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Abstract—We investigate the contour detection task in complex natural images. We propose a novel contour detection algorithm

which jointly tracks at two scales small pieces of edges called edgelets. This multiscale edgelet structure naturally embeds semi-local

information and is the basic element of the proposed recursive Bayesian modeling. Prior and transition distributions are learned offline

using a shape database. Likelihood functions are learned online, thus are adaptive to an image, and integrate color and gradient

information via local, textural, oriented, and profile gradient-based features. The underlying model is estimated using a sequential

Monte Carlo approach, and the final soft contour detection map is retrieved from the approximated trajectory distribution. We also

propose to extend the model to the interactive cut-out task. Experiments conducted on the Berkeley Segmentation data sets show that

the proposed MultiScale Particle Filter Contour Detector method performs well compared to competing state-of-the-art methods.

Index Terms—Particle filtering, sequential Monte Carlo methods, statistical model, multiscale contour detection, BSDS

Ç

1 INTRODUCTION

DETECTING contours is an ubiquitous task in image
processing, as it is often the basis of higher level

applications, such as segmentation, recognition, tracking,
etc. The intrinsic variability of natural images makes this
task a proper challenge. In this paper, we define a contour
as a visually salient, well-defined chain of connected pix-
els. This definition may be interpreted in terms of the
Gestalt Theory, which underlines the importance of per-
ceptual grouping and continuation properties for human
visual perception. Also, saliency is contextual, suggesting
that it conforms the Helmhotz principle, which confers
more importance to rare geometric patterns. Properties of
good continuation and saliency shall serve as motivations
of the proposed contour detector.

A connected pixel set is the atomic element of the pro-
posed method, and is called an edgelet. This term shall not
be mistaken with the edgelet transform (an image represen-
tation method), however, our definition is similar to the
ones in [1], [2]. The structure of an edgelet is learned offline
using a shape database. This results in the modeling of an
empirical prior distribution. This choice differs from con-
tour detection approaches integrating a prior information
by imposing a potentially restrictive mathematical model.
The contextual visual saliency is learned online using tail
distributions, notably employed in the a contrario frame-
work proposed by Desolneux et al. [3]. The associated likeli-
hoods integrate image feature statistics to be adaptive to the
image and hence get high responses only on perceptually
significant contours. We also want to express the bounds
between the edgelets, reflecting the continuity principle of

the Gestalt Theory. This can be done in a Markovian model-
ing fashion by defining a spatial transition model between
consecutive edgelets. Prior, transition, and likelihoods mod-
els are the basic ingredients of Sequential Monte Carlo
methods. Among those, it turns out that particle filtering
techniques are particularly well-suited for estimating these
kinds of recursive distributions.

This is not the first attempt to use a particle filtering tech-
nique to extract contours. In 2001, P�erez et al. [4] proposed
the JetStream, a well-known algorithm that retrieves one
contour curve from an image by tracking points locally at a
fixed step length. The authors proposed a semi-automatic
routine to extract complex contours by allowing the user to
constrain the contour path. This approach is useful for the
interactive cut-out task, but by nature, can hardly be applied
to the challenging problem of automatic contour detection.
Other particle filtering techniques have been used in the
context of vessels and arteries detection in 3D CT data [5],
[6]. Like the JetStream algorithm, these techniques have been
mainly dedicated for semi-automatic and/or single detec-
tion tasks. Contrary to the aforementioned methods, our
particle filtering framework is fully automatic, semi-local,
and contextually-dependent. Moreover, compared to our
preliminary model [7], the edgelets are defined at two
scales, meaning that the algorithm locally tracks the edge-
lets along contours by sequentially operating the computa-
tions on each scale. This yields to our new MultiScale
Particle Filter Contour Detector (MS-PFCD).

