisons on local statistical measures are then used
to generate a similarity map which is subsequently binarized.
An appealing two-step multivariate statistical approach has
also been proposed in [25]–[27] where the first step aims
to estimate a physical model, based on a mixture of multi-
dimensional distributions (both taking into the noise model,
the relationships between the sensor responses to the objects
and their physical properties). A statistical test based on this
model then allows to estimate the changes. In the same
spirit, the authors in [28] also propose to first estimate a
multidimensional distribution mixture estimation based on a
new family of multivariate distributions with different shape
parameters and especially well suited for detecting changes in
SAR images with different numbers of looks.

Herein, we propose a different statistical approach, relying
on an observation field built up from a pixel pairwise modeling
on the bitemporal heterogeneous satellite image pair. This
allows us to indirectly model the joint statistics or the depen-
dencies between the two imaging modalities and to finally
base our CD (or binary segmentation) model on a relevant
imaging modality-invariant visual cue whose likelihood model
parameters can be fully estimated within the standard ICE
(Iterative conditional estimation) framework [29], [30] with
ML (Maximum Likelihood) estimator in the Least Square
(LS) sense. Once the estimation step is completed, the MAP
(Maximum a posteriori) solution of the change detection
map, based on the previously estimated parameters, is then
computed with a stochastic optimization strategy.

The remainder of this paper is organized as follows: Section
II describes proposed unsupervised Markovian CD model by
first defining the ingredients of the proposed MRF model
(likelihoods and priors), and the proposed strategy based on
a two-step procedure; namely a parameter estimation step
and a segmentation step. Section III presents a set of exper-
imental results and comparisons with existing multimodal
change detection algorithms. In this section, we describe the
robustness assessment for our proposed technique. Finally,
Section IV concludes the paper.

II. UNSUPERVISED MARKOVIAN CD MODEL

Herein, we formulate the multimodal CD problem in the
unsupervised Bayesian framework. To this end, a possible and
interesting approach is a two-step process. First, a parameter
estimation step is conducted to infer the likelihood model
parameters (in the ML sense). Then a second step is devoted
to the binary segmentation or change detection itself based on
the value of estimated parameters [31].

Let yt1 and yt2 , a pair (co-registered) bi-temporal remote
sensing (N pixel size) images acquired at two different times
(before and after a given event), in the same geographical area,
and from different sensors. We first consider X = {Xs , s ∈ S}
the random label field located on the same rectangular lattice
S of N sites s associated to the two input images, with
each Xs taking its value in the discrete set �label = {e0 =
no-change, e1 = change}.

A. Observation Field

In the classic monomodal (or homogeneous) CD case, the
two coregistred images yt1 and yt2 are first compared pixel by
pixel in order to generate a difference image by differencing or
(log-)rationing (i.e., by using a temporal gradient or a log tem-
poral gradient operator). This latter difference image is such
that the pixels associated with land cover changes present gray-
level values significantly larger, compared to those associated
with unchanged areas and this visual cue based on the norm of
the temporal luminance gradient |yt1 − yt2| is a robust cue on
which the observation field and the likelihood distributions
of a MRF model can be built up. In the multimodal (or
heterogeneous) case, this temporal gradient is not a robust
and reliable cue. Indeed, the color or grey value of each
pixel is not a useful information since the gray levels of
the same region, in yt1 and yt2 may be radically different
according to the characteristics of the two different imaging
modalities. Conversely, yt1

s and yt2
s may be locally coded with

the same (grey or color) value in the two imaging modalities
but representing two completely different textures or regions.

In our application, in order to rely on a robust visual
cue with the specific property to be (nearly) invariant to
the imaging modality, we have considered a pixel pairwise
modeling, estimated from (yt1, yt2) and for each pixel pairs
〈s, t〉 existing in S, with the following symmetric relation:

y〈s,t〉 =
∣∣∣|yt1

s − yt1
t |1 − |yt2

s − yt2
t |1

∣∣∣ (1)

where |.|1 is the L1 norm and yt1
s and yt2

s represents a local
statistics vector at pixel s (that will be made explicit in the
following) in the before and after image.

This visual cue y〈s,t〉 already proposed, in a simplified
version without texture in [6],1 is defined as a function of
the pixel pair 〈s, t〉 and (yt1, yt2). This is discriminant in our
application since, whatever the imaging modality, y〈s,t〉 will
give a high value for two pixels at sites s and t that must
belong to two different class labels (no-change/change in our
case) in the CD binary map (to be estimated) and conversely,
will give a low value, for two pixels at sites s and t that must
share the same class label (see Fig. 1 and its caption).

