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Abstract—In this paper, we present a new model for deformations of shapes. A pseudolikelihood is based on the statistical distribution

of the gradient vector field of the gray level. The prior distribution is based on the Probabilistic Principal Component Analysis (PPCA).

We also propose a new model based on mixtures of PPCA that is useful in the case of greater variability in the shape. A criterion of

global or local object specificity based on a preliminary color segmentation of the image is included into the model. The localization of a

shape in an image is then viewed as minimizing the corresponding Gibbs field. We use the Exploration/Selection (E/S) stochastic

algorithm in order to find the optimal deformation. This yields a new unsupervised statistical method for localization of shapes. In order

to estimate the statistical parameters for the gradient vector field of the gray level, we use an Iterative Conditional Estimation (ICE)

procedure. The color segmentation of the image can be computed with an Exploration/Selection/Estimation (ESE) procedure.

Index Terms—Shape localization, statistical model, stochastic optimization, Exploration/Selection (E/S) algorithm, Probabilistic

Principal Component Analysis (PPCA).

Ç

1 INTRODUCTION

LOCALIZATION of shapes is an important problem in Image
Processing with applications to segmentation and

classification [1], [2], pattern recognition [3], motion track-
ing [4], and 3D reconstruction [5], [6].

Localization of a shape consists [7] of matching a deform-
able template to the data in the image. In the free-form
formulation, the shape of the template is constrained only by
local geometric criteria, such as smoothness and continuity.
The elastic deformable model [8], [9], the active contourmodel
[10], the models presented in [11] and [12], and the Mumford-
Shah functional [13] are examples of that approach. In the
parametric formulation, the prior global information of the
shapeisusedtomodel thedeformations. In thatapproach,one
can represent the template either by 1) a family of parame-
trized curves or by 2) one or several prototype templates
together with their parametric spaces of deformations, as
formulated in the pattern theory of [14], [15]. The models of
[16], [17] follow the first scheme, whereas [1], [2], [3], [7], [15],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32] are examples of the second scheme.

An important idea exploited in [7], [11], [12], [15], [20], [32]
is the formulation of the localization problem in a Bayesian
framework. Namely, one searches for the optimal deforma-
tion of the shape in the sense of the Maximum A Posteriori
(MAP). Nevertheless, in the probabilistic model presented in
[7], the likelihood is defined in an ad hoc manner: It depends

on a smoothing parameter �, which is not estimated from the
image. Moreover, it is based on a binary detection of contours
so that the localization step might be penalized by flaws
occurring at the edge-detection step. In contrast, the like-
lihood functions presented in [11], [12], [20] are based on the
distribution of the gray level. However, in those models, the
prior distribution is not learned from a sample of shapes. In
the active shape model [19], [25], the prior distribution of the
deformations of the shape is learned from a sample of curves
representing the same shape. The classical Principal Compo-
nent Analysis (PCA) is used to reduce the dimensionality of
the deformation space and the distribution of the reduced
parameters is modeled by a mixture of Gaussian distribu-
tions. A statistical shape prior can also be incorporated into a
Mumford-Shah segmentation process [21], [22], [26], [27], a
geodesic active contours method [28], or level sets represen-
tations [31]. Models based on textures have been introduced
in [33], [34], [35].

In [36], we presented a model for localization of shapes
based solely on contours. A shape is viewed as a
deformable template and the distribution of the deforma-
tion parameters is modeled with the Probabilistic Principal
Component Analysis (PPCA) [37] obtained from a training
set aligned as in [19]. This gives the prior distribution of
deformations of a shape. A pseudolikelihood of deforma-
tions of a given shape is based on the statistical distribution
of the gradient vector field of the gray level [38] (similar to
[39], [40]). We use an Iterative Conditional Estimation (ICE)
procedure [41], [42] for the estimation of the parameters, as
explained in [38]. Localization of a shape can then be
viewed as minimizing the Gibbs field corresponding to the
pseudoposterior distribution. The E/S optimization algo-
rithm [43] is then used to find the optimal solution. From
[43], the internal parameters of the E/S algorithm that
ensure asymptotic convergence to a global optimal solution
are known and are practical. This is not the case, as far as
we know, for genetic algorithms or the simulated annealing.
Furthermore, as mentioned in [44], the known convergence
results [45] for the particle filtering algorithms require that
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the number of particles tend to infinity, although working
with a finite number of particles might be useful in practice
[24] in the context of localization of shapes. Furthermore,
deterministic algorithms such as the iterative model
refinement method [25] work well in some contexts, but
we do not know of any theorems of convergence in a
general setting (for instance, with complex backgrounds, as
considered in some examples reported here). Also, the
graph cuts algorithms yield an optimal solution and are
useful [46], but, generally speaking, they apply only to the
optimization of special types of functions [47]. Although
elegant and useful, the formulation of the problem in level
sets representations [31], active contours [28], or variational
functionals [27] deserve further study, in particular with
respect to the convergence of algorithms to an optimal
solution of the model. Finally, the jump-diffusion random
sampling algorithm presented in [15] and the variant [32] of
the reversible jump Monte Carlo Markov Chain (RJMCMC)
[48] are two algorithms that converge to a sampling of the
desired posterior distribution. However, in this paper, we
do not wish to sample from the posterior distribution, but,
rather, to find its mode. Thus, we may rely on the (simpler)
E/S optimization algorithm.

Yet, due to its complexity, the Gibbs field of the posterior
distribution is rather hard to optimize directly, even if the
optimization algorithm converges asymptotically. Thus,
one has to use an initialization procedure to explore
plausible regions of the deformation space in order to
speed up convergence to a solution. In [36], we optimized a
heuristic potential function similar to [2] for the initializa-
tion procedure. In [49], we used a clustering of contour
segments in order to find initial positions of the shape. In
[40], we used for the initialization procedure a clustering of
the shapes. The main problem with these approaches lies in
fitting a one-dimensional object (the shape) with a one-
dimensional subset of the image, i.e., the contours.

In this paper, we present an extension (that appears in an
earlier version of Destrempes’ PhD thesis [50, Chapter 8]) of
the above model that takes into account a segmentation of the
image into regions. Namely, we require that the region labels
inside and outside of the shape be distinct. We call this
property the object specificity. This simple idea turns out to
make the model a lot easier to estimate, as the tests reported in
this paper indicate. Indeed, the task now consists of fitting a
two-dimensional object (the interior of the shape) with a two-
dimensional subset of the image, i.e., the color regions
forming the object. In particular, we no longer need the
initialization procedures of [36], [40], [49]. We base the image
segmentation on the model presented in [51]. A procedure
called the ESE procedure [44] is used to compute the
segmentation, as explained with full details in [51]. We also
make comparisons with a few other segmentation models.
We also propose a local object specificity property that is useful
in the case of multiple occurrences of the object in the image.
Furthermore, we include a generalization [37] of the PPCA
that uses mixtures of Gaussian kernels. This model for
reduction of dimensionality offers more flexibility in the case
of a shape with greater variability. Note, however, that, in
[37], the reconstruction operator depends on the Gaussian
kernel, whereas here it is fixed.