This paper is organized as follows. Section 2 makes a
study of previous works proposed in the contour detec-
tion literature. In Section 3, we propose to learn the distri-
butions that handle the multiscale edgelets and define our
Bayesian model. The tracking algorithm for contour
detection based on a particle filtering technique is then
described in Section 4. We show extensive experimental
results on the BSDS300 and the BSDS500 in Section 5.
Section 6 proposes several tools to carry out interactive
contour detections with the proposed model. We finally
conclude in Section 7.
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2 RELATED WORK

Since the appearance of human-annotated image database,
a noticeable effort has been made to propose novel, sophisti-
cated, and efficient contour detection methods. In particu-
lar, Martin et al. [8] have introduced the Berkeley
Segmentation data set (BSDS300) in which 300 natural color
images have been manually segmented by several contribu-
tors. The data set is divided into a training set of 200 images
and a test set of 100 images. In [9], Arbelaez et al. have
extended the original Berkeley Segmentation data set by
proposing the BSDS500 in which the BSDS300 images are
used for training and validation, and 200 new images are
used for testing. There exist plenty of contour detection
methods in the literature. Among them, we gave in this sec-
tion priority to the ones evaluated on the Berkeley Segmen-
tation data sets. As they are not technically contour
detection methods, we excluded approaches that start from
an edge detection map and then try to improve the detec-
tions. This concerns segmentation and grouping algorithms.

2.1 Learning-Based Approaches

2.1.1 Probability-of-Boundary (Pb)-Based Approaches

Authors of the BSDS300 introduced a key contour detector
[10], the Probability-of-Boundary detector, that will be used
and improved a considerable number of times afterwards.
This Pb detector computes four oriented features: the
brightness, the color, the texture gradients, and the oriented
energy. The feature responses are independently optimized
through a learning procedure on the BSDS300 training data
set and are then combined using a logistic regression classi-
fier in order to define a probability that a pixel belongs to a
contour. Ren [11] proposed a multiscale version of the Pb
detector, that we call here the MS-Pb detector, and which,
besides computing the Pb on six scales, integrates two cues
that handle multiscale consistency: the localization, which
penalizes pixels too far from the expected contours; and the
relative contrast, which normalizes the Pb value of a pixel
using the values of its neighbors so as to support the most
locally relevant pixels. Maire et al. [12] proposed another
multiscale version of the Pb detector, presented as well in
[9]. Their gPb detector is a linear combination of the Pb fea-
tures computed on three scales and of a globalization term.
This latter term integrates a global information using the
Normalized Cuts criterion [13], which encodes the similar-
ity between pixels by eigenvector analysis. The underlying
similarity matrix is computed from the multiscale Pb. The
globalization term is then defined as a linear combination of
oriented gradient filters of eigenvector matrices. Kokkinos
proposed to use the Pb features with an Anyboost classifier
[14]. The optimization is done using a criterion based on an
approximation of the F-measure. Contributions also include
the use of the whole set of feature-label pairs during the
training stage. Finally, the author remarked that introducing
dense discriminative features extracted from appearance
descriptors improved the results.

2.1.2 Dictionary-Based Learning

Dollar et al. [15] proposed the BEL algorithm, that stands for
Boosted Edge Learning. They learn a Probabilistic Boosting

Tree classifier using thousands of simple features. Each of
these is computed on a large-sized image patch, which ena-
bles the integration of high level information. For example,
they can integrate information related to the Gestalt law,
e.g., the completion and the parallelism. They can also con-
sider the image background implicitly or detect roads in a
satellite view. Mairal et al. [16] used a discriminative sparse
image representation to combine classifiers defined at dif-
ferent scales. By training the classifiers using two dictionna-
ries (good and bad edges), this provides a confidence value
that a pixel belongs to a contour. An advantage is that this
approach learn specific dictionnaries to detect class-specific
contours. Recently, Xen and Bo [17] replaced the Pb features
from the gPb pipeline by sparse code gradients (SCG), i.e.,
automatically learned local patches that are represented
using sparse coding. Like the gPb, patches are computed at
different scales and orientations, but unlike it, they are then
classified using a linear SVM. This approach can also be
adapted to RGB + depth cameras.