To use this cue in our Bayesian framework, we first consider
that the set of y〈s,t〉 values are a realization of a random
variable vector Y〈s,t〉 = {Y〈s,t〉, Y〈s,u〉, ..., Y〈u,v〉, ...} gathering
the N(N − 1) random variables associated to each site pair,
that we herein call the random (pixel pairwise) observation
field and secondly that X〈s,t〉 is its corresponding random

1in which the authors define a set of constraints which will be satisfied, in
the least squares (LS) sense, by a multidimensional scaling-based constraint
model aiming to generate a soft CD map that is then binarized.
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Fig. 1. In lexicographic order; (synthetic) image before a flooding event,
with an urban region at the center, a vegetation region all around the image
and a river crossing the image from right to left (bottom); image of the same
area (and obtained by another imaging modality, thus with different colored
textures) after a flooding event, and ground truth CD map (with the white
region corresponding to the changed area). Illustration of the four pixel pair
locations 〈s, t〉 leading to the four possible cases (#1a & #1b: low value for
y〈s,t〉 implying that 〈s, t〉 must share the same class label in the CD map
x , #2 & #3: high value for y〈s,t〉 implying that 〈s, t〉 must share a different
class label between s and t in the final CD map x to be estimated. The link
(between each pair of pixels considered) is drawn from such way that its
thickness is proportional to the value that Eq. (1) could give.

(pairwise) label field taking its value in �label〈s,t〉 = {id, di}.
The pixel-pairwise label id means that the pixel at location
s an t must share the same (identical) class label in the
final CD map x̂ to be estimated (leading to the configuration
〈xs = change, xt = change〉 or 〈xs = no − change,
xt = no − change〉). Conversely, x〈s,t〉 = di means that we
have a different configuration, i.e., either the configuration
〈xs = change, xt = no − change〉 or 〈xs = no − change,
xt = change〉.

In our application, in order to decrease the computational
load of our algorithm and to keep a quasi-linear complexity
with respect to the number of image pixels, we consider for
each pixel, a sub-sample Gs of 8 pairs of pixels regularly
distributed around a squared window of size Nw×Nw centered
around the pixel s (see Fig. 2). Besides, we consider at
site s or t (image before t1 or after t2) a feature vector y
(see Eq. (1)) encoding the textural and structural information
existing around each local squared region of size NT = 16 ×
NT = 16 centered at the considered pixel (see Fig. 2). To this
end, in our application, we first estimate the Discrete Cosine
Transform (DCT) of each local squared window, compute
its module (i.e., its absolute value since DCT is real) and
then apply a half circular or Radial Integration Transform
(RIT) (using a bi-linear interpolation) to estimate a spectral
descriptor vector of size NT /2. Since this texture descriptor
is obtained from the compressed domain, this has the ability
to be both, robust to noise (several denoisers are built from a
filtering in this DCT domain [32], [33]), be strongly reduced in
size, while combining the properties to encode a texture with
rotation and translation invariance. In addition, compared to
a Discrete Fourier Transform (DFT), the DCT has a higher
compression efficiency and above all, its spectrum is less
biased than the DFT spectrum (especially when this one
is computed on small images) due to the even-symmetric

Fig. 2. We consider, for each pixel s, a sub-sample Gs of 8 pairs of pixels
〈s, t〉 in which the pixel t is regularly distributed around a squared window
of size Nw × Nw (with Nw = 41 in our application). Besides ys and yt
(see Eq. (1)) is in fact a radially-integrated (DCT) spectral feature vector
encoding the textural and structural information existing around each local
squared region of size NT × NT (NT = 16) centered at the considered pixel.

extension properties of DCT that avoids the generation of
artifacts or spurious spectral components created by edge
effects caused by the inherent periodic nature of the DFT. Also,
DCT uses real computations, unlike the complex computations
used in DFT. This makes the computation of DCT extremely
fast.2

B. Likelihood Distributions

To use the observation measure y〈s,t〉 (see Eq. (1)) in a
Bayesian settings, we must, before all, estimate the (marginal
/ conditional) likelihood distributions of Y〈s,t〉 in the two
possible cases; identical pixel-pairwise label x〈s,t〉 = id or
not x〈s,t〉 = di .

