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A Reliable Mixed-Norm-Based Multiresolution
Change Detector in Heterogeneous Remote
Sensing Images
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Abstract—Analysis of heterog: remote ing image is
a challenging and complex problem due to the fact that the lo-
cal statistics of the data to be processed can be radically differ-
ent. In this article, we present a novel and reliable unsupervised
change detection (CD) method to analyze heterog remotely
sensed image pairs. The proposed method is based on an imaging
modality-invariant operator that detects at different scale levels the
differences in terms of high-frequency pattern of each structural
region existing in the two heterogeneous satellite images. First,
this new detector is based upon a dual-norm formulation that
makes our underlying CD estimation particularly robust in terms
of a sensitivity/specificity tradeoff. Second, the detection process,

bedded in a multiresolution fr Kk, allows us to estimate
a robust similarity or difference map that is then filtered out by
a superpixel-based spatially adaptive filter to further increase its
reliability against noise. Finally, changes are then identified from
this similarity map by a simple binary clustering process that also
takes into account the spatial contextual information around each
pixel. Experimental results involving different types of heteroge-
neous remotely sensed image pairs confirm the robustness of the
proposed approach.
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I. INTRODUCTION

N REMOTE sensing imagery, heterogeneous images gener-
ally refer to a combination of two or several satellite images
that can be used to represent an area of interest over the time, and
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which are acquired by different satellite sensors, either with the
same sensor type but with two different optical, SAR, or other
systems (multisensor images), or with different sensor types
such as SAR/optical images (multisource images), or possibly
with the same satellite sensor but with different looks or specifi-
cation (mutilooking images). Thereby, pixels in heterogeneous
images are represented in two distinct feature spaces that do not
share the same statistical properties.

Heterogeneous (or multimodal) change detection (CD) [1] is
a recent (introduced less than a decade ago) procedure seeking
to identify any land cover changes (or land cover uses) that
may have occurred between two heterogeneous satellite images
acquired on the same geographical area at different times. It
is a nontrivial and challenging task, which can be considered
as the generalization of the traditional monomodal CD problem
as it must take into account multiple origins and characteristics
of the acquired data. On the other hand, such a procedure
must be adaptive and flexible enough to adapt itself to any
existing heterogeneous data types in order to solve the same
problems, which are now basically well resolved by the classi-
cal monomodal CD techniques [2]-[6], namely, environmental
monitoring, deforestation, urban planning, and land or natural
disaster/damage monitoring and management, to name a few.

Heterogeneous (or multimodal) CD has recently generated a
growing interest in the remote sensing community, and the huge
amount of heterogeneous data we can now get from existing
Earth observing satellites or extracted from various archives
can partly explain this [1], [7]-[9]. In fact, the practical and
technical advantages of such a multimodal analysis procedure
are obvious both technically and practically [7], [10]. First, let
us emphasize that a heterogeneous CD approach may be useful
and sometimes indispensable in some emergency cases. SAR
sensors can operate regardless of weather conditions, even at
night, i.e., with less restrictive conditions compared to optical
imaging [7]-[9]. We can give the representative case of an optical
image of a given area, which is provided by available remote
sensing image archive data, and only a new SAR image can be
acquired for technical reasons, such as lack of time, availability,
or atmospheric conditions in an emergency situation for the same
area [7]-[9]. A similar example can be given in the case of
specific situations, in which the area to monitor is located in
a tropical or boreal forest and for which SAR imaging offer
the great advantage, over its optical counterparts, of not being
affected by heavy clouds, fog, haze, and also rain, or else in
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snow-covered regions of high altitudes, for which SAR is also
able to penetrate a thin snow layer, or finally to monitor the
progress of a fire, since SAR imaging, operating at microwave
frequencies, can see (i.e., penetrate) through smoke and dust
[71-[9], [L1], [12]. Let us also stress that, since multimodal
CD must be adaptable to heterogeneous data with different
statistics, this procedure may turn out to be more robust to
natural variations in environmental variables such as soil mois-
ture or phenological states (e.g., flowering, maturing, drying,
senescence, harvesting, etc.) or shading effects, which should
not be detected as land cover changes and which is sometimes
taken into account and corrected in the preprocessing step of
a classical monomodal CD approach. Finally, let us add that
two different imaging modalities may be complementary (as
it is especially the case of SAR and optical or multispectral
sensors), and this complementarity could be exploited (not only
in geoscience imaging [13]) for further improving the CD and
analysis of complex land cover types or for sensors operating in
extreme conditions.

Up to now, relatively few research works have been developed
in heterogeneous CD [7], [10], [11], [14], but, generally, we can
divide them into three main categories: parametric, nonparamet-
ric, or invariant similarity measure or operator-based models.

Inparametric techniques, amixture or a set of parametric mul-
tivariate distributions is generally used to directly or indirectly
model the joint statistics or the dependencies between the two
imaging modalities. In this category, we can mention the copula-
based approach proposed in [10], in which the dependence
between the twosatellite images, in unchanged areas, is modeled
by aquantile regression applied according to the copula theory (a
powerful tool for tackling the problem of how to describe a joint
distribution) and Kullback-Leibler-based comparisons on local
statistical measures to generate a similarity map, which is then
finally analyzed by thresholding to detect between change and
no change areas. An interesting two-step multivariate statistical
approach has also been proposed in [7]-[9], whose first step
aims at estimating a physical model, based on a mixture of
multidimensional distributions (taking into the noise model the
relationships between the sensor responses to the objects and
their physical properties), with the expectation-maximization
(EM) algorithm [15]. A statistical test based on this model then
allows us to estimate the changes. In the same spirit, the authors
of [11] also propose to first estimate a multidimensional distri-
bution mixture estimation based on a new family of multivariate
distributions with different shape parameters and especially well
suited for detecting changes in SAR images acquired by different
sensors having different numbers of looks.