2.2 Statistical-Based Approaches

Felzenszwalb and McAllester [18] considered a statistical
edge model, whose elementary variables are two-pixel-long
segments. Features are computed on these segments. They
are able to define a prior distribution relying on the number
of contours in an image and that encourages smooth con-
tours. The maximum a posteriori (MAP) estimation of the
resulting joint distribution of on- and off-contour pixels is
transformed on a weighted min-cover problem. This prob-
lem is NP-hard and the solution is hence approximated
using a greedy heuristic algorithm. Konishi et al. [19] pro-
posed a statistical multiscale data-driven edge detector. The
statistical inference is expressed as a log-likelihood ratio test
between the on- and off-edge non-parametric learned distri-
butions of the filter responses. Besides, they give the possi-
bility to model a posterior distribution that embeds spatial
edge grouping. Destrempes and Mignotte [20] modeled the
image as a graph, whose vertices are the pixels and the
edges are the pixels adjacence relationships. They define
four parametric likelihoods, conditioned by the element
label, on- or off-contour, and the element type, vertices or
edge. The prior is a Gibbs distribution, and includes a
smoothing parameter. These parameters are learned online
using an Iterative Conditional Estimation procedure. The
edge detection task is then viewed as finding the MAP of
the associated filtering distribution. This model can also be
used for localization of shapes [21] and semi-automatic
extraction of contours. Recently, Payet and Todorovic [22]
proposed to estimate a probability map of edge saliences
that they call tPb. Edges are computed considering texture
variations at different scales and randomly organized adja-
cent pairs of windows.

3 LEARNING THE BAYESIAN MODEL

Before giving the motivations of the proposed section and
further, the proposed sequential Bayesian framework, we
introduce some notations. The basic element of the frame-
work is a two-scales set of connected points. Let e ¼
ðe1; . . . ; eMeÞ 2 Ge � VMe

e be a set of Me four-connected
points defined at the coarse scale. Each point ei is defined
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in the image domain Ve of the coarse scale. The value of
Me is fixed and is a parameter of the method. For example,
in our experiments we set Me ¼ 3 to balance computa-
tional cost and detection robustness. The vector e is hence-
forth referred to as an edgelet defined at the coarse scale.

Let e ¼ ðe1; . . . ; eMðeÞÞ 2 GðeÞ � VMðeÞ
e be a set of MðeÞ

four-connected points defined at the reference scale. Each
point ei is defined in the image domain Ve of the refer-
ence scale (full resolution). Unlike the coarse scale, the
value of MðeÞ is variable, its range depends on Me. The
vector e is henceforth referred to as an edgelet defined at
the reference scale. The coarse scale is defined as a factor
of 2 of the reference scale.

The proposed contour detection method is based on a
spatial tracking approach. This means that we want to
define an edgelet at a certain step, or time, of the tracking
procedure. Then e and e are indexed by time, t, and can be
modeled as stochastic processes, fetgt2N and fetgt2N, respec-
tively. This time modeling is only artificial, as the temporal
process refers actually to a spatial process. We also need to
introduce y 2 Ye and y 2 Ye, the observations extracted
from the image features. Unlike the states et and et, observa-
tions y and y are not time-stamped, as they could be gath-
ered at once, e.g., at the beginning of the algorithm. Our
Bayesian tracking procedure requires the definition of
height distributions: the prior pðeÞ and pðejeÞ, the transitions
pðetjet�1; et�1Þ and pðetjet; et�1Þ, the likelihoods pðyjetÞ and
pðyjetÞ, and the initializations pðe0jyÞ and pðe0je0;yÞ. The
prior and transition distributions are carried out offline
whereas the likelihood function and initialization distribu-
tion are carried out online since they depend on the image.
The initialization distribution is used to circumvent a limita-
tion of any particle filtering technique that assumes
known the starting conditions. Also, we present four fea-
tures that compose the likelihood: the local gradient, the tex-
tural gradient, the oriented gradient, and the profile
gradient. All these distributions are illustrated on Fig. 1 and
are the subject of the following sections.