1) Identical Pixel-Pairwise Label Distribution: In our
experiments, we have noticed that, if x〈s,t〉 = id , PY〈s,t〉 |X〈s,t〉
is well approximated, for a given s, by an exponential distri-
bution pid = E(.; λ) with shape (or inverse rate) parameter
λ, i.e.:

pid (y〈s,t〉) = PY〈s,t〉 |X〈s,t〉 (y〈s,t〉|x〈s,t〉=id )

= exp
(−y〈s,t〉/λ

)
λ

· H (y〈s,t〉) (2)

with the right-continuous Heaviside step function, H (x) where
H (0) = 1 and λ > 0 (which makes the distribution supported
on the interval [0 ∞]).

This approximation can be justified and understood if we
notice that, for a pixel pair 〈s, t〉 located in a spatially
and temporally homogeneous region (e.g., cases #1a & #1b

2For the implementation of this step, we have used the very fast 16 × 16
(FFT2D) DCT package implemented in C code by Takuya Euro (functions
DDCT16X16S tested in program SHRTDCT.C) and available online at http
address given in [34].
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illustrated in Fig. 1), i.e. for x〈s,t〉 = id , y〈s,t〉 is in fact
related to the norm of a first order temporal gradient over
a n-order (n is the distance in pixel between s and t) spatial
gradient and the gradient norm of the intensity image is known
to be well approximated by a simple exponential distribution
[35] or its numerous variant (such as its truncated [36], [37],
generalized [38] or long-tail version with a shape and scale
factor [39], [40]).

2) Different Pixel-Pairwise Label Distribution: In the case
of x〈s,t〉 = di (different pixel-pairwise labels), we have
empirically noticed that the Gaussian law pdi = N (.; μ, σ 2)
is well adapted to describe the measure y〈s,t〉:

Pdi (y〈s,t〉) = PY〈s,t〉 |X〈s,t〉 (y〈s,t〉|x〈s,t〉=di )

= 1√
2πσ 2

exp

(
− (y〈s,t〉 − μ)2

2σ 2

)
(3)

Let us note that, in the case of a heterogeneous pair of images
and two heterogeneous temporal regions (x〈s,t〉 = di ), this
distribution is consistent with the central limit theorem and
the fact that this results from the addition of lots of different
phenomena (i.e., lot of numerical differences achieved between
many possible different textural feature vectors, coded by
different imaging modality with possibly different scales, etc.).

3) Data Likelihood and Posterior Distribution: Now, if we
assume that the pairwise data Y〈s,t〉 are independent condi-
tionally on the pairwise labeling process X〈s,t〉, and take into
consideration the sub-sample Gs of pairs of pixels defined in
Section II-A (and shown in Fig. 2), one gets:

PY〈s,t〉 |X〈s,t〉 (.) =
∏
s∈S

∏
〈s,t〉

t∈Gs

PY〈s,t〉 |X〈s,t〉 (y〈s,t〉|x〈s,t〉) (4)

In addition, if we consider that the distribution of X is
stationary and Markovian and choose a standard prior for the
distribution of the labeling process X and that the CD map
x defines x〈s,t〉 without ambiguity, one gets for the posterior
distribution3:

PX|Y〈s,t〉 (.) ∝
∏
s∈S

∏
〈s,t〉

t∈Gs

PY〈s,t〉 |X〈s,t〉 (.) · PX (x) (5)

If we consider a standard isotropic Pott-type prior model
relative to the second-order neighborhood system ηs , with
identical potential value β for the different (horizontal vertical,
right diagonal or left diagonal) cliques 〈s, t〉 of ηs , thus a
model favoring for x̂ , homogeneous regions of the same class
no-change or change; i.e., PX (x) ∝ −β exp{∑〈s,t〉∈ηs

[1 −
δ(xs, xt )]} [41], (where δ is the delta Kronecker function) x̂ ,
the CD map to be estimated becomes the global maxima of

3Using likelihood (Eq. (4)), and since the CD map x defines x〈s,t〉 without
ambiguity, the joint distribution of (X, X〈s,t〉, Y〈s,t〉) writes: PX,X〈s,t〉 ,Y〈s,t〉 (.)= PX(.) · PY〈s,t〉 |X〈s,t〉 (.) and the posterior distribution gets: PX,X〈s,t〉|Y〈s,t〉 =
PX|Y〈s,t〉 /PY〈s,t〉 ∝ PX|Y〈s,t〉 since the pixel pairwise observation field y〈s,t〉
is known (P(y〈s,t〉 is equal to a constant) and does not depend on the
unobserved labeling process x (or the unobserved pairwise labeling process
x〈s,t〉).

the following corresponding posterior probability:

x̂ ∝ arg max
x

∏
s∈S

PXs |Y〈s,t〉 (.)