The problem with these parametric techniques is that they
have been especially designed (via specific distribution types)
for a type of multimodal sensors (optical/SAR in [7], [8], and
[10] or SAR with different numbers of looks [11]), and con-
sequently, they are not easily generalizable for another pair of
different sensors. Besides, these methods are in fact semisu-
pervised, since they generally require (as training set) that two
training images (sometimes manually selected and carefully
chosen) associated with an unchanged area are available [7],
[8], [10]. Let us finally add that these methods also require a
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maximum likelihood parameter estimation step of the distribu-
tion laws considered, which can be complex and computation-
ally expensive.

Among nonparametric methods, an energy minimization
model has been specifically designed in [12] for satisfying an
overdetermined set of constraints, expressed for each pair of
pixels existing in the before-and-after satellite images acquired
through different modalities. An estimation of this overcon-
strained problem, formulated as a pairwise energy-based model,
is then carried out in the least squares sense, by a fast linear-
complexity algorithm based on a multidimensional scaling
(MDS) mapping technique leading to a similarity feature map,
which is then binarized into two classes to distinguish changes
of interest of the land cover. In [16], a method is presented, in
which the original pair of temporal images is transformed into
a new feature space or representation, especially designed to
be invariant to imaging modality and aiming at highlighting the
changes. In the same spirit, Volpi et al. [17] find joint projec-
tions of the paired input images by maximizing the correlation
between the projected data with a canonical correlation analysis.
Another representation that turns out to be invariant to imaging
modality can be given by a segmentation of the before-and-after
images. In this optic, Liu et al. [18] propose a general multi-
dimensional evidential reasoning (MDER) approach using the
segmentation results of the pre- and postevent satellite images
with an extension of the fuzzy c-means clustering under the
belief function framework and whose result is directly used as
a basic belief assignment in their MDER approach. A similar
strategy is also proposed in [19]. In the same vein, a presegmen-
tation strategy based on the normalized difference spectral index
is described in [20]. Let us note that machine-learning-based
methods are also nonparametric (in the sense that they do not
assume a specific parametric distribution for the data), and deep
learning methods through conditional adversarial networks [21],
convolutional coupling networks [14], or method based on deep
feature representation [22], binary support vector classifier [23],
multiclassifier systems [24], or based on a simple K-nearest
neighbors technique [25] have also been recently proposed and
turn out to be valuable for the multimodal CD problem.

In fact, these nonparametric methods have also the defect of its
main quality. Their ability to process a wide variety of imaging
modalities (with different noise types and levels) explains why
they are possibly less accurate than a specific heterogeneous
CD model dealing with a specific type of multimodality, which
is modeled by a particular joint (or mixture of) distribution(s)
whose shape has a clear physical and statistical justification.
For the machine-learning-based heterogeneous CD models, the
efficiency of these algorithms heavily depends on the availability
of an adequate massive amounts of representative training data.

Finally, in the third family of methods, Alberga [26] proposes
to use a technique closed to the coregistration and based on the
use of a combination of different invariant similarity measures
(such as correlation ratio, mutual information, etc.) in order to
estimate the correspondence between the same points in the two
images and finally to detect eventual changes existing between
two heterogeneous data acquisitions. Also, in [27],a CD method
is presented to quantify the damages caused by an earthquake

Authorized licensed use limited to: Université de Montréal. Downloaded on August 02,2020 at 01:05:13 UTC from IEEE Xplore. Restrictions apply.



3590

to each individual building, using preevent optical image and
postevent SAR images. To this end, the parameters of each
building, estimated from the optical scene and combined with
the acquisition parameters of the actual postevent SAR scene,
are used to predict (via simulation) the expected SAR signature
of the building, which is then subsequently compared, with a
similarity measure, to the actual SAR scene in order to quantify
the damages caused to each building. The main interest of this
family of methods relies on the fact that they do not have
the disadvantages of the first two above-mentioned categories
of models (parametric and nonparametric) and are also more
flexible in the sense that they are not closely related to a specific
mathematical framework (Bayesian or multivariate analysis in
the first and regression analysis for the second category).

In this article, we propose a new imaging modality invariant
change detector, which belongs to the third family of above-
cited methods. Compared to our preliminary model [28], this
operator is defined at three resolution scales and made scale
invariant. In addition, this operator is estimated according to
two different and complementary norms, for complementarity
reasons and better detection results in terms of self-balancing
the precision and recall of the considered changed/unchanged
detection problem. Finally, the information provided by these
dual operators at different scales is combined, thanks to the MDS
mapping method, to generate a similarity feature map, which
turns out to be especially well suited to estimate the differences
existing in the land cover change between heterogeneous images
coming from different imaging modalities or sensors involved
inremote sensing imagery. Once a similarity feature map is esti-
mated by this change detector, changed and unchanged areas are
then finally identified by a final unsupervised binary clustering
approach based on the K-means procedure.

The major advantage of the proposed model lies in its flexi-
bility to process a wide variety of heterogeneous images with-
out requiring the main drawbacks of parametric models that
require an explicit knowledge of the data distribution (and also
a complex parameter estimation step of these distribution laws)
or again the drawbacks of nonparametric models that require
a large and representative training set (and heavy supervised
training procedure).

The validation of the proposed approach is done by a se-
ries of tests conducted on different real heterogeneous datasets
chosen to reflect the different CD problems in the multimodal
case, namely, multisensor image pairs with: 1) heterogeneous
optical images and multisource image pairs; 2) SAR+optical or
optical+SAR images; and, finally, 3) multilooking SAR images.

The remainder of this article is organized as follows. Section IT
describes the proposed multiscale change detector, which allows
us to estimate the similarity-feature map, from which changed
and unchanged areas are then identified. Section III presents
a set of experimental results and comparisons with existing
multimodal CD algorithms. Finally, Section IV concludes this
article.

II. PROPOSED CD MODEL

The proposed model takes as input two bitemporal
heterogeneous remote sensing images (in our case either
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heterogeneous optical or multisource SAR/optical or multilook-
ing SAR images). The proposed CD model is based on the
following four-step procedure.