Altogether, the method proposed here for localizing
shapes is organized in four steps:

1. The first step consists of learning offline the
deformations of the shape from a sample of curves.
This means learning the mean shape, the nonlinear
deformations of the shape, and the prior distribution
of deformations of the shape. This training step is
based on the PPCA [37] in its simplest form or on the
new model for reduction of dimensionality pre-
sented in Section 5.

2. The second step consists of estimating online the
statistical distribution of the gradient vector field of
the gray level from the observed data in a given
image, using an ICE procedure.

3. The third step consists of segmenting online the
image based on colors using the ESE procedure.

4. The fourth step consists of localizing the shape in the
image, by minimizing with the E/S algorithm [43]
the Gibbs field of the pseudoposterior distribution of
deformations of the shape, with the global constraint
of (local) object specificity taken into account.

In our opinion, the main contribution of this paper is to
bring together interesting ideas of previous work with the
novelty of a new model for deformations of shapes and new
global constraints for the localization.

The remainder of this paper is organized as follows: In
Section 2, we recall the statistical model [38] for the gradient
vector field of the gray level, as well as the statistical model of
the colors [51]. Section 3 presents the statistical model for
deformations of a shape, with a brief review of the PPCA. The
stochastic method for localization of a shape is explained in
Section 4. The new model for reduction of dimensionality is
presented in Section 5. The local object specificity property is
presented in Section 6. In Section 7, we discuss experimental
results. We conclude in Section 8.

2 STATISTICAL MODELS FOR THE IMAGE

2.1 Statistical Model for the Gradient Vector Field

In this section, we recall the model introduced in [38] (similar
to what we have proposed in [39], [40]) for the distribution of
the gradient of the gray level in an image. It gives much more
than a binary detection of contours (i.e., a classification of
pixels as being on or off contours): It also gives, for each pixel,
its likelihood of being on contours and its likelihood of being
off contours. The likelihood of deformations of a shape
presented in Section 3.4 is based on this model.

Given an image of size M �N , G ¼ ðVG;EGÞ will denote

the nonoriented graph consisting of the M �N pixels of the

image together with the edges given by the usual

8-neighbors. If s and t are adjacent sites of G, we denote

the edge joining s and t by ðs; tÞ (so, ðs; tÞ 2 EG).
For each s 2 VG, the random variable Ys represents the

norm of the gradient of the gray level at the corresponding
pixel. If ðs; tÞ 2 EG, the random variable Yst represents the
absolute value of the angle between the mean of the gradient
at s and t and the normal to the vector from s to t. This angle
is normalized between ��=2 and �=2 before taking its
absolute value. As explained in [38], the variable Yst can be
viewed as the angle in absolute value between a level curve of
the gray level function and the curve going through the
segment ðs; tÞ. Finally, for each s 2 VG and ðs; tÞ 2 EG, the
random variables Zs and Zst take their values in the set
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fe1; e2g, where e1 denotes the class “off contours” and e2 the

class “on contours.”
As in [38], we adopt the following distributions for the

marginals of Ys and Yst on the classes e1 and e2:

. P ðysjzs ¼ e1; C; �Þ is a shifted Weibull law [52]Wðys;
min; C; �Þdefined byCðys�minÞC�1=�Ce�ððys�minÞ=�ÞC ,

where ys > min ¼ �0:001, andC, � > 0.
. P ðysjzs ¼ e2; wj; �j; �jÞ is a mixtureMðys;wj; �j; �jÞ ¼P3

j¼1 wjNðys;�j; �jÞ of three Gaussian kernels trun-
cated on the interval ð0;1Þ.

. P ðystjzst ¼ e1Þ is a uniform distribution Uðyst; 0; �2Þ on
½0; �2�.

. P ðystjzst ¼ e2; �0Þ is a truncated exponential law
k0Eðyst;�0Þ on the interval ½0; �2�, with

k0 ¼ 1� exp � �

2�0

� �� ��1

:

As explained in [38], the distribution on Ys reflects the

hypothesis that the norm of the gradient of the gray level

tends to be larger for points on edges than for points off

edges. Also, the distribution on Yst models the hypothesis

that there is no privileged angle between a level curve of the

gray level function and a segment off edges, whereas this

angle is expected to be near 0 whenever the segment is

located on edges.
See [38] for an example of estimated distributions and

empirical distributions. We use an ICE procedure [41], [42], as

explained in [38], in order to estimate the hyperparametersC,

�, wj, �j, �j, and �0 for a given image. The choice of three

Gaussian kernels is arbitrary; it could be estimated using the

Bayesian Information Criterion (BIC) [53] for instance.

2.2 Statistical Model for the Field of Colors

In this section, we recall the model introduced in [51] for the

distribution of the colors in an image.
For each s 2 VG, the random variable Ws represents the

Luv components at the corresponding pixel. For each

s 2 VG, the random variable Xs takes its values in a finite

set of K region labels ff1; f2; . . . ; fKg.
We adopt the following distributions for the marginals of

Ws on a region class fk:

. P ðwsjxs ¼ fk; �ði;kÞ; ~�i; ~�iÞ is a mixture ofK1 Gaussian

kernels
PK1

i¼1 �ði;kÞN ðws; ~�i; ~�iÞ, where
PK1

i �ði;kÞ ¼ 1

and �ði;kÞ � 0.

We use the ESE procedure [44], as explained in [51], in

order to estimate the parameters and obtain a segmentation x

for a given image. Here, we take K ¼ 30 region labels and

K1 ¼ 30 Gaussian kernels. The initial number of labels is K

and the ESE procedure allows this number to be decreased.

See Fig. 1 for an example of segmentation. Note that this is an

unsupervised method. Also, in practice, each region class fk is

defined bythe proportions�ð1;kÞ; . . . ; �ðK1;kÞ, some ofwhich are

near 0. Thus, we can fix the upper bound K1 and let the

procedure estimate the actual contribution of each Gaussian

kernel. The choice of the upper boundsK andK1 is arbitrary.

3 STATISTICAL MODEL FOR DEFORMATIONS OF

A SHAPE

In this section, we present a statistical model for deformations
of a shape. The training phase and the prior distribution are
based on the PPCA [37]. The likelihood is based on the
statistical model of the gradient vector field of the gray level
presented in Section 2.1. Thus, the prior distribution can be
learned from a sample of curves representing the shape, and
the likelihood can be estimated from the observable data
given by the image. The global constraint is based on the
image segmentation method presented in Section 2.2. The
material presented in Sections 3.1, 3.2, 3.3, and 3.4 first
appeared in [36]. Sections 3.1, 3.2, 3.3 were generalized to the
three-dimensional case int the context of object reconstruc-
tion in [6]. Sections 3.1 and 3.3 are extended to a more flexible
model in Section 5.

