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AbstractÐWe present an original statistical classification method using a deformable template model to separate natural objects from

man-made objects in an image provided by a high resolution sonar. A prior knowledge of the manufactured object shadow shape is

captured by a prototype template, along with a set of admissible linear transformations, to take into account the shape variability. Then,

the classification problem is defined as a two-step process. First, the detection problem of a region of interest in the input image is

stated as the minimization of a cost function. Second, the value of this function at convergence allows one to determine whether the

desired object is present or not in the sonar image. The energy minimization problem is tackled using relaxation techniques. In this

context, we compare the results obtained with a deterministic relaxation technique (a gradient-based algorithm) and two stochastic

relaxation methods: Simulated Annealing (SA) and a hybrid Genetic Algorithm (GA). This latter method has been successfully tested

on real and synthetic sonar images, yielding very promising results.

Index TermsÐDeformable template, objective function, simulated annealing, gradient-based algorithm, genetic optimization, shape

recognition, sonar imagery.
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1 INTRODUCTION

DUE to their high resolution, existing sonars can detect
every object lying on the sea-bed. Each object can be

identified efficiently thanks to an analysis of its associated
cast shadow (arising from the lack of acoustic reverberation
behind the object). However, since the amount and size of
acquired images is huge, the exploitation of the collected
data has to be achieved with an automatic processing chain.
The goal is to be able to detect, in the context of our
application (i.e., mine detection and neutralization, under-
water wreckage research, submarine rescue...) manufac-
tured objects lying on the sea-bed. On large sea floor areas
(typically 1,000 meters by 200 meters), the goal is to find an
object of size smaller than 6 meters by 3 meters.
Immediately after such a detection, other means are
deployed in order to confirm the detection and eventually
destroy the threat. It is our applicative context. The
proposed method may also be efficiently exploited to detect
and to localize cylindrical or spherical objects lying on the
sea-floor. Unfortunately, confidentiality reasons prevent us
from providing too much information on the application.
The approach presented in this paper allows us to
efficiently distinguish natural objects from such manufac-
tured objects lying on the sea-bed. The whole paper is
presented with this intention.

In computer vision, pattern recognition issues are often
cast as a search problem in some appropriate feature space.
In that prospect, a classical and generally used recognition
approach in sonar imagery consists of using a presegmen-
ted sonar image and associating, for each detected cast
shadow shape, a set of appropriate geometrical, spectral, or
statistical features. The aim is to represent the (shadow)
shape with a relevant parameter vector providing maximal
information about the extracted shadow. Afterward, this
parameter vector is usually exploited as an input of a
supervised classifier (Bayesian classifiers, K-nearest neigh-
bors, or multilayer perceptron, ...) [1], [2]. The classification
problem is reduced to recover from a database the
occurrence that is the more similar to the analyzed one.
This method is appealing and has been widely used in
pattern recognition applications. Nevertheless, it requires
that the training set be large enough to ensure an efficient
learning stage. Besides, the efficiency of this technique
depends on the feature extraction step for which there are
no general rules to determine the optimal number of
parameters and the discriminant characteristics of each of
them. Note that this method cannot be used efficiently
when the extracted shadow shape is partly merged with an
other object shadow. In our application, it is often the case
that cast shadow shapes are altered by the shadow of ridges
of sand, dunes, or pebbles [3].

Contrary to the cast shadow of a natural object, the one of
a manufactured object has a regular and/or geometrical
shape easily identifiable. Bayesian statistical theory is a
convenient way of taking this a priori information into
consideration. This paradigm in image analysis is quite
popular and has been successfully applied for image
segmentation [4], [5], image restoration [6] (with a local
prior model), or shape matching with deformable template-
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based methods (with a global prior model) [7], [8].
Laksmanan and Grimmer [9], for example, have used a
parametric template model to locate the road boundary in
radar images where the two straight, parallel edges of a
road are parameterized. Then, the edge detection problem
is formulated as a Bayesian optimization problem using a
physics-based model of the radar imaging process. A
similar approach for shape matching is proposed by Jain
et al. [10], [11] which combines, in the same manner, both
the available knowledge of the shape properties (as prior
model) and an observation model (as likelihood model).
One such method can be efficiently used for the classifica-
tion of the cast shadow of each object lying on the sea-bed
and to more precisely distinguish natural objects from man-
made objects in sonar imagery. In this way, we define a
prototype template and a set of admissible linear transfor-
mations to take into account the shape variability of the
object class to be detected. Also, we define a joint
Probability Density Function (PDF) which expresses the
dependence between the observed image and the deformed
template. Then, the detection problem of an object class is
stated as the estimation of the deformation parameters of
the template that maximize the posterior PDF. This
maximization problem is equivalent to the minimization
of a nonconcave (usually complex with many local extrema)
objective function.