∝ arg max
x

∏
s∈S

{∏
〈s,t〉

t∈Gs

PY〈s,t〉 |X〈s,t〉 (.)

· exp −
{
β

∑
〈s,t〉∈ηs

[1 − δ(xs, xt )]
}

︸ ︷︷ ︸
PXs (xs)

}
(6)

In this context, the corresponding posterior energy to be
minimized is:

U(x, y) =
∑
s∈S

∑
〈s,t〉

t∈Gs

− ln PY〈s,t〉 |X〈s,t〉 (y〈s,t〉|x〈s,t〉)

+
∑

〈s,t〉∈ηs

β[1 − δ(xs, xt )] (7)

and x̂MAP = arg minx{U(x, y)}.

C. Iterative Conditional Estimation

1) Principle: In our unsupervised Markovian segmenta-
tion case, we have to estimate in a first step (estimation
step), the parameter vector 	y〈s,t〉 which defines respectively
the likelihood distributions pid (y〈s,t〉) and Pdi (y〈s,t〉) (or
PY〈s,t〉 |X〈s,t〉 (y〈s,t〉|x〈s,t〉) for each two classes x〈s,t〉 of y〈s,t〉. (see
Equations (2)-(3)), i.e., the parameter vector 	y〈s,t〉 (λ, μ, σ)
gathering the scale parameter of the exponential law pid (y〈s,t〉)
and the mean μ and σ parameters of the Gaussian distribution
pdi(y〈s,t〉).

In our case, this estimation step is particularly challenging
for three reasons; first, one has to deal with a mixture of
different distributions (exponential and Gaussian) which are
also strongly mixed (see Fig. 3) and which also exhibits
different mixing proportions (generally the class di is under
weighted (<15%) because this class is related to the fewer
pixel-pairwise labels, or transitions, existing between the class
change and the class no-change (see Fig. 1).

To this end, we resort to the ICE [29], [30] iterative
procedure which is able to cope with different distributions
and which experimentally turned out to be more efficient than
the classical Expectation Maximization (EM) [42] algorithm
or its stochastic version; the Stochastic EM (SEM) [43]. This
efficiency can be explained by the fact that the ICE [29], [30]
procedure can also be viewed as the stochastic and Markovian
version of the EM procedure and thus is also constrained by
the distribution of X defined as stationary and Markovian.

The ICE procedure is a fixed point algorithm which first
requires to find an estimator 	̂y〈s,t〉 = 	(x〈s,t〉, y〈s,t〉) providing
an estimate of 	y〈s,t〉 based on the complete data configuration
(x〈s,t〉, y〈s,t〉) (see Appendix).

2) ICE-Based ML Estimator: For the Gaussian law, a ML
estimate of (μ, σ 2), based on the complete data configuration,
can be easily given by the empirical mean and empirical
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Fig. 3. From top to bottom; Distribution mixture: Histogram of y〈s,t〉
associated to the heterogeneous image pair Dataset-3 and the two weighted
(90% of identical pairwise labels and 10% of different pairwise label)
mixture components that are estimated by the ICE procedure (see Section
II-C). Likelihood mixture: the two preceding likelihood distributions (without
proportion priors) that are estimated by the ICE procedure.

variance. If Ndi
�= #{x〈s,t〉 = di}, one gets:

μ̂(x〈s,t〉, y〈s,t〉) = μ̂(x, y〈s,t〉) =
∑

x〈s,t〉=di
y〈s,t〉

Ndi
(8)

σ̂ 2(x, y〈s,t〉) =
∑

x〈s,t〉=di
(y〈s,t〉 − μ̂)2

(Ndi − 1)
(9)

For the exponential law, if Nid
�= #{x〈s,t〉 = id}, a ML

estimate of the shape parameter is:

λ̂(x, y〈s,t〉) =
∑

x〈s,t〉=id
y〈s,t〉

Nid
(10)

In our Bayesian CD framework, we do not need to esti-
mate the proportion of each class. Nevertheless, the mixing
proportion can be easily estimated within this procedure with
the empirical frequency estimator; πid = Nid /(Nid + Ndi ) and
πdi = Ndi/(Nid + Ndi ).