3.1 Training Phase

A curve is represented as a template, that is, a sequence of
points

� ¼ ða0; b0; a1; b1; . . . ; am; bmÞ; ð1Þ

where the mþ 1 points ða0; b0Þ; ða1; b1Þ; . . . ; ðam; bmÞ are
equally spaced on the curve between certain key-points
(see Fig. 6 of Appendix I for an example, which can be found
at http://computer.org/tpami/archives.htm). Those key-
points are only used at the training phase. Although not
essential, they are useful in the semiautomatic editing of the
templates corresponding to a database of the shape. All steps
of the localization procedure itself are automatic and do not
use those key-points. In our experiments, we segment the
contour of the shape with the “intelligent scissors” algorithm
[54]. Once this is done, an automatic procedure chooses
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Fig. 1. Segmentations of image (25) of Fig. 8 of Appendix I (which can be
found at http://computer.org/tpami/archives.htm), based on color models.
(a) The color model of Section 2.2. (b) The Mean Shift algorithm. (c) The
color model of [44]. (d) The K-means algorithm (with K ¼ 30).



mþ 1 points on the curve (equally spaced between the key-
points). In our experiments, we chose m rather arbitrarily so
that the approximated curves are “satisfying visually.”
Instead, a method could be designed that determines m as
a function of a given error between the original curve and its
approximated curve of mþ 1 points.

Given a sample �1; . . . ; �N of curves with the same number
of points and representing the deformations of a same shape,
we resort to the procedure [19] to align this training set on a
mean shape. Viewing T ¼ ðA0; B0; . . . ; Am;BmÞ as a random
vector and setting d ¼ 2mþ 2, we consider the Probabilistic
Principal Component Analysis (PPCA) model [37]: T ¼
W�þ � þ ", with W a d� q matrix, � a vector of dimension
d, � � Nð0; IqÞ, and " � Nð0; �2IdÞ. If t1; . . . ; tN is an i.i.d.
sample of the variable T , we obtain an optimal model [37] in
the sense of the ML upon taking

�2 ¼ 1

2d� q
Xd
i¼qþ1

	i; � ¼ �t ¼ 1

N

XN
i¼1

ti;

W ¼Uqð�q � �2IqÞ1=2;
ð2Þ

where 	1; . . . ; 	d are the eigenvalues of the sample
covariance matrix in decreasing order, �q is the diagonal
matrix with entries 	1; . . . ; 	q, and Uq is the d� q matrix
with columns equal to the corresponding eigenvectors,
normalized so that they have euclidean norm equal to 1 (i.e.,
the columns of Uq span the principal subspace of the sample
covariance matrix). See [26], [30], [35] for a similar use of the
SVD decomposition. Note that T has distribution function

pT ðtÞ ¼ N ðt; �; �2Id þWWtÞ: ð3Þ

If N < d, the sample covariance matrix of the full data might
not be positive-definite. However, the matrix �2Id þWWt is
positive-definite as long as �2 > 0. This case occurs provided
	qþ1 > 0, even if the sample covariance matrix is not full-rank
[26] (i.e., 	d ¼ 0). Thus, we can actually consider the case
where N < d, as in our tests. The corresponding reconstruc-
tion operator is

�ppcað
Þ ¼ Uqð�q � �2IdÞ1=2
 þ �: ð4Þ

We view the vector 
 as a vector of shape deformation.

3.2 Deformation Parameters

From the training phase, we obtain the mean shape � ¼ �t and
its statistical deformations �ppcað
Þ, where 
 is a vector in the
parameter space � of dimension q. In addition, we consider
projective deformations of the form ðx0; y0Þ ¼ ðcosð yÞxþ
sinð yÞ sinð xÞy; cosð xÞyÞ applied pointwise to a curve. Such
a transformation is obtained by applying to a point ðx; y; 0Þ a
rotation by an angle x around the x-axis, then a rotation by an
angle  y around the y-axis, and, finally, projecting the
resulting point onto the xy-plane. Namely, we have

cosð yÞ 0 sinð yÞ
0 1 0

� sinð yÞ 0 cosð yÞ

2
64

3
75

1 0 0

0 cosð xÞ � sinð xÞ
0 sinð xÞ cosð xÞ

2
64

3
75

�
x

y

0

2
64
3
75 ¼

cosð yÞxþ sinð yÞ sinð xÞy
cosð xÞy

� sinð xÞxþ cosð yÞ sinð xÞy

2
64

3
75:

We also consider rigid deformations given by scaling s,
rotation  , and translation ð�x; �yÞ applied pointwise to a
curve lying in the xy-plane. This yields a vector of
deformation

� ¼ ð�x; �y; s;  ;  y;  x; 
1; . . . ; 
qÞ ð5Þ

of dimension q þ 6. The transformation � is computed in the
following order: First, calculate the statistical deformation
�ppcað
Þ; next, apply the projective transformation ð y;  xÞ;
then, apply s and  ; finally, translate by � . The resulting
template is denoted ��. Note that, although (4) defines a linear
operator (from IRq to IRd), it does not describe in general an
affine operator (on IR2) applied pointwise to a curve. In this
sense, it yields a nonaffine deformation of the curve.

3.3 Prior Distribution

Let � be the random variable corresponding to the vector of
deformations. We model the distribution of � by

P ð�Þ ¼ Uð�x; �y; s;  ;  y;  xÞpT ð�ppcað
ÞÞ; ð6Þ

where U denotes the uniform distribution and T represents
the full data. From the lemma of [36], we obtain

pT ð�ppcað
ÞÞ / expð� 1

2

tðIq � �2��1

q Þ
Þ: ð7Þ

3.4 Pseudolikelihood

Let Y be the random field fYs; Ystg, where the random
variables Ys, Yst are as in Section 2.1. Given an image I, y is the
observed realization of Y ¼ Y ðIÞ. Given a path c ¼
ðs0; . . . ; smÞ in the graph G of Section 2.1, let EðcÞ denote the
set of edges fðsi�1; siÞ : i ¼ 1; 2; . . . ;mg. We consider, as we
have proposed in [40], the pseudolikelihood P ðyjcÞ given byY

s 62 c
P ðys j zs ¼ e1Þ

Y
s2c

P ðys j zs ¼ e2Þ

�
Y

ðs;tÞ 62 EðcÞ
P ðyst j zst ¼ e1Þ

Y
ðs;tÞ2EðcÞ

P ðyst j zst ¼ e2Þ

¼ kðyÞ
Y
s2c

P ðys j zs ¼ e2Þ
P ðys j zs ¼ e1Þ

Y
ðs;tÞ2EðcÞ

P ðyst j zst ¼ e2Þ
P ðyst j zst ¼ e1Þ

¼ kðyÞ
Ym
i¼0

Mðysi ;wj; �j; �jÞ
Wðysi ; min; C; �Þ

Ym
i¼1

k0Eðysi�1;si ;�0Þ
Uðysi�1;si ; 0; �2Þ

;

ð8Þ

where

kðyÞ ¼
Y
s2VG

P ðys j zs ¼ e1Þ
Y

ðs;tÞ2EG
P ðyst j zst ¼ e1Þ: ð9Þ

The distributions Wðys; min; C; �Þ, Mðys;wj; �j; �jÞ, Uðyst;
0; �2Þ, and k0Eðyst;�0Þ are as in Section 2.1.