In [10], gradient-based methods are used for the energy
minimization of this function. These methods have the
disadvantage of requiring good initial parameter estimates
(i.e., a proper initialization of the template), otherwise, they
will converge toward bad local minima. Stochastic methods
based on Simulated Annealing (SA) [12], [13] have the
capability of avoiding local minima and no human
interaction is required to initialize the model. However,
one of the major drawbacks of this procedure is its high
computational load. Hereafter, we show that an alternate
approach consists of using a genetic exploration of the
parameter space.

The main contribution of this paper lies in the use of
deformable model to classify objects in sonar imagery. This
appears as an interesting alternative to feature-based
matching methods and it is efficient in the case of complex
background and/or occlusion phenomena between several
cast shadows. We propose an appropriate energy function
that differs from previously published works. This energy
utilizes the information given by an unsupervised Marko-
vian segmentation of the input sonar image [5] and
integrates both region homogeneity and edge information.
Finally, we introduce a computationally efficient global
optimization method to solve the minimization problem.
This method is based on a stochastic search method using a
genetic exploration of the parameter search space combined
with a steepest ascent procedure and a cooling temperature
schedule. In such a context, we will show that the use of
Genetic Algorithm (GA) leads to better performance than
other stochastic methods (such as simulated annealing) or
deterministic relaxation techniques like gradient-based
algorithm.

This paper is organized as follows: Sections 2 and 3
present the template modeling and the energy-based

extraction of template occurrences from data and the
classification of extracted shapes. The optimization using
gradient-based algorithm, simulated annealing, or GA is
described in Section 4. In Section 5, we report some
detection/classification results on real and synthetic sonar
images. In this context, advantages of GA over the other
optimization methods are discussed. Section 6 contains
concluding remarks.

2 TEMPLATE REPRESENTATION

Contour-based modeling is a generic tool for shape
matching. It can be applied to objects of different shapes
by defining different prototype templates.

In sonar imagery, the first goal of the classification step is
to automatically separate natural objects from man-made
objects. This low-level classification step in two classes is
based on the following a priori information: Contrary to
natural objects, a manufactured object is mainly composed
of elements with simple and regular geometrical shape. For
this reason, their cast shadow present geometric properties
and exhibit straight lines as contours in the case of wrecks,
pipe-lines, etc. In particular, the cast shadow of a cylindrical
or cubic object is a perfect parallelogram. Therefore, we
simply define the corresponding prototype template as a
parallelogram characterized by its four vertices. For a
different application, however, we have to detect spherical
objects lying on the sea-bed. In this case, the associated cast
shadow has a typical shape whose representation can easily
be defined by a set of n points manually selected or equally
sampled which approximate its outline. A cubic B-spline
shape representation involving these n control points
corresponding to ªlandmarksº is then defined. The outline
of the spherical object cast shadow used to build the
prototype can either be obtained from a real scene or
synthesized (see Fig. 1). The latter way of modeling objects
has been widely considered in the object recognition
literature and, particularly, in the active contour approach
[14]. Such a scheme captures the global structure of a shape
without specifying a parametric form for each class of
shapes.

The prototype template, denoted 
0, does not describe
the possible instances of the shapes to be detected for a class
of objects. In order to take into account the variability of the
considered object class, we introduce a set of admissible
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Fig. 1. (a) Cast shadow and echo associated with a spherical object,

synthesized with a ray tracing procedure. (b) Associated prototype

template.



linear transformations on 
0. Let 
� be a deformed version

of the original prototype 
0 according to a affine transfor-

mation with parameters vector �. In the case of our first

parametric template (used to detect manufactured object),

these deformations involve translation, scaling, rotation,

stretching, and skewing [15] of the template, as shown in

Fig. 2. Corresponding transformations are given by:

As �
s 0

0 s

� �
A� �

cos� ÿsin�
sin� cos�

� �
At �

1 0

0 t

� �
Au �

1 u

0 1

� �
with s, t, u, and � being, respectively, the scale, stretch, and

skew parameters and the angle of rotation.
Due to spherical symmetry, the spherical object cast

shadow is symmetric relative to the sonar beam direction.