1) We first estimate a set of multiscale features aiming at de-
tecting the structural difference in terms of high-frequency
components of each local region (two-dimensional signal)
existing in the before-and-after satellite images. This de-
tector is based on a multiresolution framework that makes
it somewhat scale invariant and also exploits a dual-norm
relationship that makes it robust to the eventual context
of unbalanced data (which is typically our case since
the majority of pixels belongs to the unchanged class),
and consequently, our estimation model could estimate a
degenerate overfit solution to this problem by classifying
all pixels to be unchanged (see Sections II-A and II-B).
In order to both reduce the noise and remove redundant
information, provided by the previous estimation step, the
multiscale feature vector is reduced to one dimension,
to get of a similarity (change/no-change) map, by using
a fast (linear-complexity) version of the MDS mapping
technique (see Section II-C).

3) To further reduce the noise of this similarity map, we then
apply a spatially adaptive filters based on the superpixel
representation of the before-and-after satellite images (see
Section II-D).

Finally, to increase the class (change/no-change) separa-
bility of each pixel of this similarity map, we transform the
local region, in the neighborhood of each pixel, into a point
in a discriminant textural feature space, where an unsuper-
vised binary (K = 2) clustering algorithm (K-means) is
applied (see Section II-E). More precisely, the different
steps of our approach are the following.

2

-

4

=

A. Imaging Modality Invariant Change Feature

Let us consider two (previously coregistered) bitemporal re-
mote sensing (N pixel size) images, y'* and y'2, acquired from
different sensors or sources at two times (before and after a given
event) in the same geographical area.

In the classical monomodal (or homogeneous) CD case, the
two coregistered temporal images at two different times are
usually first compared pixel by pixel in order to generate a
difference image by differencing (with a simple subtraction or
a temporal gradient operator) or (log-)rationing (i.e., with a log
temporal gradient) [2]-[5] [6]. This latter difference image is
such that the pixels associated with land cover changes present
gray-level values significantly larger from those of pixels associ-
ated with unchanged areas. A binary segmentation is then finally
achieved on this temporal gradient image to distinguish between
the changed and no-changed areas. In the heterogeneous or
multimodal case, this temporal gradient is not effective [28]
particularly when the input images are acquired by different
sensor types. Indeed, the gray or color value of each pixel is
not useful information, since the gray levels of the same region,
in the before and after a given event, may be radically different
according to the characteristics of the two input (possibly highly)
heterogeneous imaging modalities. Conversely, two distinct
regions, at two different times, may be locally coded with
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the same (gray or color) value, since two different textures
may have the same mean or similar local intensity/color value.
Consequently, the classical temporal (or log temporal) gradient
operator is thus irrelevant in the heterogeneous case for estimat-
ing an accurate difference image, which will be subsequently
used for identifying land cover change.

Nevertheless, for the same region, represented by two dif-
ferent imaging modalities, there is a feature, which remains
relatively invariant between different types of imaging and thus
can be herein efficiently exploited and captured by an operator.
This feature is the magnitude and orientation distribution of the
spatial edges and/or contours existing in the considered region.
Indeed, each specific homogeneous region generally exhibits
a unique geometric high-frequency pattern. For example, an
urban region exhibits a specific directional edge or gradient
magnitude distribution (due to the presence of rectangular re-
gions defined by the roads/streets, building roofs, parking lots,
electric field lines, residential houses, etc.) which is, more or
less, well preserved in the two imaging modalities in the high
spatial frequencies of the texture pattern.! It is also the case of
an agricultural region, where the intrinsic regular location of
crops produces edges and contours, which are also fairly well
conserved in the two kinds of imagery. This remains true for
the other homogeneous regions in a satellite image, even for the
water region where the absence or the presence of waves (or
wavelets at a finer spatial scale) can be detected and localized
(and analyzed, as proposed in [29], for SAR and radar images) in
the two different heterogeneous modalities by a high-frequency
filter or a simple edge detection algorithm for texture. Let us note
that physical features such as normalized difference vegetation
index (NDVI) [30] in multispectral imagery or the polarization
ratio of SAR data [31] in SAR imagery can also describe the
physical properties (size, shape, orientation, etc.) of agricultural
areas (in addition to estimating the dielectric properties of the
plants for the polarization ratio and the photosynthetic capacity
and hence energy absorption of plant canopies for the NDVI).
These features have already been used in (monomodal) remote
sensing and have been proved to be reliable for segmentation and
classification tasks and more precisely for retrieving live green
plant canopies or for estimating the different agricultural crop
growth stages and some vegetation phenology metrics. Never-
theless, these physical features cannot be straightforwardly used
and exploited in a multimodal CD system except in the specific
multispectral/optical case introduced in [25], in which an NDVI
image, combined with an optical (SPOT) image, is projected in
a common feature space for the convenience of CD.

Consequently, since the edge at different spatial scales, or
more precisely the specific high-frequency pattern of each textu-
ral region, is fairly well preserved, in spite of the difference in the
imaging modality between the two heterogeneous temporal im-
ages, we propose to base the estimation of our difference image
2P on a temporal gradient applied on a local spatial gradient. In

'In fact, more precisely, the local texture pattern created by a given imaging
modality is (a mixture of) characteristic(s) of both the region that is being imaged
and the imaging system (at medium- or high-frequency levels). This explains
why, thanks to its natural bandpass capabilities, the human visual system can
recognize, even in a complex SAR image with strong correlated speckle, the
specific high-frequency spatial textural pattern created by an urban area.
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our case, this spatial-temporal gradient is approximated using a
first-order temporal and spatial finite-difference approximation
(in the L; norm). More precisely, the similarity map 2P s
computed by estimating at each pixel site s by

2=y |\YL‘—y_’J\.—\Yi2—yi?l. 0
<s,8>eW,

where the summation is done over all pairs of pixels at location
(s, 8) contained in an N,, x N,, squared window ¥,,, including
the central pixel located at site s. This summation allows us
to render this temporal-spatial gradient operator invariant to
rotation and also less sensitive to noise (due to the averaging
process). Hence, we compute a spatial gradient for a (possible)
texture region, where the difference y'' — y_f) is achieved by
considering y, and yy as being two vectors (respectively, at
locations (s, s') € W,,, s#s’) obtained by gathering together all
the gray (or color) values contained in an Ny x N squared win-
dow W, centered on pixel s (fory ) and centered on pixel s’ (for
y¢). (Letus note that, instead of gathering the pixel values in the
vector y, we could also compute local statistics estimated from
the values contained around s.) Finally, this temporal-spatial
local finite difference between these two (feature) vectors are
computed in the L;-norm sense (|.|1).