We call P ðyjcÞ a pseudolikelihood since, in general,R
P ðyðIÞjcÞd I 6¼ 1 because the random variables of the

random field Y ðIÞ are dependent. Note, however, thatR
y P ðyjcÞd y ¼ 1. Also, we have dropped the dependence

of P ðyjcÞ on the vector of statistical parameters of the
gradient model for simplicity of notation.

The map of logðP ðysjzs ¼ e1Þ=P ðysjzs ¼ e2ÞÞ is presented
in Fig. 5 of Appendix I, which can be found at http://
computer.org/tpami/archives.htm.

Note that the scaling factor kðyÞ depends only on the
observed data (and not on the curve) and that the
principal factor
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Ym
i¼0

Mðysi ;wj; �j; �jÞ
Wðysi ; min; C; �Þ

Ym
i¼1

k0Eðysi�1;si ;�0Þ
Uðysi�1;si ; 0; �2Þ

ð10Þ

is invariant under affine transformations of the gray levels in

the following sense: Let I ¼ ðIsÞ be the realization of the gray

levels and consider the image I 0 ¼ ðI 0sÞ obtained by a

pointwise affine transformation I 0s ¼ aIs þ b. Then, y0s ¼ ays
and y0s;t ¼ ys;t. Under the change of variable y0s ¼ ays, the

distributions for y0s correspond to �0j ¼ a�j, �0j ¼ a�j, �0 ¼ a�,

min0 ¼ amin , whereas !j andC will remain unchanged. One

can then check directly that
Mðays;wj;a�j;a�jÞ
Wðays;amin;C;a�Þ ¼

Mðys;wj;�j;�jÞ
Wðys;min;C;�Þ .

Finally, the second factor remains identical. Note, however,

that, in our tests, we fix min ¼ �0:001 so that the invariance

property holds only approximately.

We can then define the pseudolikelihood of a deforma-

tion � by

P ðyj�Þ ¼ P ðyjc�Þ; ð11Þ

where c� is obtained by interpolation of the polygonal curve
with vertices given by the points of ��.

3.5 Pseudolikelihood of the Augmented Data

Let x ¼ ðxsÞ be a classification of the pixels in the image into
K equivalence classes according to the colors as in Section 2.2,
with xs 2 � ¼ ff1; . . . ; fKg. We consider the global constraint

V ðx; �Þ ¼
XK
k¼1

pkð�Þ
���s : xs ¼ fk; s 62 cint�

���; ð12Þ

where pkð�Þ is the proportion of the points in the interior cint� of
the curve having label fk. Note that the second factor is equal
to jfs : xs ¼ fkgj �Npkð�Þ,whereN ¼ jfs : xs ¼ fk; s 2 cint� gj.
So, only pkð�Þ needs to be computed dynamically, whereas
jfs : xs ¼ fkgj can be precomputed. Thus, V ðx; �Þ is minimal
whenever the region labels inside an object are specific to that
object, i.e., the region labels inside an object do not occur
outside that object and vice versa. Thus,we areworking under
the following hypothesis:

Object specificity : the color labels inside and outside

the object are distinct:
ð13Þ

In Section 6, a variant of this global constraint is presented in
the context of multiple occurrence of the object. In Section 7.2,
we suggest a variant to handle the case of strong occlusions of
the object. In [19], [25], [29], [35], the distribution of the gray
levels of the object is also learned from a training set. In this
paper, we consider the problem where the object has a gray-
level appearance that might vary according to the image. On
the other hand, we assume that the color distribution of the
object differs sufficiently from the background, as expressed
by the object specificity constraint.

We consider the couple of random fields ðY ;XÞ. The
hidden discrete random field X is not observable, but it can
nevertheless be deduced from the observable random field
of colors W , for instance as in Section 2.2. We define the
pseudolikelihood of the augmented data by

P ðy; xj�Þ / P ðyj�Þe�V ðx;�Þ: ð14Þ

Again, for an image I, there is a statistical dependence
between the random field Y ¼ Y ðIÞ and the hidden discrete
field X ¼ XðIÞ that is estimated from the random field of

colors jointly with its statistical parameters (Section 2.2). In
order to have a likelihood distribution from (14), we would
need a normalizing factor

Zð�Þ ¼
Z
P ðyðIÞj�Þe�V ðxðIÞ;�Þd I: ð15Þ

The likelihood would then be equal to

P ðIj�Þ ¼ 1

Zð�ÞP ðyðIÞ; xðIÞj�Þ: ð16Þ

Note also that, since the contours and the colors are
correlated, one should estimate jointly the statistical para-
meters of the gradient and the color models, as well as the
segmentation x. However, we preferred to estimate them
independently in this paper for the sake of simplicity, thus
obtaining a hierarchical approximation of the full estimate.

3.6 Pseudoposterior Distribution

We consider the pseudoposterior distribution of a deforma-
tion conditional to ðy; xÞ,

P ð�jy; xÞ / P ðyj�Þe�V ðx;�ÞP ð�Þ: ð17Þ

Writing c� ¼ ðs0; s1; . . . ; smÞ, let V1ð�; y; xjgÞ be the Gibbs
field defined by

Xm
i¼0

log Wðysi ; min; C; �Þ=Mðysi ;wj; �j; �jÞ
	 


þ
Xm
i¼1

log Uðysi�1;si ; 0;
�

2
Þ=k0 Eðysi�1;si ;�0Þ

� �

þ
XK
k¼1

pkð�Þ
���s : xs ¼ fk; s 62 cint�

���þ 1

2

tðIq � �2��1

q Þ
:

ð18Þ

Then, the pseudoposterior distribution is given by

P ð�jy; xÞ / expð�V1ð�; y; xÞÞ; ð19Þ

where the factor depends only on the image and not on the

deformation of the shape.

4 STOCHASTIC LOCALIZATION OF A SHAPE

We view, similarly to [11], [12], [7], and [20], the localization
of a shape c0 in an image as finding its deformation � that
maximizes the pseudoposterior distribution P ð�jy; xÞ. So, in
order to localize a shape in an image, we want to minimize
the Gibbs field V1ð�; y; xÞ of Section 3.6, as a function of �.
Our assumption is that an optimal solution for the function
V1 is the desired deformation of the shape. This will be the
case, as shown in our tests, under the hypothesis of object
specificity (see (13) of Section 3.5), provided there is not a
strong occlusion of the object.