3) ICE Algorithm: 	y〈s,t〉 (λ, μ, σ 2) are thus estimated with
the ICE procedure in the following way:

• Parameter Initialization: we start from a CD map x
randomly sampled from two classes (change / no-change)
and start from 	[0]

y〈s,t〉 = (λ[0], μ[0], σ 2 [0]).
• ICE procedure: 	[k+1]

y〈s,t〉 is then computed from 	[k]
y〈s,t〉 as

follows:
1) Stochastic Step: using the Gibbs sampler, one real-

ization x of the CD map is simulated according
to the posterior distribution PX/Y〈s,t〉 (x/y〈s,t〉), with
parameter vector 	[k]

y〈s,t〉 .
More precisely, for each site s (lexicographically),
we sample xs with the local version of Eq. (5), i.e.,

PXs |Y〈s,t〉 (.) ∝
∏
〈s,t〉

t∈Gs

PY〈s,t〉 |X〈s,t〉 (.) · PXs (xs) (11)

a) with PY〈s,t〉 |X〈s,t〉 an Exponential law for x〈s,t〉 =
id (see Section II-B1).

b) with PY〈s,t〉 |X〈s,t〉 a Gaussian law for x〈s,t〉 = di
(see Section II-B2).

2) Estimation Step: the parameter vector 	
[k+1]
y〈s,t〉 is

estimated with the ML estimator of the “complete
data” (see Eqs (8), (9), (10)).

3) Repeat until convergence is achieved;
i.e., if 	[k+1]

y〈s,t〉 	≈ 	[k]
y〈s,t〉 , we return to Stochastic Step.

In our application, one has to deal with a mixture of different
distributions which are strongly mixed with unbalanced mixing
proportions (see Fig. 1). This makes the convergence of the
ICE procedure still difficult in some cases. Thus, it is necessary
to add an additional hard constraint. In our application, we can
capture the fact that the shape parameter λ of the exponential
distribution pid(y〈s,t〉) is in fact not too far from its shape
parameter computed from the set of y〈s,t〉 regardless of its label
x〈s,t〉 (id or di) since there are generally fewer labels di (let λ


this parameter value). In fact, since the true shape parameter
λ of the exponential distribution pid(y〈s,t〉) is computed from
y〈s,t〉 given x〈s,t〉 = id , λ is thus computed from a subset of
smaller values of {y〈s,t〉}, or equivalently, we can surely assert
that a reliable estimation for λ is necessarily a value inferior to
λ
. We model this by imposing the hard constraint λ = λ
/α
for the different iteration of the ICE procedure.

In order to further help the iterative ICE procedure, we
start, at iteration [0] with 	

[0]
〈s,t〉 = (λ[0], μ[0], σ [0]), with

μ[0] = 2 λ[0] (with λ[0] = λ
) and (σ 2)[0] = 1000 to
model the fact that the mean of the Gaussian is generally
greater to the λ parameter and that the variance of the
Gaussian is generally around 1000. We finally use the Sto-
chastic Step with a Gibbs sampler with a temperature equals
to 0.25 in order to allow a fast convergence and to reduce
the number of explored solutions around the initialization
values.

D. Segmentation Step

Once the estimation step is completed, the MAP (Maximum
a posteriori) solution of the CD map x , based on the previously
estimated parameters, is then computed. In our application,
the energy function (see Eq. (7)) is complex and the MAP
solution is difficult to estimate (essentially due to the strongly
mixed likelihood mixture model which is possibly of slightly
different shapes according to the type of multimodality). In
order to avoid local minima we must resort to a simulated
annealing (SA) procedure [41] with a sufficient number of
iterations about 200000 iterations in our application), or equiv-
alently by varying the temperature of a Gibbs sampler (see
Eq. (11)) from the initial temperature To = 1.25 to T f inal =
0.01 with a slow geometric decreasing schedule such as
T = To × (0.999975)k.

Once x̂MAP is estimated, it is important to note that, due
to the pixel (label) pairwise modeling, there are two global
minima to the optimization problem defined in Eq. (7). One
for the solution (“1” for change class and “0” for no-change
class) and the second one corresponding to its binary inverse
(i.e., its binary complement, with “0” for change class and
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“1” for no-change class). In our case, this ambiguity can be
easily resolved with a correlation metric or more simply by
assuming that the land cover change is generally smaller than
the unchanged area.