Therefore, the only considered transformations are transla-

tion, scaling, and stretching for this template (see Fig. 3).
Otherwise, parameters of the translation and the scale

transformation are actually constrained by the size of the

subimage. Translation parameter (in the x or y axis

direction), as well as scale, stretch, and skew parameters,

are constrained such that the template stays, at least

partially, within the subimage.
In order to correctly detect and classify cast shadows that

are partly outside the subimage, we have to partition the

input sonar image of large size (typically 6,000 by 2,000 pels)

into small overlapping subimages (256 by 256 pels) whose

size is a function of the template size we are looking for

(typically, 30 by 60 pels). The detection-classification

method presented in the next part then has to be used for

each overlapping subimage.

3 MAP DETECTION

A common problem in sonar images are the artifacts caused

by the speckle noise effect, which leads to a loss of signal

and a very poor quality of the object boundaries [16]. That is

why the joint model we propose does not directly use the

input image (i.e., the gray levels themselves) or some image

gradient measure (as proposed in [10]) in order to recover

the contour of each object. In our approach, we use the

result of an unsupervised two-class Markovian segmenta-

tion of the input sonar image [5]. It provides a binary map

x � fxs; s 2 Sg, where xs � e0 for shadow areas and xs � e1

for reverberation areas. This allows us to take into account

the observed measurements along regions contours, but

also the gray-level homogeneity information inside and

outside delimited regions. The detection is based on an

objective function � measuring how well a given instance of

deformed template 
� fits the content of segmented image x.

From a probabilistic point of view, ���; x� defines the joint

model through the Gibbs distribution:

P�;X��; x� � 1

Z
exp ÿ���; x�f g; �1�

where � is the random vector of parameters and Z is a

normalizing constant.

3.1 Joint Model

The posterior distribution deduced from (1):

P�=X��=x� � 1

Zx
exp ÿ���; x�f g �2�

provides the probability of a given template given the

segmented image. ���; x� represents a measurement of the

similarity between the deformed template and the object

present in the image. The energy function ���; x� is

composed of two terms as explained below:
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Fig. 2. Considered linear transformations in IR2 for the original prototype associated with the cast shadow of a manufactured object with a regular

shape.

Fig. 3. Considered linear transformations in IR2 for the original prototype associated with the cast shadow of a spherically shaped object.



Edge energy: Let S0 be the set of 1-labeled pixels in a

binarized high-pass filtered version of the segmented sonar

image x in two classes (i.e., S0 represents the set of edges

associated to detected cast shadows). The deformable

template is attracted and aligned to the salient contours

of each object via an edge potential field defined as

follows: Each site s0 2 S0 associated to an edge of a

detected shadow region in S0 creates an elementary

potential field �s0
�r� such as:

�s0
�r� � 1

r
exp ÿ r

�

� �
; �3�

where r (r 6� 0) is the distance to the pixel s0. Fig. 4 shows

an example of this elementary potential field. The different

edges in S0 create a potential field �S0 �t�, given by the total

sum of the different elementary potential fields �s0
�r�:

�S0 �t� � inf
X
s2S0

�s d�s; t�� �; 1
( )

8t 2 S0 �4�

with d�s; t� the distance between pixels s and t. In fact, this

potential field induces a smooth version of the edge image

in which a site close to an edge will get a potential value

close to 1, as illustrated in Fig. 5. The degree of smoothness

can be controlled by parameter �. This edge potential field

induces an energy function that relates a deformed template


� to the edges associated to each detected object in the

input image:

�c��; x� � ÿ ln
1

N
�

X
s2
�

�S0 �s�
( )

� 0; �5�

where the summation is over all the N
� pixels on the
deformed template 
� and the logarithm function is used to
increase the range of the energy function �c. This function
attains its minimum value when the contour of the
deformed template coincides exactly with the underlying
image edges.

Region homogeneity energy: This energy term aims at
placing the inside of the deformed template in a region
classified as shadow by the segmentation procedure:

�r��; x� � ÿ ln
1

N
�
�

X
s2
�

�

��xs; e0�
8<:

9=; � 0; �6�

where 
�� and N
�
�

represent the set of pixels and the number
of pixels inside the region delimited by 
� and ��:� is the
Kronecker delta function. This function attains its minimum
value when the set of pixels inside the contour have all been
classified as shadow by the segmentation procedure.