A simple way to improve our CD result accuracy consists
of considering and estimating the dual and complementary
version of the previously expressed [in (1)] similarity map by
considering the same local spatiotemporal gradient operator but
expressed in terms of the infinity norm (which is the dual norm
of the L; norm [32], [33]). In this regard, a second similarity map
22 is estimated, at every pixel s of the image, by the following
operator:

Do . t i t 7 ty t ’
2=y max () = v 6D - () — )]
<s,d>eWp
2)

where yf‘ (s) is the ith component of the pixel vector y':
or the ith pixel value taken within the NyxNy squared
window Wy (i.e., considering that y't = (y{‘(s). .. .,yf‘(s).
. yf.\‘,p/ «~, (8))-Inourapplication, we take N;, = 7and Ny =3
for 2P+ and 2P2.

Let us mention that the strategy of combining or mixing
different norms, for complementarity reasons and better results,
has already been investigated and observed recently in machine
learning theory for improving feature selection techniques or for
finding a support-vector-machine-based classification rule with
aminimal generalization error [34], as well as in image process-
ing, where the quality of the estimation has been found to be
improved in the framework of optimization-based regularization
in image restoration [35], denoising [36], image deconvolution
[37], or fluorescence diffuse optical tomographic reconstruction
[38], etc., to name a few. More generally and in summary, it
is established, in these works, that estimations based on the
L,—1 norm generally encourage sparsity contrary to L, (and
especially L. norm) that favors diversity [39]. This is what we
have observed in our multimodal CD or two-class segmentation
problem; the spatiotemporal gradient operator based on the L
norm favors sparse segmentation result contrary to the one based
on the L. norm, which rather encourages diversity.
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We can also understand this complementarity in the context
of estimation from noisy image data. L;,s norm is more sensitive
to noise than L; and thus less efficient when the image is noisy.
Conversely, Li,y norm is more discriminant than L; if there
is not much noise in the image. For different levels of noise
(thus regardless of the imaging modality), L;,; norm produces
a complementary version of L;, and taking into account of
these two norms thus gives a compromise CD estimation, whose
distribution (given by the confusion matrix) is well balanced with
no bias in favor of one class.

B. Scale-Invariant Change Detector

An appealing hierarchical framework for our CD problemis to
consider a multiresolution representation of the input bitemporal
satellite images. This multiresolution representation (which can
be simply achieved by Gaussian low-pass filtering each previous
scale of the input image and decimation by a factor of 2 in the
horizontal and vertical directions) has the intrinsic capability to
represent and reorganize image information into a set of details
( i.e., high-frequency patterns) appearing at different spatial
resolution levels. Conceptually, this strategy will allow us to
detect and integrate relevant information at different frequencies
(which are only represented at a specific resolution scale or
pyramid level), and it also makes our change detector robust
against noise and somewhat scale invariant.

To this end, we construct two three-level pyramidal represen-
tations, resulting from the application (at each resolution level)
of, respectively, the first (z1) and second (z2) CD operators
[see (1) and (2)] on the two temporal heterogeneous satellite im-
ages. For each pixel of the coordinate s=(, j)=(ROW, COLUMN),
amultiscale feature vector v, is then based on the concatenation
of (211, 2P2) obtained at first or finer resolution level, with
the two estimations obtained at the second resolution scale, i.e.,

254, 212 at pixel coordinate s?'=([i/2], [j/2]), and, finally,

those obtained at the third resolution scale, i.e., (zf?;]‘ zﬁ;’- ),

at pixel coordinate sP*1=([i/22],[5/22]) (with [i] 'being the
ceiling function and with NV,, = 7and Ny = 3 for each operator
applied and each scale).

C. Similarity Feature Map Estimation

Finally, in order to further reduce both the noise of the
estimation and the redundant information provided by our
two operators at different resolution scales, while reducing
the dimensionality of the data to be analyzed (and thus also
the complexity of the subsequent clustering process described
in Section II-E), we reduce the dimensionality of each Nj-
size (Ny = 3(levels) x 2(operators)) multiscale feature vec-
tor (201, 202 204, 203, 2104, 20 ), to one dimension with the
linear-complexity version of the MDS mapping method, called
the FastMap technique? [40]. This allows us to obtain a robust

*The first step of the FastMap algorithm is to select two objects (or feature
vector), the most dissimilar to form the projection line. These two objects are
selected by using a deterministic procedure called choose distant objects [40].
The second step is to project any other object onto this orthogonal axis (called a
pivot line) by employing the cosine rule (see Algorithm 1). The FastMap C++
codes are freely available on the web.
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Algorithm 1: FastMap.

Input:

k: Dimensionality of target space

N,: Number of objects (vectors) in database

Output:
XN, xk: Number of objects in target space

Initialization:
d+0

FASTMAP ALGORITHM (k, D(), O)

e if & < 0 then return X

ed—d+1

e Choose pivot objects O, and Oy, such that
the distance D(O,,Oy) is maximized
foreach object i from O do

e Project O; on the line (O,, O)
Compute : X|[i,d] = x;

. D2(04.0:)+D?*(04.04)—D?(04,.0:)
Ti = 2D2(0,,05)

end

foreach object i from O do

e Project O; on an hyper-plane
perpendicular to the line (O, Oy)

(D’)Z(O:.O;) = DZ(O,"OJ')—(;T,‘—:IIJ‘)2

end
call FASTMAP(k — 1, D'(),0)

similarity feature map y with two classes of gray-level values
corresponding to change and no-change areas.