It takes between 30 and 70 minutes to perform a SA
(depending on the image size) with so many iterations for
a non-optimized C++ code running on Linux on a i7 − 930
Intel CPU, 2.8 GHz. Nevertheless, by considering a Jacobi-
type version of the Gauss-Seidel based SA procedure [44],
the final energy-based minimization procedure can be effi-
ciently implemented by using the parallel abilities of a graph-
ics processor unit (GPU) with a speed gain up to (about)
200 [44].

The overall unsupervised Markovian CD proposed model
is outlined in pseudo-code in Algorithm 1. The C++ code
running on Linux, data, and all that is necessary for reproduc-
tion of the results shown in this paper is freely accessible at
http://www.iro.umontreal.ca/∼mignotte/ResearchMaterial

III. EXPERIMENTAL RESULTS

A. Heterogeneous Dataset Description

To validate our approach, we present in this section a series
of tests conducted on four real heterogeneous (multimodal)
datasets, reflecting different change detection conditions in
multimodal case (see Table I); Namely, (#1 and #4) two
multisensor optical datasets (i.e., same sensor type but with
two different optical sensors or same satellite sensor but with
different specifications), (#2-#3) two multisource datasets (i.e.,
different sensor types), respectively optical/SAR and SAR
/optical. This allows us to compare the performance of the
proposed method with different state-of-the-art multimodal
change detection algorithms recently proposed in this field [6],
[16], [23]–[25] in different multimodal CD conditions, and
also for a wide variety of changed event when the resolution
varies from 0.52 to 30 meters. In this benchmark, all the
ground-truth images (change detection mask) was provided
by an expert photo interpreter.

B. Results & Evaluation

In all the experimental results, we have considered the
simple grey level of the image (and thus converted, when
necessary, the optical color image to grayscale), reduce the
size of the image such that its maximal size (length or
width) is around 500 pixels with a bilinear interpolation (this
simplification compared to a more elaborate interpolation or
the use of all of the gray levels of the image has no impact
on the detection performance results mainly because our MRF
modeling uses the distribution law of these gray levels which
remains little different in all these cases) and use a double
histogram matching.

The internal parameter of our Markovian model are for,
from decreasing order of importance, the parameter α of the
data likelihood (see Subsection II-C2), the parameter β of
the prior model (see Subsection II-B3) and the length Nw of
the graph Gs (see Subsection II-A and Fig. 2) for which the

Algorithm 1 M3CD (Markov Model for Multimodal Change
Detection) Algorithm
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TABLE I

DESCRIPTION OF THE FOUR HETEROGENEOUS DATASETS

Fig. 4. Heterogeneous datasets (see Table I). (a-c) image t1, t2, ground truth; (d) final (changed-unchanged) segmentation result and (e) confusion map
(white: TN, red: TP, blue: FP, Cyan: FN) obtained by the proposed approach.

sensitivity is not important. We do not consider the parameter
NT as an important internal parameter; in fact, we have taken
NT = 16 in order to use the very fast (since 16 is a power
of 2) DCT package implemented in C code by [34].4 In our

4We have also tested NT = 8 and noticed that the classification results was
slightly altered in our application.

application, the DCT is thus applied on the grey-scale band of
the image or the gray-level band resulting from the grayscale
conversion of the three color bands (for a color image). For
all the experimental results, we use α = 1.5, β = 0.1,
Nw = 41.

In order to discuss and compare obtained results, a quan-
titative study is realized by computing the classification rate
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TABLE II

CONFUSION MATRIX IN TERMS OF NUMBER OF PIXELS AND PERCENTAGE FOR THE FOUR HETEROGENEOUS DATASETS i.e., [TM/TM],
[TSX/QB02], [TERRASAR-X/PLEIADES], [PLEIADES/WORLDVIEW 2] (SEE TABLE I)

TABLE III

ACCURACY RATE OF CHANGE DETECTION ON THE FOUR HETEROGENEOUS DATASETS OBTAINED BY THE PROPOSED METHOD AND THE

STATE-OF-THE-ART MULTIMODAL CHANGE DETECTORS (FIRST UPPER PART OF EACH TABLE) AND MONO-MODAL

CHANGE DETECTORS (SECOND LOWER PART OF EACH TABLE)

Fig. 5. Panchromatic data set: (a-c) image t1, t2, ground truth; (d) final (changed-unchanged) segmentation result and (e) confusion map (white: TN, red:
TP, blue: FP, Cyan: FN) obtained by the proposed approach.

accuracy that measures the percentage of the correct changed
and unchanged pixels: PCC = (TP+TN)/(TP+TN+FN+FP)
where TP, TN, FN, FP designate classically the true positives,
negatives, and false negatives and positives.