Using these two energy terms, the posterior distribution
of � given x is:

P�=X��=x� � 1

Zx
expÿf�c��; x� � �r��; x�|�������������{z�������������}

���;x�

g �7�

� 1

Zx

1

N
�
�
N
�

X
s2
�

�S0 �s�
 ! X

s2
�
�

��xs; e0�
0@ 1A; �8�

where Zx is a normalizing constant depending on x only.

3.2 Detection Step

We formulate the detection problem as the search of the
Maximum A Posteriori (MAP) estimation of �:

�̂MAP 2 arg max
�

�
P�=X��=x�

	 �9�

2 arg min
�
���; x� �10�
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Fig. 4. Elementary potential field created by a site associated with an

edge of a detected shadow region in x (� � 1).

Fig. 5. (a) Sonar image (image called rock and object). (b) Associated Markovian two-class segmentation. (c) Edge potential field with � � 1.



This function, ���; x�, is minimal when the deformed
template exactly coincides with the edges of x and contains
only pixels labeled as shadow.

3.3 Classification Step

The resulting value of energy ���̂MAP ; x� is used to measure

the degree of fitness of the template with the region of

interest and, then, to determine whether the desired object

is present or not. If ���̂MAP ; x� is lower than a given

threshold, then the desired object is assumed to be present

and the final configuration of the deformed template

reveals the shape and the location of the detected object;

otherwise, we decide that the desired object is not present.
The method can be easily improved in order to retrieve

several object-cast shadows looking like the prototype
template in the input subimage. In this way, multiple
object-cast shadows that are like the prototype template can
be localized by using our classification method. Then, we
remove the edge in �S0 (the edge potential field) of the
detected cast shadow shapes and we repeat the same
procedure until the value of ���; x� is sufficiently ªlarge.º
This procedure prevents the algorithm presented in the
following section to always ªconvergeº toward the same
object. Nevertheless, in our proposed detection-classifica-
tion method, this abovementioned procedure is not neces-
sary: When a cast shadow shape is detected as being the one
belonging to a manufactured object, the associated sonar
subimage is then further analyzed by an expert in order to
confirm or to deny this detection. Finally, in the mine war
context, the number of no manufactured objects (rocks, ...) is
fortunately much larger than manufactured objects!

4 OPTIMIZATION PROBLEM

The objective function to be maximized in (7) is a complex
function with several local extrema over the deformation
parameter space. A global search is usually impossible due
to the size of the configuration space. Instead, we have
implemented and compared three different optimization
techniques: a gradient-based method as a local minimiza-
tion technique; the SA and a GA as global minimization
techniques, which are able to escape from local energy
minima.

4.1 Gradient-Based Algorithm

This method requires a good initialization of the template,
near the true location of the cast shadow shape to be
detected. Otherwise, we obtain a suboptimal solution (local
minima) and the value of the resulting objective function
���; x� cannot be exploited to affirm the presence of the
desired object.

In order to avoid this difficulty, a solution, proposed in
[10], consists of placing the template at evenly spaced
positions and in deforming it according a discretized set of
orientation, stretch, skew values in the input image. These
deformed template configurations can then be used to
initialize a deterministic gradient descent algorithm. How-
ever, the sampling of template positions and transformation
parameters must be chosen judiciously. It should be fine
enough not to miss the significant local minima of the

energy surface and large enough to avoid high computa-

tional requirements.

4.2 Simulated Annealing Algorithm

SA [12] is a stochastic relaxation technique which is based

on the analogy to the physical process of annealing a

metal: At high temperature, the atoms are randomly

distributed. With decreasing temperatures, they tend to

arrange themselves in a crystalline state which minimizes

the global energy. Using this analogy, the algorithm

generates, at random, new configurations of the template

by sampling the probability distribution of the system ªat

temperature Tº:

P�T ��=X��=x� �4 1

Z�T; x� exp ÿ ���; x�
T

� �
; �11�

where parameter T slowly decreases to 0. More precisely,

starting from a prototype template ��0�, we construct a

sequence of template deformations ��1�; ��2�; . . . ; ��k� such that

limk!1 ��k� 2 arg min ���; x�. In our application, we consider

the Metropolis algorithm and, for every k, we sequentially

update each of the component �
�k�
i of ��k� (i.e., each

deformation parameter) in the following manner:

. The algorithm generates a new value for ��k� (called

��k�new) that differs from the precedent value (that we

call �
�k�
old) only by �

�k�
i , randomly chosen according to

uniform distributions over admissible intervals of

values.
. Then, ��k�new or �

�k�
old is selected with probability P �k�new or

P
�k�
old, respectively:

P �k�new � min
exp ÿ ����k�new;x�

Tk

n o
exp ÿ ����k�

old
;x�

Tk

� � ; 1
8>><>>:

9>>=>>; �12�

and

P
�k�
old � 1ÿ P �k�new: �13�

Increases of energy can thus be accepted and the

algorithm is able to escape from local energy minima. It

has been shown [17] that the algorithm converges to a

global energy minimum if the temperature at iteration k is:

Tk � T0

log�1� k� ; �14�

where T0 is a constant depending on the amount of energy

which is necessary to escape local minima. Nevertheless,

this condition results in an extremely slow procedure. One

way to restrict the number of iterations is to use a geometric

temperature schedule [12]:

Tk � T0
Tf
T0

� � k
Kmax

; �15�

where T0 is the starting temperature, Tf is the final

temperature, and Kmax is the number of iterations.
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4.3 Genetic Algorithm

Genetic Algorithms (GA) are a class of robust stochastic

search and global optimization procedures which mimics

the evolution of natural systems [17]. The algorithm acts in

an iterative way by allowing parallel evolution in a

population of N individuals. Each individual represents a

point of the search space and is a candidate solution to the

optimization problem. It is represented by a string or

chromosome, which is composed of a list of L features

(corresponding to the L search parameters). The parameters

have to be encoded in an appropriate manner. The most

common approach is to quantize the parameter values and

to binary code them. The appropriateness of the various

individuals (the tentative solution) to the environment is

expressed by a fitness function, which (after the character-

istics contained in a chromosome have been decoded) gives

a performance value to the string.
Genetic search is carried out in a sequence of generations.

In each generation, a new population of N chromosomes is

created by the genetic operators. These operators mimic the

biological phenomena of selection, crossover, and mutation.

The choice of the solution upon which they are used is

dictated by the evolutionary principle of the survival of the

fittest. The algorithm begins with an initial population of N

chromosomes randomly chosen and terminates when either

a specified number of iterations has been performed or a

maximally fit individual has emerged.
In our application, let us recall that we have to optimize

an L-dimensional function (L � 6 or L � 4 depending on

the considered deformable template). Each of the L

parameters is quantified on q bits. Therefore, the ith

chromosome ���i is a string of q � L bits length:

���i �
ÿ
ci11; c

i
12; . . . ; ci1q|�����������{z�����������}
��1�

; ci21; c
i
22; . . . ; ci2q|�����������{z�����������}
��2�

; . . . ; ciL1; c
i
L2; . . . ; ciLq|������������{z������������}
��L�

�
:

�16�

4.3.1 Fitness Measure

We can easily derive a fitness measure F (to be maximized)

directly from (9) (the energy function � to be minimized).

To turn ���; x� into a fitness measure for use in genetic
algorithm (i.e., one with range �0; 1�), one can choose:

F����i� � exp ÿ�����i; x�
� 	

since � ���i; x
ÿ � � 0: �17�

The following is the detail of the selection, crossover, and
mutation operators. The associated parameters used in our
sonar imagery application will be given in Section 5.3.

4.3.2 Selection

Individuals with higher fitness survive and individuals
with lower fitness die. Let us assume that, at iteration k, the
population of the GA is the set of N chromosomes:

POPk � ���k1; . . . ; ���kN
n o

: �18�

Generation of the next population is based on the evalua-
tion of F for all individuals of POPk. More precisely, we
probabilistically select each chromosome for ªreproducingº
in the next generation, using their relative fitness:

p����ki � �
F����ki �PN
j�1 F����kj �

: �19�

4.3.3 Crossover

A pair of chromosomes is picked up at random and the
single-point crossover operator is applied according to a
fixed crossover probability. For this operation, a random
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Fig. 7. Template-based detection and classification with a gradient-
based local optimization procedure in case of cast shadow of a
cylindrical object on a sandy sea bed (image called object on a sandy
sea-bed) and pebbly sea floor (image called object on a pebbly sea-
bed). The input two-class segmentation is first shown, then the resulting
deformed template is displayed superimposed on the original image. (a)
Convergence toward the global minimum: � � 0:10. (b) Convergence to
a local minima: � � 0:31.