D. Superpixel-Based Filtering Step

Once the feature similarity map " is estimated, thanks to our
above-presented scale and rotation-invariant temporal—spatial
gradient operator for texture, we decide to filter y” with an
original superpixel-based filtering strategy in order to make y”
less noisy and thus to make its subsequent classification into
change and no-change areas (see Section II-E) more robust.

A superpixel is a perceptually meaningful collection of pixels,
obtained from some low-level grouping process. Fundamentally,
itis the result of an oversegmentation, in which the pixels inside
each superpixel form a consistent, perceptually meaningful, unit
or atomic region, e.g., in terms of color, texture, intensity, and
so on. In addition to estimating a set of homogeneous regions
(of nearly similar size) allowing to preserve the important struc-
tures in the image, this low-level process is also representa-
tionally and computationally efficient. By replacing the rigid
structure of the pixel grid, it reduces the complexity of images
from hundreds of thousands of pixels to only a few hundred
superpixels. Recently, an interesting superpixel algorithm called
simple linear iterative clustering (SLIC) [41] has been proposed,
which, compared to the state-of-the-art superpixel methods,
turns out to be superior for both efficiency and boundary preser-
vation. SLIC is a two-step procedure, which first estimates
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Algorithm 2: SLIC Segmentation.

Input:
Image with N pixels
K Desired number of Superpixels

Output:
Image segmented

Initialization:

o S=/N/K

e Choose K Cluster (superpixel) centers

Ck = [lk, ak, b, vk, y] T in LAB space color
(or gray level L; Cy. = (I, 0,0, 25, yi] T,
where the [ component is calculated directly
from the grayscale value) with position (z, k)
by sampling pixels at regular grid steps S

e Perturb cluster centers in an n x n
neighborhood, to the lowest gradient position

while E < threshold do
foreach each cluster center Cj. do
e Assign the best matching pixels
from a 25 x 25 square neighborhood
around the cluster center
end
e Compute new cluster centers and
residual error E (L, distance between
previous centers and recomputed centers)
end
e Enforce connectivity

superpixels by grouping pixels with a local k-means clustering
method and second exploits a connected component algorithm
toremove the generated small isolated regions by merging them
into the nearest large superpixels.

In our application, SLIC is applied on y't and y'2 in order
to detect the different consistent structural regions (land uses)
existing in these images. The intersection between these two
SLIC segmented images® allows us to define a third overseg-
mented map »° (with thus smaller superpixels), in which the set
of pixels inside each new superpixel has the appealing property
toexhibit homogeneous structural regions (in terms of land uses)
in the before and after images. At this stage, a possible strategy
is to exploit the collection of superpixel belonging to y° (and
{y'*,y"2} or yP) to individually classify each superpixel into
changed or no-changed class. This approach is algorithmically

3if 2! denotes the segmentation or the subdivision of the image y*! into
a set of superpixels or regions: z'! = {R{!, Ri!, ..., R{ } and «'? is the
subdivisionof y2, ie., z'? = {R‘l). R: R

Na
pair (y'!,

}. Every pixel of the image
y'?) is thus associated with a unique region in the set z** and a unique
region in the set z*2. Each unique pair of regions defines a new individual region
in the segmentation map y°, which is defined as the intersection of ‘! and
x'2. Conceptually, each generated superpixel in y° corresponds to a group of
connected pixels belonging to the same region in z*! and the same region in

.I‘tz.
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(]

Fig. 1. Superpixel-based filtering step on SAR three-look/SAR five-look
dataset (sixth dataset; cf., Section III-A). (a) and (b) Superpixel contour super-
imposed on y** (before) and y'2 (after) satellite image. (¢) and (d) Segmentation
into superpixel regions (on images y'! and y2). (¢) Segmentation intersection
y® [between segmentation maps (c) and (d)]. (f) Filtered similarity feature map
zD [by spatial averaging all the values of the similarity feature map over each
superpixel estimated in (e)].

complex and, in practice, does not perform as well as the
second strategy used in this article that consists of averaging
each pixel value of y?, inside each superpixel of y*, between
them. Conceptually, this latter strategy can be interpreted as
a segmentation-based spatially adaptive filter, which averages
the values given by our CD operator within each individual
homogeneous changed or no-changed small region previously
estimated (see Fig. 1 and Algorithm 3, which simply average
out each y” values of each segment).

E. Two-Class Clustering

Finally, in order to automatically separate the change and
no-change areas from the previously filtered feature similarity
map 77, we use the following unsupervised clustering approach,
whose aim is to increase the separability of the two classes or
clusters; we apply a small overlapping sliding window over
the image of size 7 x 7, in which we compute three features,
namely, the empirical mean and variance of luminance and the
maximum gray level for each location of the window. Each
window location thus provides a three-component “sample” x,,,.
The collected samples {x;, ..., Xy } are then clustered into two
classes {€g, e} using the k-means clustering procedure [42],
[43]. In fact, this strategy allows us to increase the separability
of the two clusters by taking into account the spatial contextual
information (or the neighborhood) around each pixel in the
binary clustering process (see Fig. 2 and Algorithm 4).
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Algorithm 3: Superpixel-based Filter.
Input:

yP: Similarity map (to be filtered)
{y'*,y"}: Image before and after

K: Desired number of superpixels
Output:

7P Filtered similarity map

Initialization:

o o'« SLIC_SEGMENTATION (y'1;K)
o 22 « SLIC_SEGMENTATION (y'2:K)
o 45 « IntERsECTION (21, 22)

foreach superpixel b; € y° do

val 0

nb+0

foreach pixel ps (at location s) € b; do
val «—val + yf

nb+nb+ 1

end

foreach pixel p; (at location s) € b; do
| 72 « (val/nb)
end

end

Algorithm 4: Two-Class Clustering.