In order to solve the optimization problem, we resort to
the stochastic algorithm [43] for which the asymptotic
convergence has been proven. In this paper, we use the
version presented in Table 1. Its asymptotic convergence
follows from [44]. We had already used the ES algorithm in
the context of localization of shapes in [36], [40], [49] and in
the context of 3D-reconstruction in [6]. The main point here
is that the use of the global constraint of Section 3.5 makes
the algorithm converge a lot more rapidly than before. In
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particular, we do not need anymore the (complicated)
initialization procedures proposed in [36], [40], [49].

Given an image of dimension M �N , we consider the

function V1 of (18) on a domain of the form

ð�x; �y; s;  ;  x;  yÞ 2 ½0;M � 1� � ½0; N � 1�
� ½�1d; �2d� � ½0; 2�� � ½� 0;  0�2


 ¼ ð
1; . . . ; 
qÞ 2 ½�1; 1�q;
ð20Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þN2
p

is the diameter of the image,
0 < �1 < �2 � 0:5, and 0 �  0 <

�
2 . The choice for the interval

associated to the scalar factor s implicitly assumes an a priori
on the dimension of the shape. This is reasonable since, in
applications of localization of shapes, one usually knows the
relative size of the shape (for instance, an anatomic object in a
medical image). We experimented with �1¼�2=2 (see Fig. 7 in
the Appendix, which can be found at http://computer.org/
tpami/archives.htm). Also, the choice for the interval of  x
and y is guided by the restriction on projective deformations
that is allowed for the shape. In our tests,  0 ¼ �

8 . In our
implementation in C++, the domain of (20) is discretized
naturally by the precision of the representation of the floats.

Note that it seems preferable, in practice, to do a few trials
with different seeds for the generator of pseudorandom
numbers, rather than increase the number of iterations with
the same seed. In our tests, 20 stochastic optimizations are
performed with different seeds. Each search is limited to
436 iterations. The parameters of the E/S algorithm are set
equal to r ¼ 1

8 , � ¼ 15, and n ¼ 30 in Table 1. For the two hard
examples of Sections 7.1 and 7.2, after the 20 stochastic
optimizations on the full image, we perform 20 more
stochastic optimizations with �x and �y restricted to a
rectangular neighborhood of the position coordinates of the
best solution previously found (the radius is M=8 for �x and
N=8 for �y).

5 GENERAL MODEL FOR DEFORMATIONS OF

A SHAPE

In this section, we present a statistical model for deforma-
tions of a shape that extends the PPCA of Section 3. The
main point is to replace a single Gaussian distribution by a
more flexible mixture of Gaussian kernels.

5.1 Modified Training Phase

Let T ¼ ðT1; . . . ; TdÞ ¼ ðA0; B0; . . . ; Am;BmÞ be the random
vector of a template as in (1). We consider the model
T ¼W�þ � þ ", with W a d� q orthonormal matrix, �
a vector of dimension d, � �

P‘
i¼1 �iNð�i;�iÞ, and " � N

ð0; �2IdÞ. Note that, unlike the PPCA, we require that W be
orthonormal (i.e., WtW ¼ Iq). But then, the distribution of �
is allowed to be any mixture of Gaussian kernels. One can
show that T has distribution

pT ðtÞ ¼
X‘
i¼1

�iN t;W�i þ �; �2Id þW�iW
t

	 

: ð21Þ

Now, let t1; . . . ; tN be an i.i.d. sample of the variable T .
We consider the Principal Component Analysis (PCA)
reconstruction operator

�pcað
Þ ¼ Uq
 þ �; ð22Þ

where Uq and � ¼ �t are as in (2). Thus, we now take W ¼ Uq
instead of Uqð�q � �2IdÞ1=2. That choice minimizes the
reconstruction error. The reduced dimension q is chosen so
that the minimal reconstruction error is smaller than a certain
value.

Our goal is then to estimate the vector of parameters
 ¼ ð�i; �i;�i; �

2Þ. For instance, in the case of ‘ ¼ 1, the
estimation of the parameters in the sense of the ML is given
by �1 ¼ 0, �1 ¼ �q � �2Iq, and �2 ¼ 1

ðd�qÞ
Pd

i¼qþ1 	i, as fol-
lows from (2). Thus, in that case, we recover the PPCA.
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Version of the E/S Algorithm Used in Section 4



Note that the proposed mixture model differs from the

mixture of PPCA [37] used in [6]. In our case, there is only

one reconstruction operator ðW; �Þ, whereas, in [37], the

reconstruction operator varies with the kernel.
Under the Bayesian paradigm, we set the following usual

priors [55] on the parameters �i, �i, �i, and �2,

1. A Dirichlet prior on the mixture parameters �i

ð�1; . . . ; �‘Þ � DðA0;�1; . . . ; �‘Þ; ð23Þ

where A0 ¼ ‘, and �1 ¼ . . . ¼ �‘ ¼ 1
‘ . Recall that the

Dirichlet distribution is defined by Dð�1; . . . ; �‘jA0;

�1; . . . ; �‘Þ ¼ �ðA0ÞQ‘

i¼1
�ðA0�iÞ

Q‘
i¼1 �

A0�i�1
i .

2. An inverted Wishart prior on the covariance
matrix �i

�i � IWð�0; d0Þ; ð24Þ

where �0 and d0 are as in Table 2. Recall that the

inverted Wishart distribution of dimension q is

defined by

IWð�j�0; d0Þ ¼

j�0j
1
2d0 j�j�

1
2ðd0þqþ1Þe�

1
2tr�0��1

2
1
2d0q�q

1

2
d0

� ��1

;

where �qð12 d0Þ ¼
Qq

j¼1 �ð12 d0 � 1
2 ðj� 1ÞÞ.

3. A Gaussian conditional prior on the mean �i

�ij�i � N �0;
1

k0
�i

� �
; ð25Þ

where �0 and k0 ¼ 0:01 are as in Table 2.
4. A noninformative improper prior on ��2

��2 � 1: ð26Þ

We are then interested in the mean estimator of 

̂ ¼
Z


P ðjt1; . . . ; tNÞd: ð27Þ

We compute an approximate value of the estimator using a
Monte Carlo Markov Chain (MCMC) algorithm. In order to
do so, we consider a latent discrete variableC taking its values
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TABLE 2
Gibbs Sampler Used in Section 5.1



in the set of hidden labels fg1; . . . ; g‘g indicating the Gaussian
kernel. Furthermore, we consider � as a latent continuous
variable. This is equivalent to the following distributions:

t j 
; �2 � NðW
 þ �;�2IdÞ

 j c ¼ gi � Nð�i;�iÞ

c �Mð�1; . . . ; �‘Þ;
ð28Þ

whereM denotes the multinomial distribution. We deduce
the distributions


 j t; c ¼ gi; �2 � Nð~�; ~�Þ;
~� ¼ ð��2Iq þ ��1

i Þ
�1 ��1

i �i þ ��2Wtðt� �Þ
	 


;

~� ¼ ��2Iq þ ��1
i

	 
�1
;

��2 j t; 
 � G d=2þ 1;
1

2
kt�W
 � �k2

� �
;

ð29Þ

where Gðx; a; bÞdenotes the Gamma distribution ba

�ðaÞx
a�1e�bx.