Fig. 6. An example of crossover with the partial exchange of information.



number in the range of 0 to the length Lq of the string is

generated. This is called the crossover point. The portions of

two strings lying to the right of the crossover point are

interchanged to yield two new strings, as shown in Fig. 6.

4.3.4 Mutation

Mutation consists of considering in turn each bit of a given

chromosome and changing its value with a predefined low

probability called the mutation rate.
In order to prevent premature convergence [17] and to

speed up the convergence rate, we have developed three

strategies and we have combined them:

1. The first one is an elite-preservation strategy [17]:
The individual with the highest fitness always
survives to be an individual of the next generation.

2. The second strategy (called hybrid GA [17]) consists
of associating the genetic search with a local
optimization technique. In each generation, a per-
centage of the best individuals are used to initialize a
gradient ascent technique. Therefore, these best
individuals explore local neighborhoods in the
parameter space to find a point of higher fitness.

3. In order to improve the results and the robustness of
the GA, we propose a third modification reminiscent
to SA [18]. The fitness function F at iteration k is
defined as follows:

F k����i� � exp ÿ 1

Tk
�����i; x�

� �
�20�

with Tk � T0a
k and a<1. At the beginning of the

genetic search procedure, Tk>1 and the optimiza-
tion procedure exploits a smooth version of the
energy function �. This smooth energy function has
fewer spurious local minima, which helps the
genetic procedure to maintain a good diversity in
the population and to avoid a premature conver-
gence toward a suboptimal solution (corresponding
to an important secondary minima). For Tk�1, the
genetic search is carried out with the real cost
function �. At the end of the procedure, Tk<1, the
fitness measure falls off rapidly with increasing cost.
This allows us to maintain a good competition
between individuals located near the global opti-
mum and to localize precisely the global extrema.
This method is similar to the cooling temperature
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Fig. 8. Evolution of the deformable template during the SA optimization on an image (object on a pebbly sea-bed) involving the cast shadows of a
cylindrical object on a pebbly sea-floor. (a) Two-class Markovian segmentation of the sonar image presented in (b)-(i). (b) Initial position of the
deformed template. (c)-(i) Successive iterations of the simulated annealing procedure. (i) Final segmentation, � � 0:13, leads to classifying the
selected region as the cast shadow of a cylindrical manufactured object.



schedule proposed in the simulated annealing

procedure. In our application, these three strategies

are used together in an efficient way. We call this

algorithm a hybrid genetic algorithm with an elitist

strategy and a cooling temperature schedule.

5 EXPERIMENTAL RESULTS

In order to distinguish natural from man-made objects, we

have to search the presence or not of both templates. For the

classification step, we use the following decision rules:

. If �< 0:2, we decide that the image contains an object
whose cast shadow shape is similar to the template.

. If 0:20<�< 0:23, a doubt exists. A human expert is
indispensable to classify these objects.
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Fig. 9. Evolution of the deformable template during the SA optimization on an image (rock and object) involving the cast shadow of a rock and a
cylindrical object. (a) Two-class Markovian segmentation of the sonar image presented in (b)-(i). (b) Initial position of the deformed template. (c)-(i)
Successive iterations of the simulated annealing procedure. (i) Final segmentation, � � 0:19, leads to classifying the selected region as the cast
shadow of a cylindrical manufactured object.

TABLE 1
Minima Obtained with the Different Optimization Procedures for Different Sonar Images



. If �>0:23, we decide that the searched object is not
present in the input image.

These different threshold values have been chosen

empirically after a set of experiments from our database
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Fig. 10. Successive generations of the genetic search. This sonar image contains a synthetic shadow shape of a cylindrical object partially occluded
by a dune of sand cast shadow. (a) Two-class Markovian segmentation of the sonar image. (b)-(f) Best 5 percent deformed templates before the
gradient ascent (on the left) and the best resulting template (on the right). GA optimization after (b) 1, (c) 2, (d) 4, (e) 16, (f) 30 generations. Accurate
and reliable detection of the cylindrical object-cast shadow is obtained (� � 0:06).