A comparison with different state of the art approaches
[6], [16], [23]–[25] is summarized in Table III. We have
also summarized in Table II the confusion matrix obtained
by our proposed Markovian CD model. From Table III, we
can see that the rate accuracy of our method performs very
well and outperforms in average the other state-of-the-art
approaches.

The average accuracy rate obtained on the four multimodal
dataset based on our Markovian CD approach is 92.3% with
well balanced confusion matrices (see Table II).

C. Results on Homogeneous Dataset With Shadow Effects

As an additional experiment, it is also interesting to see
how the proposed unsupervised Markovian CD model behaves
and adapts in the presence of homogeneous images (see
Fig. 5) when one of the two images has glow and shadow
effects. To this end, for this (non-trivial) homogeneous CD
detection case, we have considered a stereo panchromatic
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TABLE IV

KAPPA STATISTIC [47] (po − pe)/(1 − pe) (WITH PO = OBSERVED ACCURACY = (TP + TN)/(TP + FP + FN + TN) AND PE = EXPECTED ACCURACY =
[(TP + FP)(TP + FN) + (FN + TN)(FP + TN)]/[(TP + FP + FN + TN)2]) OF CHANGE DETECTION ON THE PANCHROMATIC SHADOW DATASET

OBTAINED BY THE PROPOSED METHOD AND COMPARISONS OTHER UNSUPERVISED (FIRST UPPER PART OF THE TABLE) AND SUPERVISED

(SECOND PART OF THE TABLE) STATE-OF-THE-ART MONOMODAL CHANGE DETECTORS [47]

data set provided by [47], with size 900 × 900 pixels (pixel
resolution is 5 meters) and captured by the Cartosat-1 satellite
sensor. This pair of panchromatic images is acquired over the
Arges region (Roumania near Piatra Craiului national park),
on Oct. 2008 and Nov. 2009 and shows a forest changes
caused by storms, and containing many shadow areas caused
by steep terrain due to the mountainous forest area [47].
From Table IV, we can see that the kappa coefficient of
our method is correct and quite comparable to others state-
of-the-art homogeneous CD approaches, though slightly less
good (than the methods purely dedicated and optimized for
the monomodal case). In fact, our model remains ideally and
best suited for the multimodal CD case with a mixture of
distributions specifically chosen to take into account a (quite
large) number of pairs of rather different imaging modalities
usually observed in remote sensing.

D. Discussion

Concerning the technical specifications of the proposed
model, we have noticed that the L1 norm, for the pixel
pairwise spatio-temporal difference (used as visual cue) in
Eq. (1), is slightly more robust than the L2 norm for which
we obtain an average accuracy rate (obtained on the four
multimodal datasets) of 89.3% (versus 92.3% for the L1
norm). Besides, it is important to mention that our choice
concerning the likelihood distributions was made after a
pre-study where we empirically tried different mixtures of
statistical laws. More precisely, we have successively tried
different law combinations including, for identical pixel-
pairwise labels (in addition to the exponential law that was
finally used), an half Gaussian, Rayleigh and Gaussian laws
along with for different pixel-pairwise labels, (in addition
to the Gaussian law that was finally used); a Rayleigh, an
exponential and finally an uniform distribution. The best
combination was the mixture of Exponential/Gaussian like-
lihood distributions used in our model and presented in
Section II-B.

From the experiment, we can notice that the CD result in
multisensor optical Dataset-4 is the least accurate of the four
examples given. We think that this can be explained by several
reasons. The first one is due to the macro texture generated

by the (high-resolution) satellite view of the (Toulouse) urban
area. DCT features have more difficulties to model such macro
textural patterns and is in fact better suited to model micro-
textural features usually present in a lower resolution satellite
image (as datasets #1-3). The second reason is due to the
nature of change. In this image, the change (i.e., an area
under construction) can be subtle and light and thus difficult
to distinguish even with a trained eye. Thirdly, the different
colors between the two optical images give, after grey-level
conversion, different grey levels which may further complicate
the CD result.