Input:
=P Filtered similarity map (to be segmented)

Output:
2P binary CD map (with N pixels)

foreach pixel p; (at location i) € zP do
e Compute the m; =mean, v; =variance
and max; = maximum gray level
contained within the 7 x 7 window
centered on p;.
X;i ¢ (mi, vi,max;)

end

o 200« K(=2)-MEANS ALGO (X1,....XN)

III. EXPERIMENTAL RESULTS

To validate our approach, in this section, we present a series of
tests conducted on different real heterogeneous datasets, chosen
to reflect the three possible CD conditions in the multimodal
case, namely, two heterogeneous optical images and heteroge-
neous SAR images, and one optical and one SAR images. This
allows us to compare the performance of the proposed method
with different state-of-the-art multimodal CD algorithms re-
cently proposed in this field [7], [8], [10] [9], [11], [44] in
different multimodal CD conditions. In this benchmark, all the
ground-truth images (or CD mask) were provided by an expert
photo interpreter. We also compare the obtained results with
the other change detector traditionally proposed in mono- or
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Fig.2. (a)—(f) 3-D feature space for the local textural features (mean, variance,
and maximum gray level) of the filtered feature similarity map yD related to
different heterogeneous datasets. Red and blue colors represent, respectively,
the unchanged and changed clusters or classes found by the K-means algorithm.

multimodal cases and provided by the ORFEO Toolbox [45]
[46]. In our implementation, we have used the FastMap and
SLIC C++ codes kindly provided by their authors and freely
available on the web.

A. Heterogeneous Dataset Description

1) The first heterogeneous dataset is a pair of SAR/optical
satellite images (Toulouse, France), with a size of
4404 x 2604 pixels, before and after a construction.
The SAR image was taken by the TerraSAR-X satellite
(February 2009) and the optical image by the Pleiades
(High-Resolution Optical Imaging Constellation of the
Centre National d’Etudes Spatiales) satellite (July 2013).
The TSX image was coregistered and resampled in [47]
with a pixel resolution of 2 m to match the optical image.
The second one is a pair of optical/SAR satellite im-
ages (Gloucestershire region, in southwest England, near
Gloucester), with a size of 2325 x 4135 pixels, before and
after a flooding taking place in urban and rural areas. The
optical image comes from the Quick Bird 02 (QB02) VHR
satellite (July 15, 2006) and the SAR image was acquired
by the TerraSAR-X satellite (July 2007). The TSX image
presents a resolution of 7.3 m, and the QB02 image (with a
resolution of 0.65 m and 0% cloud cover) was coregistered
and resampled in [47] to match this resolution.

3) The third dataset shows two heterogeneous optical im-
ages acquired in Toulouse (Fr) area by different sensor
specifications (size of 2000 x 2000 pixels with a reso-
lution of 0.5 m). The before image is acquired by the
Pleiades sensor in May 2012 before the beginning of the
construction work, and the after image is acquired by
WorldView?2 satellite from three (Red, Green, and Blue)
spectral bands (July 11, 2013) after the construction of a
building. The WorldView2 VHR-image was coregistered
in [47] to match the Pleiades image.

The fourth dataset [11] is a pair of SAR/SAR satel-
lite images (Gloucester, U.K.) before and during a
flood event caused by intense and prolonged rainfall,

2

-

4

=

Authorized licensed use limited to: Université de Montréal. Downloaded on August 02,2020 at 01:05:13 UTC from IEEE Xplore. Restrictions apply.



TOUATI et al.: RELIABLE MIXED-NORM-BASED MULTIRESOLUTION CHANGE DETECTOR

3595

TABLE 1
DESCRIPTION OF THE EIGHT HETEROGENEOUS DATASETS

Dataset Date Location Size (pixels) | Common spatial resolution Sensor
1 Feb. 2009 - July 2013 Toulouse, Fr 4404 x 2604 2 m. TerraSAR-X / Pleiades
2 July 2006 - July 2007 Gloucester, UK 2325 x 4135 0.65 m. TerraSAR-X / QuickBird 02
3 May 2012 - July 2013 Toulouse, Fr 2000 x 2000 0.52 m. Pleiades / WorldView 2
4 Sept. 2000 - Oct. 2000 Gloucester, UK 762 x 292 40 m. RADARSAT
5 Sept. 1999 - Nov. 2000 Gloucester, UK 1318 x 2359 10 m. VHR Spot / ERS
6 Jan. 2002 - Jan. 2002 | Central Africa, CF 400 x 800 10 m. RADARSAT
7 Sept. 1995 - Jul. 1996 Sardinia, IT 412 x 300 30 m. Landsat-5 (NIR band) / Landsat-5
8 Jun. 2008 - Sept. 2012 Dongying, CH 921 x 593 8 m. RADARSAT-2 / QuickBird and Landsat-7

overwhelming the drainage capacity, on urban and agricul-
tural/rural areas, with a size of 762 x 292 pixels, acquired
by RADARSAT satellite with different numbers of looks.
The number of looks for the before SAR image is 1
(September 2000), and the number of looks for the after
image is 5 (October 2000). These two SAR images have
a resolution of about 40 m.

5) The fifth dataset [44], [46] consists of one multispectral
image and one SAR image showing the area of Gloucester
(U.K.), with asize of 1318 x 2359 pixels. The multispec-
tral image is taken by the Spot VHR satellite in September
1999 before a flooding event. The SAR image is captured
by the European Remote Sensing (ERS) satellite (around
November 2000) during the flooding event. The resolution
of these two images is about 10 m [46].

6) The sixth dataset [11] shows a pair of heterogeneous
satellite images (with a size of 400 x 800 pixels and a
resolution of 10 m) acquired over the Democratic Republic
of the Congo (country located in central Africa) before
and after the eruption of the Nyiragongo volcano (January
2002). It consists of two SAR images captured by the
RADARSAT satellite with different numbers of looks.
The number of looks for the SAR image before and after
change is 3 and 5, respectively.