Fig. 11. Successive generations of the genetic search. This sonar image shows the synthetic shadow shape of a spherical object occluded by
several rock cast shadows. (a) Two-class Markovian segmentation of the sonar image. (b)-(f) Best 5 percent deformed templates before the gradient
ascent (on the left) and the best resulting template (on the right). GA optimization after (b) 1, (c) 4, (d) 6, (e) 8, (f) 24 generations. Accurate and
reliable detection of the spherical object-cast shadow is obtained (� � 0:10).



of 100 real sonar images (containing natural or manufac-
tured objects of different nature) and with the optimization
procedure ensuring the global minimum (i.e., with the
genetic search). As we will show in the following, this
decision rule leads, for our application, to a good classifica-
tion rate.

The proposed deformable template-based detection and
the classification scheme have been now applied to several
real and synthesized sonar images containing natural or
manufactured objects. These experiments have been carried
out with the different optimization procedures previously
presented. The efficiency of each method is discussed and
experimental results are compared.

5.1 Gradient-Based Optimization

First experiments have been carried out with the gradient-
based optimization and the sampling strategy described in
Section 4.1. In our application, we considered a number of
possible initializations by selecting five values of each
parameter (yielding, respectively, 54 possible shapes of the
first kind and 52 of the second kind) and different locations
evenly spaced within shadow regions.

Fig. 7 shows the cast shadow created by a cylindrical
object lying on a sandy sea floor and on a pebbly sea floor,
respectively. Let us note that, for the latter case, the cylinder
object cast shadow occludes a number of rock shadows and
the background is rather cluttered. For each case, we
present the resulting deformed template and we indicate
the corresponding energy value. In the first example, we
can see that the outline of the cast shadow shape is
accurately recovered and the low value of the energy
function allows us to correctly classify this shadow shape as
a cylindrical object-cast shadow. However, in the second
case, the energy function is too complex (i.e., many local
minima due to the complex background and the different

occlusions) and/or the initialization given to the gradient-
based procedure is not good enough to ensure a correct
detection. We obtain a suboptimal solution (local minima)
and the value of the resulting objective function does not
allow us to recognize the presence of a manufactured object
in this sonar image.

5.2 Simulated Annealing Optimization

A second set of experiments have been conducted using the
SA optimization scheme with a geometrical temperature
schedule and the following control parameters: T0 � 2,
Tf � 0:005, Kmax � 15; 000. Tests have shown that this
optimization procedure is very sensitive to the parameters
of the cooling schedule. In our application, these parameters
have been chosen empirically in order to get good
convergence in all tested case (around 100 sonar pictures).

Fig. 8 illustrates the evolution of the (parallelogram)
template during the SA optimization on the same image as
in Fig. 7b. In the beginning, the temperature is relatively
high, then the algorithm explores the space of template
parameters even if the corresponding deformed templates
do not satisfy the constraints and have a relatively high
energy. As the temperature decreases, the constraints
become satisfied, the outline of the template gets closer to
the edges of the region of interest, and the energy converges
toward the global minimum. Then, the low value of the
energy (� � 0:13 compared to � � 0:3) obtained by gradient-
based technique allows us to classify this region of interest
as the cast shadow of a cylindrical object. In Fig. 9, the
detected region of interest extracted by the parallelogram
template corresponds well to the manufactured object
(cylindrical object) and the low value of � allows us to
classify it as the cast shadow of a cylindrical object.

This procedure ensures a good detection and correct
classification rate. Nevertheless, one of the major drawbacks
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Fig. 12. The parallelogram template and the low value obtained (with the genetic search) for � (� < 0:2) allow us to classify these shadows as

ªmanufactured object-cast shadow.º (a), (b), (c) Different cylindrical objects: � � 0:17, � � 0:15, and � � 0:14, respectively. (d) Pipe-line: � � 0:12. (e)

Wreck: � � 0:15. (f) Trolley: � � 0:2.



of this optimization procedure is its high computational
load. It takes about seven minutes on a 43P IBM (120 MHz)
workstation, whereas about one minute is necessary for the
gradient-based optimization previously described. How-
ever, the Kmax parameter should be chosen less than 15; 000,
but it seemed that this maximum iteration number was
reasonable for such robustness on a large database. More-
over, the final temperature is very low (Tf � 0:005): This
ensures a quasi-deterministic search at the end of the
stochastic procedure. This is why it is not necessary to
apply a deterministic search at the end of the simulated

annealing-based optimization procedure to further improve

the optimization result. These two reasons explain the large

computing time required for the SA algorithm.