It is interesting to notice that, in a way, the proposed herein
model can be viewed as the Markovian version, thus in the
ML sense of the LS model, based on the Multidimensional
scaling (MDS) mapping proposed in [6] (however, we herein
consider a slightly different observation field including texture
information).

Let us also note that, in the ML criterion sense, we try
to maximize the posterior probability of a given (pair of
observation(s) and consequently this one is thus closely related
both to the choice of the observation field (in our case y〈s,t〉 and
also, above all, the choice of the mixture of distributions (in
our case Exponential/Gaussian). We think that more flexible
(or generalized) distribution laws would be perhaps more
suited to the heterogeneous remote sensing imagery (i.e., thus
leading to a better model) but this flexibility would be at
the cost of a more complicated (already very complex and
computational demanding) final optimization procedure.

IV. CONCLUSION

In this paper, we have addressed the problem of change
detection in heterogeneous remote sensing. Although this
issue has become important, due to the huge amount of
heterogeneous data, we can now get from various archives
or from existing (and different types of) Earth observing
satellites, it has only received little attention in the literature.
In addition, this issue has really been very little discussed
in the statistical field and, to our knowledge, no Bayesian or
Markovian-based multimodal CD method has been proposed
until now. This paper fills the gap by proposing a complete
unsupervised Markovian approach which has been validated
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on a number of real multimodal bitemporal satellite image
pairs and whose the main novelty, and not only in Geoscience
imaging, lies in the use of an observation field built up from
a pixel pairwise modeling. In fact, in our application, in
order to decrease the computational load of our algorithm,
we consider for each pixel, a sub-sample of pairs of pixels.
Nevertheless, the proposed MRF model turns out to iteratively
propagate information via this sub-sample of pairs of pixels
very efficiently during the estimation or segmentation step,
while keeping a quasi-linear complexity with respect to the
number of image pixels. We also think that the concept of
pixel pairwise modeling can be interesting for other issues in
traditional digital image processing, not only in Geoscience
imaging, since the underlying framework based on pixel-
pairwise affinity can really model complex statistical phenom-
ena with possibly important invariance properties.

APPENDIX

The ICE procedure first requires to find an estimator
	̂y〈s,t〉 = 	(x〈s,t〉, y〈s,t〉) providing an estimate of 	y〈s,t〉 based
on the complete data configuration (x〈s,t〉, y〈s,t〉). Random field
X〈s,t〉 being un-observable, the iterative ICE procedure thus
defines the parameter 	

[k+1]
y〈s,t〉 , at step [k +1], as the conditional

expectations of 	̂y〈s,t〉 given Y〈s,t〉 = y〈s,t〉 and the current
parameter 	[k]

y〈s,t〉 . The fixed point of this iteration corresponds
to the best approximations of 	y〈s,t〉 in terms of the mean
squared error [29]. By denoting Ek the conditional expectation
based on 	[k]

y〈s,t〉 , this iterative procedure is defined as follows:

• One takes an initial value 	
[0]
y〈s,t〉

• 	[k+1]
y〈s,t〉 is computed from 	[k]

y〈s,t〉 and from y〈s,t〉 using:

	[k+1]
y〈s,t〉 = Ek

[
	̂y〈s,t〉 (x, y) | Y〈s,t〉 = y〈s,t〉

]
The computation of this expectation is impossible in prac-

tice, but we can approach it thanks to the law of large
numbers [29]:

	[k+1]
y〈s,t〉 = 1

n

[
	̂y〈s,t〉 (x (1)

〈s,t〉, y〈s,t〉) + · · · + 	̂y〈s,t〉(x (n)
〈s,t〉, y)

]

where x (i)
〈s,t〉, i = 1, . . . , n are realizations drawn from the

posterior distribution: PX〈s,t〉 |Y〈s,t〉,	(x〈s,t〉|y〈s,t〉,	[k]
y〈s,t〉 ).

In our application, since x completely defines x〈s,t〉
without ambiguity (but the inverse is not true), these
realizations can be drawn from the posterior distribution
PX |Y〈s,t〉,	(x |y〈s,t〉,	[k]

y〈s,t〉 ) (see Section II-B3 and Eq. (5)).
As it turns out, n = 1 is sometimes found sufficient (or
even better) to get good estimates [29]. It is the case in our
unsupervised Markovian CD model, and we actually chose
n = 1 in our experiments.
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