7) The seventh dataset is composed of two heterogeneous

optical images [22]. It shows the changes of the Mediter-

ranean in Sardinia area (Italy). This dataset is acquired
by different sensor specifications and consists of one TM
image (optical) and one optical image. The before image
is the fifth band of a TM image (near-infrared band)
acquired by the Landsat-5 (September 1995) with a spatial
resolution of 30 m [22]. The second optical image comes
from Google Earth (July 1996) and is an RGB image with

a spatial resolution of 4 m [22]. After coregistration, these

two images are resampled at the same pixel resolution of

412 x 300 pixels [22].

The eighth dataset consists of one SAR image and one

RGB optical image. It shows a piece of the Dongying

City in China, before and after a new building construc-

tion. The SAR image is acquired by RADARSAT-2 (June

2008) with a spatial resolution of 8 m. The optical image

comes from Google Earth image (September 2012), and

it is a combination of aerial photography imaging with a

satellite imaging (produced, respectively, by QuickBird

and Landsat-7) with a spatial resolution of 4 m. After

8

=

coregistration, these two images are resampled at the same
pixel resolution of 921 x 593 pixels.

Table I summarizes a brief description of the eight heteroge-
neous remote sensing image datasets used in our research, which
cover the possible cases that may arise in the heterogeneous CD
problem.

B. Results and Evaluation

In all the experimental results, we have considered the simple
gray level of the image (and not a local statistics vector around
aneighborhood of s) [see (1) and (2)]. In the case of an optical
image, this also requires the conversion of the possible color
image to a grayscale image. Each operator results 27 (at each
resolution level) are rescaled for all sites s of the image between
0 and 255. We have considered N, = 3 levels of the multires-
olution pyramidal structure and N,, = 7 and Ny = 3 for each
operator applied at each scale of this pyramid (see Section II-B).
Finally, for the superpixel-based filtering step (see Section I1-D),
the parameters of the SLIC algorithm are N, = 300.

Inorderto discuss and compare obtained results, a quantitative
study is realized by computing the classification rate accuracy
that measures the percentage of the correct changed and un-
changed pixels:

TP+TN
TP+TN+FN+FP
where TP is the true positive value that corresponds to the
number of pixels that are detected as the changed area in both
the ground-truth image and the obtained results. TN is the true
negative value that corresponds to the pixel number belonging
to the intersection of the unchanged area in both the reference
image and the obtained results. FN represents the false negative
value done by the number of the missed changed pixels in
the obtained results, and FP represents the false positive value
corresponding to the unchanged pixels wrongly classified as
changed.

A comparison with different state-of-the-art approaches [7],
[8], [10] [9], [11], [44] is summarized in Table II. We have
also summarized in Table III the confusion matrix obtained
by the proposed change detector. From Table II, we can see
that the rate accuracy of our method outperforms the most
other state-of-the-art approaches and shows the strength and
the flexibility of our method to process both the three different
heterogeneous image pairs possibly used in remote sensing (see
Figs. 3-5), as well as multitemporal image pairs with different

PCC = 3)
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TABLE I
ACCURACY RATE OF CD ON THE EIGHT (IN LEXICOGRAPHIC ORDER) HETEROGENEOUS DATASETS OBTAINED BY THE PROPOSED
METHOD AND THE STATE-OF-THE-ART MULTIMODAL CHANGE DETECTORS (FIRST UPPER PART OF EACH TABLE)
AND MONOMODAL CHANGE DETECTORS (SECOND LOWER PART OF EACH TABLE)

[ Opfical/SAR dataset (2) | Accuracy
Proposed method 0.943 Optical/Optical dataset (3) | Accuracy
SAR/Optical dataset (T) | Accuracy | prendes ef af. (8], (47] | 0018 | Proposed method 0.877
Proposed method 0.881 Prendes ef al. [7] 0.854 Prendes et al. [9], [47] 0.844
Prendes ef al. 0] 0844 Copulas (7], [10] 0.760 T o1, 471 0.679
C &) 0.670 T T71, 110] 0.688 Mutual Inf__[9], [47] 0.759
Mutual Inf._[9] 0.580 Mutual Inf. [7], [10] 0.763 Pixel Dif. [45], [47] 0.708
[ Pixel DIt 7], [43] 0.782 Pixel Ratio [45], [47] 0.661
Pixel Ratio [7], [45] 0813
SAR 1-lo0k / SAR 5-looks dataset (4) | Accuracy
‘method 0.821 || VHR Opfical/SAR dataset (5) | Accuracy
Chatelain ef al. [11] 0.732 Proposed method 0.743
C ] 0.521 Gregoire et al._[44] 0.70
Ratio edge [11] 0,382
SAR Flooks/SAR Slooks dataset 6) T A Optical(NIR band)/Optical dataset (1) | Accuracy || SARIOptical dataset (8) | Accuracy
ppotel metio 0540 Proposed method 0847 | method 0884 |
elain et al. [11] 0.749 -
= i XiE) Zhang et al. [22] 0.975 Liu ef al. [14] 0.976
Ratio edge [11] 0757 PCC 122] 0882 | PCC [14] 0.821
TABLE 11l

CONFUSION MATRIX FOR THE EIGHT MULTIMODAL DATASETS, i.e.,
[TSX/PLEIADES] (4404 x 2604 PIXELS), [QBO2/TSX] (2325 x 4135 PIXELS),
[PLEIADES/WORLDVIEW 2] (2000 x 2000 PIXELS), [SAR ONE-LOOK/SAR
FIVE-LOOKS] (762 x 292 PIXELS), [SPOT VHR/ERS] (1318 x 2359 PIXELS),
[SAR THREE-LOOKS/SAR FIVE-LOOKS] (400 x 800 PIXELS), [OPTICAL
(NIR BAND)/OPTICAL] (412 300 PIXELS), AND [SAR/OPTICAL]

(921 %593 PIXELS)