We can now simulate from the augmented posterior distribu-
tion of ð
j; cj; �i; �i;�i; �

2Þ conditional to t1; . . . ; tN by the
straightforward Gibbs sampler of Table 2. The model
parameters are learned from a sample set upon iterating the
Gibbs sampler for a few hundred iterations and then taking
the average value of each parameter. The initialization of the
simulation is presented in Table 2.

5.2 Modified Gibbs Energy

Let � be the random variable corresponding to the vector
of deformations of Section 3.2. We model the distribution
of � by

P ð�Þ ¼ Uð�x; �y; s;  ;  y;  xÞpT ð�pcað
ÞÞ; ð30Þ

where the first factor is as in (6), whereas pT is now given
by (21).

We have the following lemma.

Lemma 1. The distribution pT ð�pcað
ÞÞ is equal to

X‘
i¼1

�i
1

ð2�Þdj�2Id þ Uq�iUt
qj

1=2

� exp � 1

2�2
ð
 � �iÞt Iq � Iq þ �2��1

i

	 
�1
� �

ð
 � �iÞ
� �

:

Proof. See [50]. tu
Accordingly, the Gibbs energy of (18) is replaced by

V2ð�; y; xÞ equal to

Xm
i¼0

logðWðysi ; min; C; �Þ=Mðysi ;wj; �j; �jÞÞ

þ
Xm
i¼1

log U ysi�1;si ; 0;
�

2

� �
=k0 Eðysi�1;si ;�0Þ

� �

þ
XK
k¼1

pkð�Þ
�� s : xs ¼ fk; s 62 cint�
� ���

� log

(X‘
i¼1

�i
1

ð2�Þdj�2Id þ Uq�iUt
qj

1=2

� exp � 1

2�2
ð
 � �iÞt Iq � ðIq þ �2��1

i Þ
�1

� �
ð
 � �iÞ

� �)
:

ð31Þ

Now, we consider ‘ auxiliary change of variables, one for
each Gaussian kernel


 ¼ ’ið~
Þ ¼ Ai
~
 þ �i; ð32Þ

for i ¼ 1; . . . ; ‘, where �i ¼ AiA
t
i. Instead of (20), we now

consider the domain

ð�x; �y; s;  ;  x;  yÞ 2 ½0;M � 1� � ½0; N � 1�
� ½�1d; �2d� � ½0; 2�� � ½� 0;  0�2

~
 2 ½�1; 1�q:
ð33Þ

This is equivalent to a parameterization of the domain for 
.
In particular, it would not make sense to require that

 2 ½�1; 1�q. In the E/S algorithm of Table 1, the choice of the
auxiliary change of variables is modified randomly with
probability 1/2.

6 GLOBAL CONSTRAINT IN THE CASE OF MULTIPLE

OCCURRENCE OF THE OBJECT

When an object is expected to appear in multiple instances
in the image, the specificity hypothesis (13) is replaced by
the following hypothesis:

Local object specificity : the color labels inside and
outside the object are distinct within a neighborhood
of the object:

ð34Þ

Formally, let x ¼ ðxsÞ be a classification of the pixels in
the image into K equivalence classes according to the colors
as in Section 2.2, with xs 2 � ¼ ff1; . . . ; fKg. Consider the
global constraint

Vlocðx; �Þ ¼
XK
k¼1

pkð�Þ
�� s : xs ¼ fk; s 2 cnbhd� n cint�
� ���; ð35Þ

where pkð�kÞ is the proportion of the points inside the
curve �� having label fk, c

int
� is the interior of the curve,

and cnbhd� is a neighborhood of the curve. Thus, Vlocðx; �Þ is
minimal whenever the region labels inside an object are
locally specific to that object. In our tests, we took a
neighborhood of radius of 25 pixels. Accordingly, (31) is
replaced by V3ð�; y; xÞ:

Xm
i¼0

logðWðysi ; min; C; �Þ=Mðysi ;wj; �j; �jÞÞ

þ
Xm
i¼1

logðUðysi�1;si ; 0;
�

2
Þ=k0 Eðysi�1;si ;�0ÞÞ

þ
XK
k¼1

pkð�Þjfs : xs ¼ fk; s 2 cnbhd� n cint� gj

� log
nX‘

i¼1

�i
1

ð2�Þdj�2Id þ Uq�iUt
qj

1=2

� expð� 1

2�2
ð
 � �iÞt Iq � ðIq þ �2��1

i Þ
�1

� �
ð
 � �iÞÞ

o
:

ð36Þ

See Fig. 4 for an example of multiple occurence of an
object.

7 EXPERIMENTAL RESULTS

Since Destrempes’ PhD thesis [50], some of the tests had to
be rerun with an improved implementation. Furthermore,
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we now include a quantitative evaluation of the method.

Thus, some of the results reported here differ from [50].
The localization procedure crucially depends on the

color segmentation of the image. We have experimented the

procedure with the following four segmentation models:

1. the color model of Section 2.2 (with K ¼ K1 ¼ 30),
2. the Mean Shift algorithm [56], with a spatial

bandwidth of 7 and a range bandwidth of 6.5,
3. the color model of [44] (with K ¼ 30), and
4. the K-means algorithm (with K ¼ 30).

See Fig. 1 for examples of segmentation according to each of
the four models. We have also experimented with the
following schemes:

5. the color model of Section 2.2 without the contour
model of Section 2.1, and

6. the contour model of Section 2.1 and no segmenta-
tion model.

When comparing a solution c� with the ground-truth C

(obtained manually), we consider the following error
measure

�ðc�; CÞ ¼
1

diamðCÞjCj
X
p2C

dðp; c�Þ; ð37Þ

where jCj is the number of points on C, dðp; c�Þ is the

euclidean distance between p 2 C to the closest point of c�,

and diamðCÞ is the diameter of C (i.e., the greatest euclidean
distance between two points of C). We considered that a
failure corresponds to an error � that is greater than 0.08.
This criterion is of course arbitrary, but we actually checked
that the resulting classification corresponded to our own
(personal) judgment of an “acceptable” localization.

We now present two challenging examples. Three
additional examples can be found in Appendix I, which
can be found at http://computer.org/tpami/archives.htm.

7.1 Example 1: Gymnastic Movements

A first experiment uses a rather variable shape. Namely, we
took two video sequences of two gymnastic movements of the
arms: A flying bird movement and a weight-lifting move-
ment. The database consists of 180 frames of the first
execution of the two movements in the video sequences.
Each curve is represented by a template of 200 points. The
training phase of Section 5.1 yields a reduced dimension of
q ¼ 6 for the statistical deformations with less than 0.3 percent
for the relative reconstruction error. We fixed the number ‘ of
Gaussian kernels to 4.