5.3 Genetic Optimization

These last experiments have been carried out with the

hybrid genetic algorithm using the elitist strategy and the

cooling temperature schedule described in Section 4.3. Tests

have shown that this optimization procedure was not very

sensitive to the control parameters. In our application, these

parameters are the following: population size = 100,
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Fig. 13. The cubic B-spline template and the low value obtained (with the genetic search) for � (� < 0:2) allows us to classify these shadows as

ªspherical object-cast shadow.º (a) � � 0:04. (b) � � 0:15. (c) � � 0:19.

Fig. 14. The values of � (> 0:2) (obtained with the genetic search) for both templates are sufficiently large so that we can reject the hypothesis of a

manufactured or spherical object present in these images. (a)-(c) Markovian segmentation of the sonar images. (d) � � 0:40. (e) � � 0:41. (f) � � 0:24.

(g) � � 0:55. (h) � � 0:57. (i) � � 0:38.



crossover rate = 0.8, mutation rate = 0.008, maximum
number of generations = 150. Some tests have shown that
the genetic algorithm-based optimization procedure is not
very sensitive to mutation parameter if it is contained
within the range �0:001; 0:01�, as proposed by Goldberg [17].
At each generation, we select 5 percent of the best
individuals for the hybridization with the local optimiza-
tion technique and the cooling schedule parameters are
T0 � 2 and a � 0:99.

Our GA takes about 20-120 generations to converge to
the true solution. In fact, the convergence rate can vary
significantly depending on the complexity of the objective
function � to be minimized (or the complexity of the input
image). The optimization procedure takes between
10 seconds and 35 seconds on a 43P IBM workstation. In
all processed cases, we obtain the same good results far
more quickly than those provided by the simulated
annealing (see Table 1).

Fig. 10 (a real sonar image on which a synthetic shadow
shape of a cylindrical object has been added) illustrates the
best deformed template and the best 5 percent set of
templates before the gradient ascent technique for succes-
sive iterations or generations of the genetic search. We can
see that this method is efficient even if the cast shadow
shape is partially occluded. Fig. 11 shows the detection and
the classification of a synthetic cast shadow shape asso-
ciated with a spherical object added on a real sonar image.

Figs. 12, 13, 14 show a few examples of classification
results from our database. Geometric shape, i.e., manufac-
tured objects, are well-detected, such as the geometric part
of a wreck (Fig. 12e), a section of a pipe-line (Fig. 12d), a
trolley (Fig. 12f), and different cylindrical objects (Fig. 12a
Fig. 12b, Fig. 12c). In the same way, spherical objects (Fig. 13)
are well detected even if the cast shadow shape is partially
occluded. Fig. 14 shows several natural objects and the
associated values of the objective function ���; x�.

6 CONCLUSION

In this paper, we have developed a novel and robust
algorithm to distinguish, from sonar images, man-made
objects from natural objects lying on the sea-bed. The
proposed method enables us to distinguish natural objects
from manufactured objects lying on the sea-bed. The whole
paper is presented with this intention.1 We have stated the
detection and the classification issues within a statistical
setting and we have shown that this problem can be handled
as an equivalent energy minimization problem. The energy
function is minimized using a stochastic genetic search
combined with a local optimization technique and a cooling
temperature schedule. This optimization procedure is fast,
robust, simple, and well-suited to our application compared
to other minimization techniques such as gradient-based
method or the simulated annealing algorithm. The proposed
scheme appears as an original alternative to feature-based
matching methods, and remains very efficient in the case of
complex cluttered backgrounds and occlusion phenomena

between several object cast shadows. This method has been
applied to a number of real sonar images; the obtained results
demonstrate its efficiency and robustness. This scheme is fast

and robust enough to allow automatic processing of massive
amounts of data. Besides, this method can be easily improved
in order to retrieve several object cast shadows that are like
the prototype template in the input subimage. In that

prospect, multiple object-cast shadows looking like the same
prototype template can be localized by using our classifica-
tion method. Then, we remove the edge in �S0 of the detected
cast shadow shapes and we repeat the same procedure till the

value of � is sufficiently large.
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