Multimodal pair TP TN FP FN
TSX/Pleiades 661075 | 9448661 1106363 | 251917
QBO2TSX 521245 | 8549723 447337 95570
Pleiades/WorldView 2 342991 | 3166707 226958 263344
SAR 1-look/SAR 5-looks 25082 157607 25953 13862
VHR Spot/ERS 404390 | 1905919 520681 278172
SAR 3-looks/SAR 5-looks | 38934 230128 27525 23413

Optical(NIR band)/Optical 7024 97744 18147 685
SAR/Optical 18550 464568 59353 3682

spatial resolutions (see Tables I and II). Nevertheless, we assert
with high confidence that better accuracy results are obtained
on satellite image pairs with high spatial resolution (datasets
1-3 versus datasets 4-6). In fact, this peculiar feature can be
easily explained if we remember that our change detector is
based on a temporal gradient operator applied to a local spatial
gradient (see Section II-A), which tries to detect the presence
or not of a common and specific high-frequency pattern (e.g.,
edges, contours, microtexture, etc.) between two local regions,
located at the same place, but (at different times) on different
satellite images. In fact, the detection of a common and specific
high-frequency pattern between the two multitemporal satel-
lite images is necessarily more robust as the image is in high
resolution.

The proposed CD model is evaluated using different imaging
modalities with different noise types and levels and under differ-
ent spatial resolutions along with a wide variety of change events.
The evaluation shows that our CD model is flexible, but also
less performing, for some cases, than some other multimodal

CD models proposed in the literature dealing with a specific
type of noise, imaging modalities, or type of change events
(see Figs. 3-5 illustrating the applicability and the efficiency
of our detector for a wide variety of cases). Nevertheless, our
classification accuracy rate is comparable or outperforms some
state-of-the-art approaches. We think that the flexibility of our
CD model is also the result of the fact that our method does
not depend, as for all machine-learning-based methods, on the
content of a training base that could be biased in favor of an
imaging modality type, resolution, degree of noise, or type of
occurring change event and also does not depend on a specific
a priori (generally too rigid) distribution mixtures, on which
parametric statistical methods heavily relies.

Technically speaking, the first (271) CD operator favors
sparse segmentation in terms of candidate CD regions and used
alone would increase the false negative rate [see Fig. 6(a)]
contrary to the second (zf’ 2) CD operator, which, used alone, en-
courages diversity for detecting changes while reducing the false
negative rate butincreasing the false positive rate [see Fig. 6(b)].
The mixture of these two complementary CD operators has
the merit to get well-balanced class accuracies instead of the
use of only one of the two CD operators that would favor one
of the two classes. The evolution of the average classification
accuracy according to the number of (pyramid) levels shows
that three levels are, in fact, a good compromise between the
integration of relevant information at different resolution levels
or frequencies and the loss of information due to irrelevant
information or noise detected at higher scales and the loss of
information due to the FastMap-based dimensionality reduction
technique [see Fig. 7(b)]. Finally, the number of superpixels
slightly affects the average classification accuracy because the
fact that small segmentations errors can be accumulated from
the SLIC segmentation algorithm applied on the before and the
after images [see Fig. 7(a)].

By knowing this, a further improvement of our method would
be to include a reliable high-frequency noise reduction step of

Authorized licensed use limited to: Université de Montréal. Downloaded on August 02,2020 at 01:05:13 UTC from IEEE Xplore. Restrictions apply.



TOUATI et al.: RELIABLE MIXED-NORM-BASED MULTIRESOLUTION CHANGE DETECTOR

Dataset- 1

(c)

the two input imag y first preprocessing. However, let
us note that finding a reliable (multimodal) denoising method
in our case is not trivial, since the statistics of the noise are
radically different in the case of passive optical sensors (additive
and Gaussian noise) and active SAR sensors (multiplicative and
speckle noise). Thus, in the case of multisource SAR+optical
images, this denoising technique should be different and adap-
tive. It is also the case for multilooking images, in which the
spatial averaging and different filtering (generally used to re-
duce the speckle noise) transforms the noise degradation into
a mixture of independent additive and multiplicative correlated
noise process, which becomes very difficult to reduce.

Fig. 8 presents a visual comparison between the CD simi-
larity map obtained by our method and the one obtained by
the SoA methods. By comparison with SoA methods [9]-[11],

S, as vi

Heterogeneous (multisource) optical/SAR and SAR/optical datasets: (a)-(c) image 1,
(changed-unchanged) segmentation result, and confusion map (white: TN, red: TP, blue: FP, and cyan: FN) obtained by the proposed approach.
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», and ground truth and (d)—(f) filtered similarity map, final

[44], the proposed CD method seems to visually produce more
distinctive binary cluster-like structure (modeling the unchanged
and changed areas) a bit more separated and more compacted
(with lower internal variance within a cluster) and with less
overlap. Besides, our method yields more spatially and properly
regularized (or less noisy) similarity-feature maps.

The average accuracy rate obtained on the eight multimodal
dataset based on the dual CD operators is 85.38%. With the CD
operators expressed in formulas (1) and (2), the average accuracy
rate obtained on this eight multimodal datasets is, respectively,
73.81% and 64.35%. Fig. 6 presents a visual comparison be-
tween two binary maps resulting from the application of (only)
the first (271) and second (z"2) CD operators and visually
showing how the two different binary maps complement each
other (see the second row in Fig. 3)
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(b)

Fig.4. Heterogeneous (multisensor) optical/optical dataset: (a)-(c) image £, ¢
segmentation result, and confusion map (white: TN, red: TP, blue: FP, and cyan:

and ground truth and (d)—(f) filtered similarity map, final (changed/unchanged)
) obtained by the proposed approach.

(d)

Fi

segm

v

Heterogeneous (multilooking) SAR/SAR datasets: (a)—(c) image ¢, £5, and ground truth and (d)—(f) filtered similarity map, final (changed/unchanged)
nentation result, and confusion map (white: TN, red: TP, blue: FP, and cyan: FN) obtained by the proposed approach.
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