We have tested the localization procedure with the
deformation model of (31) on 10 images with five different
initial seeds for the generator of pseudorandom numbers. The
scaling factors were �1 ¼ 0:15 and �2 ¼ 0:30. The 10 images
were taken in the second execution of the two movements in
the video sequences. See Fig. 2 for examples of localization.

DESTREMPES ET AL.: LOCALIZATION OF SHAPES USING STATISTICAL MODELS AND STOCHASTIC OPTIMIZATION 1611

Fig. 2. Top row: The four mean shapes for the MPCA prior in the example of two gymnastic movements (flying bird and weight-lifting); the rightmost
image represents the mean shape of the single PPCA model. Second and third rows: Examples of localization of a shape obtained by stochastic
optimization of the Gibbs field based on the contour parameters estimated by the ICE procedure and the segmentation computed with the ESE
procedure using the MPCA model of four kernels. Fourth row: Five of the six solutions that were counted as failures over 50 tests. Bottom row: The
30 solutions that were chosen randomly to initialize the E/S algorithm with one of the seeds for the generator of pseudorandom numbers.



For image (1) of Fig. 2, the whole procedure takes about

63 minutes. The segmentation method takes 90 percent of that

time. When using the K-means algorithm, the whole

procedure takes only 9 minutes and 9 seconds.
The error rate was 12 percent with the segmentation

method of Section 2.2. Image (4) presents three failures, image

(5) presents two failures, and image (10) presents one failure.

The error rate was 8 percent with the same color model but

with the contour energy term dropped. However, the error

rate was as much as 75 percent with that strategy in the

example of Appendix I-B, which can be found at http://

computer.org/tpami/archives.htm.

In the case of the segmentation model of Section 2.2, out

of the five initial seeds, the lowest value of the Gibbs

energy corresponded to a good localization. Thus, the error

rate for the five initial seeds is actually 0 percent. In the

case of the same color model but with the contour energy

term dropped, the error rate for the five initial seeds is also

0 percent on this data set.
We compared the MPCA shape prior with four kernels

with a MPCA consisting of only one kernel. The error rate

was 38 percent. Thus, we are inclined to think that, for very

variable shapes, a simple PPCA (or PCA) is not adequate to

capture the statistics of the deformations of the shape.
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Fig. 3. First and second rows: Examples of localization of a shape obtained by stochastic optimization of the Gibbs field based on the contour
parameters estimated by the ICE procedure and the segmentation computed with the ESE procedure, using the MPCA model of four kernels.
Bottom row: The five solutions that were counted as failures over 50 tests.

Fig. 4. Examples of localization for the saxophone shape of Appendix I-C (which can be found at http://computer.org/tpami/archives.htm) with
multiple occurrence of the object.



7.2 Example 2: Gymnastic Movements with
Occlusions

A second experiment uses the same shape model as in the
previous example. This time, the localization procedure is
tested on 10 images where there are partial occlusions of the
shape, with five different initial seeds for the generator of
pseudorandom numbers. The scaling factors were �1 ¼ 0:15
and�2 ¼ 0:30. The10 imageswere takeninthe executionof the
two gymnastic movements in two video sequences. See Fig. 3
for examples of localization. The error rate was 10 percent
with the segmentation method of Section 2.2. Image (1)
presents one failure, image (2) presents one failure, image (5)
presents two failures, and image (9) presents one failure. The
error rate was 22 percent with the K-means algorithm.

In the case of the segmentation model of Section 2.2,
out of the five initial seeds, the lowest value of the Gibbs
energy corresponded to a good localization except for two
images. Thus, the error rate for five initial seeds is actually
20 percent in this case. So, we suggest the following
modification of the object specificity constraint in order to
handle strong occlusions:

V ðx; �Þ ¼
XK
k¼1

Bðpkð�ÞÞpkð�Þ
�� s : xs ¼ fk; s 62 cint�
� ���; ð38Þ

where BðxÞ could be of the form 1 � 1
1þðx=x0Þ2n

(see the

Butterworth filter) in order to attenuate the influence of

smaller proportions pkð�Þ due to occlusions. We have not

tested this constraint as of now.
We compared the MPCA shape prior with four kernels

with a MPCA consisting of only one kernel. The error rate
was 36 percent. Thus, we are inclined to think that, for very
variable shapes, a simple PPCA (or PCA) is not adequate to
capture the statistics of the deformations of the shape.

As can be seen from Table 3, the proposed color model
outperforms the other models, except for time considerations.
In our opinion, this is due to the fact that, for models (2)-(4),
the distribution of each color region is unimodal, whereas, in
the case of the proposed model, the region distributions are
multimodal. It follows that methods (2)-(4) yield to an
oversegmentation of the image, which in turn makes the
optimization task too difficult. Also, contours or regions
alone are not sufficient to efficiently localize the shape. In [36],
[40], [49], the success rates were much higher for most images
because initialization procedures were used. In this paper, we

have dropped those initialization procedures in order to

show that a localization procedure based solely on contours is

a much harder optimization problem. Furthermore, despite

various initialization procedures, there were still a few

images that presented a 0 percent success rate, whereas

now each image has at least a 20 percent success rate. So, we

are inclined to think that the proposed model is more

adequate than one that is based solely on contours.

8 CONCLUSION

In this paper, we have presented a coherent statistical
model for deformations of shapes. We have brought
together the following ideas: The prior distribution of
deformations can be learned using the PPCA or the
proposed mixture of PPCA. The pseudolikelihood distribu-
tion of deformations is based on a statistical model for the
gradient vector field of the gray level in the image and can
be estimated using an ICE procedure. A criterion of global
or local object specificity makes the localization of the shape
a lot easier. This criterion is based on a color segmentation
of the image that can be computed with an ESE procedure.
The optimization E/S algorithm converges asymptotically
to an optimal solution, in the sense of the MAP in our
context. The error rates with our method were 12 percent,
10 percent, 4.7 percent, 5.8 percent, and 0 percent for five
sets of experiments. In future work, we intend to develop a
(much) more efficient version of the segmentation method
used in this paper in terms of the computational time.
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Genetic Optimization and Statistical Model-Based Approach for
the Classification of Shadow Shapes in Sonar Imagery,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 2,
pp. 129-141, Feb. 2000.

[3] A.K. Jain and D. Zongker, “Representation and Recognition of
Handwritten Digits Using Deformable Templates,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 19, no. 12, pp. 1386-
1391, Dec. 1997.

[4] C. Kervrann and F. Heitz, “A Hierarchical Markov Modeling
Approach for the Segmentation and Tracking of Deformable
Shapes,” Graphical Models and Image Processing, vol. 60, no. 3,
pp. 173-195, 1998.

[5] S. Benameur, M. Mignotte, H. Labelle, and J.A. de Guise, “A
Hierarchical Statistical Modeling Approach for the Unsupervised
3D Biplanar Reconstruction of the Scoliotic Spine,” IEEE Trans.
Biomedical Eng., vol. 52, no. 12, pp. 2041-2057, 2005.