3.1 Offline Learning: Prior Models

The vectors e and e are small pieces of a contour, integrating
more information than a classical pixel-wise formulation.
Nevertheless, they remain semi-local, in order to be applied
generally to most of the contours. By learning their prior
distributions, we avoid imposing mathematical constraints
that may decrease the detection efficiency of an algorithm,
since it is impractical to define a mathematical model that
captures every possible contour singularity.

We want to learn the prior distribution of the coarse scale
pðe2:M je1Þ, with ei:j , ðei; . . . ; ejÞ and i < j, which is cen-
tered with respect to its first point e1. This way, the distribu-
tion only captures the configuration of the edgelet. We also
want to learn the prior distribution of the reference scale
pðejeÞ. Algorithm 1 presents the procedure to collect the sets
of Sp multiscale edgelets Be ¼ feð1Þ; . . . ; eðSpÞg and Be ¼
feð1Þ; . . . ; eðSpÞg, with eðsÞ the sth realization of the set at the
coarse scale and eðsÞ its corresponding realization at the ref-
erence scale. The data have been collected using the
BSDS300 training data set.

Let Be ¼ feð1Þ; . . . ; eðS0pÞg be the subset of the distinct ele-
ments of Be, and o

ðsÞ
e be the occurrence number of the sth

element of Be in Be, then the prior distribution approxima-
tion of pðe2:M je1Þ is given by:

Fig. 1. The learning procedure is divided into two steps. The offline step estimates the prior and the transition distributions, which are used to gener-
ate samples in the contour tracking procedure. The online step is performed on the image to be tracked, and aims at learning: the feature distribu-
tions, in order to recognize the meaningful contours in the image; and the initialization distribution, in order to (re-)initialize the tracking in the contour
detection procedure. (i) denotes a sample in the offline procedure, (k) denotes a sample in the online procedure.
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pðe2:M je1Þ �
XS0p
s¼1

~oðsÞe de
2:M

e2:M;ðsÞ ; (1)

with ~o
ðsÞ
e ¼ o

ðsÞ
e =Sp the empirical frequency and dba the Kro-

necker function, i.e., dba ¼ 1 if a ¼ b, and 0 otherwise.

Let BeðsÞ
e ¼ feð1;sÞ; . . . ; eðSðsÞp ;sÞg be the set of the distinct

elements of Be that have been extracted from eðsÞ, and oðr;sÞe

be the occurrence number of the rth element of BeðsÞ
e in Be

and whose corresponding coarse edgelet is eðsÞ, then the
prior distribution approximation of pðejeÞ is given by1:

pðejeÞ �
XS0p

s¼1

XSðsÞp

r¼1
~oðr;sÞe de

eðsÞd
e
eðr;sÞ ; (2)

with ~oðr;sÞe ¼ oðr;sÞe =SðsÞp .

3.2 Offline Learning: Transition Models

We defined in the previous section a way to initialize edge-
lets. Next, to randomly extract full contours with our track-
ing algorithm, we need to generate a candidate multiscale
edgelet at a certain time t given the previous one at t� 1.
This is what the transition distributions pðetjet�1; et�1Þ and
pðetjet; et�1Þ are designed to do. Both distributions are con-
ditioned by et�1 in order to guarantee connexity from one
time to another. Finally, in order to learn the distribution
pðetjet; et�1Þ, we define B�e

ðsÞ
e the set of the distinct ele-

ments of Be that are potential predecessors of eðsÞ. Using
the same shape data set as in Section 3.1, the approxima-
tion procedures of these two distributions are given in
Algorithms 2 and 3.