[6] S. Benameur, M. Mignotte, F. Destrempes, and J.A. de Guise, “3D
Biplanar Reconstruction of Scoliotic Rib Cage Using the Estima-
tion of a Mixture of Probabilistic Prior Models,” IEEE Trans.
Biomedical Eng., vol. 52, no. 10, pp. 1713-1728, 2005.

[7] A.K. Jain, Y. Zhong, and S. Lakshmanan, “Object Matching Using
Deformable Templates,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 3, pp. 267-278, Mar. 1996.

[8] D.J. Burr, “Elastic Matching of Line Drawings,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 3, no. 6, pp. 708-713, 1981.

[9] M. Moshfeghi, S. Ranganath, and K. Nawyn, “Three-Dimensional
Elastic Matching of Volumes,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 16, no. 2, pp. 128-138, Feb. 1994.

[10] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour
Models,” Int’l J. Computer Vision, vol. 1, no. 4, pp. 321-331, 1988.

[11] M. Figueiredo and J. Leitao, “Bayesian Estimation of Ventricular
Contours in Angiographic Images,” IEEE Trans. Medical Imaging,
vol. 11, no. 3, pp. 416-429, 1992.

[12] G. Storvik, “A Bayesian Approach to Dynamic Contours through
Stochastic Sampling and Simulated Annealing,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 16, no. 10, pp. 976-
986, Oct. 1994.

[13] D. Mumford and J. Shah, “Optimal Approximations by Piecewise
Smooth Functions and Associated Variational Problems,” Comm.
Pure Applied Math., vol. 42, pp. 577-685, 1989.

[14] U. Grenander, Pattern Synthesis: Lectures in Pattern Theory. Springer,
1976.

[15] U. Grenander and M.I. Miller, “Representations of Knowledge in
Complex Systems,” J. Royal Statistical Soc. (series B), vol. 56, no. 4,
pp. 549-603, 1994.

[16] L.H. Staib and J.S. Duncan, “Boundary Finding with Parametric
Deformable Models,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 14, no. 11, pp. 1061-1075, Nov. 1992.

[17] A. Chakraborty, L.H. Staib, and J.S. Duncan, “Deformable
Boundary Finding Influenced by Region Homogeneity,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pp. 624-627,
June 1994.

[18] T.F. Cootes, C.J. Taylor, and J. Haslam, “The Use of Active Shape
Models for Locating Structures in Medical Images,” Image and
Vision Computing, vol. 12, no. 6, pp. 355-366, 1994.

[19] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, “Active
Shape Models—Their Training and Application,” Computer Vision
and Image Understanding, vol. 61, no. 1, pp. 38-59, 1995.

[20] M. Mignotte, J. Meunier, and J.-C. Tardif, “Endocardial Boundary
Estimation and Tracking in Echocardiographic Images Using
Deformable Templates and Markov Random Fields,” Pattern
Analysis and Applications, vol. 4, no. 4, pp. 256-271, 2001.

[21] D. Cremers, T. Kohlberger, and C. Schnorr, “Shape Statistics in
Kernel Space for Variational Image Segmentation,” Pattern
Recognition, vol. 36, no. 9, pp. 1929-1943, 2003.

[22] D. Cremers and C. Schnorr, “Statistical Shape Knowledge in
Variational Motion Segmentation,” Image and Vision Computing,
vol. 21, no. 1, pp. 77-86, 2003.

[23] M. Bergtholdt, D. Cremers, and C. Schnorr, “Variational Segmenta-
tion with Shape Priors,” Math. Models in Computer Vision: The
Handbook, N. Paragios, Y. Chen, and O. Faugeras, eds., Springer,
2005.

[24] M. de Bruijne and M. Nielsen, “Shape Particle Filtering for Image
Segmentation,” Proc. Medical Image Computing and Computer-
Assisted Intervention, vol. 1, pp. 168-175, 2004.

[25] T.F. Cootes, G.J. Edwards, and C.J. Taylor, “Active Appearance
Models,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 23, no. 6, pp. 681-685, June 2001.

[26] D. Cremers, F. Tischhauser, J. Weickert, and C. Schnorr,
“Diffusion Snakes: Introducing Statistical Shape Knowledge into
the Mumford-Shah Functional,” Int’l J. Computer Vision, vol. 50,
no. 3, pp. 295-313, 2002.

[27] D. Cremers, N. Sochen, and C. Schnorr, “A Multiphase Dynamic
Labeling Model for Variational Recognition-Driven Image
Segmentation,” Int’l J. Computer Vision, vol. 66, no. 1, pp. 67-81,
2006.

[28] M.E. Leventon, W.E.L. Grimson, and O.D. Faugeras, “Statistical
Shape Influence in Geodesic Active Contours,” Proc. Int’l Computer
Vision Pattern Recognition, pp. 1316-1323, 2000.

[29] J. Luettin and N.A. Thacker, “Speechreading Using Probabilistic
Models,” Computer Vision and Image Understanding, vol. 65, no. 2,
pp. 163-178, 1997.

[30] B. Moghaddam and A. Pentland, “Probabilistic Visual Learning for
Object Representation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 19, no. 7, pp. 696-710, July 1997.

[31] N. Paragios and M. Rousson, “Shape Priors for Level Set
Representations,” Proc. European Conf. Computer Vision, pp. 78-92,
2002.

[32] H. Rue and M.A. Hurn, “Bayesian Object Identification,”
Biometrika, vol. 86, no. 3, pp. 649-660, 1999.

[33] Y. Zhong and A.K. Jain, “Object Localization Using Color, Texture
and Shape,” Pattern Recognition, vol. 33, pp. 671-684, 2000.

[34] L. Liu and S. Sclaroff, “Deformable Shape Detection and
Description via Model-Based Region Grouping,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no. 5, pp. 475-
489, May 2001.

[35] M.J. Black and A. Jepson, “EigenTracking: Robust Matching and
Tracking of Articulated Objects Using a View-Based Representa-
tion,” Int’l J. Computer Vision, vol. 26, no. 1, pp. 63-84, 1998.

[36] F. Destrempes and M. Mignotte, “Unsupervised Localization of
Shapes Using Statistical Models,” Proc. Fourth IASTED Int’l Conf.
Signal and Image Processing, pp. 66-71, Aug. 2002.

[37] M.E. Tipping and C.M. Bishop, “Mixtures of Probabilistic
Principal Component Analyzers,” Neural Computation, vol. 11,
no. 2, pp. 443-482, 1999.

[38] F. Destrempes and M. Mignotte, “A Statistical Model for Contours
in Images,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 5, pp. 626-638, May 2004.

[39] F. Destrempes and M. Mignotte, “Unsupervised Detection and
Semi-Automatic Extraction of Contours Using a Statistical Model
and Dynamic Programming,” Proc. Fourth IASTED Int’l Conf.
Signal and Image Processing, pp. 60-65, Aug. 2002.
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