3.3 Online Learning: Observation Model

In this section, we define the observation model pðy;yjet; etÞ,
which measures the adequation between the data ðy;yÞ, and

amultiscale edgelet at a time t, ðet; etÞ:
pðy;yjet; etÞ ¼ pðyjetÞ pðyjetÞ; (3)

where independence hypotheses have been assumed to
simplify the estimation. Also, we consider a particular case
in which the likelihoods pðyjetÞ and pðyjetÞ are similarly
defined. Then, in order to lighten the content of the follow-
ing section, we will only define the likelihood pðyjetÞ and its
associated features. The definitions at the coarse scale can
simply be obtained by swapping et for et, the subscripts of e
for e, and y for y.

To make our detector robust, we consider several obser-
vations, i.e., y ¼ ðy1; . . . ;yJÞ. The component yj : GðeÞ ! Yj

e

is a vector observation related to the jth feature, and desig-
nates observations from the whole set of edgelets included
in an image Ie : Ve ! ½0; 1�. Let yjðeÞ be the observation at
the edgelet e. The joint likelihood pðyjetÞ reads:

pðyjetÞ ¼
YJ
j¼1

pðyjðetÞÞ; (4)

where we assumed a conditional independence of the
observations given the edgelet state. This hypothesis is rea-
sonable when considering competing marginal likelihoods
fpðyjðetÞÞ; 8jg, which impose that their values are relatively
high when estimated on true contours. This expression can
be associated to the pon=poff likelihood ratio, used in particu-
lar in the JetStream algorithm [4], in which we defined
pon ¼ pðyjð�ÞÞ and poff ¼ Uð�Þ. This simplification discards a
term dependent on the whole set of observations, yj, and
rather focuses on the observation at the considered edgelet,
yjðetÞ. As we will see further in this section, modeling pon is
enough to express a notion of context.

Before defining these features, we propose a general for-
mulation of the densities fpðyjð�ÞÞ; 8jg. It is clear that the
quantity of information of each feature depends on the
image itself. For example, a local gradient norm feature typ-
ically overdetects in textured images whereas its sensitivity
drops in blurry ones. Thus, the interpretation of the feature
responses should be different in these two cases, meaning
that a candidate should be considered more relevant when

1. Actually, the prior distribution at the reference scale is
pðe;mjeÞ ¼ pðeje;mÞ pðmjeÞ, with m 2 N the r.v. which denotes the
length of the edgelet at the reference scale, pðeje;mÞ , pðe ¼
ðe1; . . . ; emÞjeÞ, and pðmjeÞ a probability proportional to the number of
edgelets at the reference scale of lengthm included in e. By defining (2)
as pðejeÞ , pðeje;mÞ with e belonging to the set of all the possible
edgelets of different lengths, the probability pðmjeÞ is implicitly com-
puted, andm can thus be omitted.
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it obtains a singular high feature response value in the
image. In other terms, context is important. In visual percep-
tion, context is related to the Helmhotz principle, which
states that relevant geometric structures have a very low
probability of occurring in a random context. This idea has
been used in an a contrario framework [2], [3], in which the
pioneer authors defined a notion of meaningfulness of an
event. Here, an event is an edgelet and we want to compute
how meaningful the feature response of this edgelet is on the
image. Observations are thus defined as the tail distribu-
tions of the feature responses:

yjðetÞ ¼ P
�
mj
e > fjeðet; IeÞ

�
; (5)

with mj
e the random variable associated to the feature

fj
e : GðeÞ �Ve ! R. This distribution can be viewed as a dis-
tribution of false alarms. Hence, the lower the probability
P
�
mj > f

�
, the more meaningful this event, i.e., the less

likely the event corresponds to a false alarm. The approxi-
mation of the tail distributions is given in Algorithm 4 and
results in:

P
�
mj
e > fj

eðet; IeÞ
� � 1

Sf

XSf

s¼1
1��1;f

j
e

�
e
ðsÞ
0

;Ie

���fj
eðet; IeÞ

�
;

with 1AðxÞ the indicator function. We define the likelihoods
in a way to support low values of false alarms probabilities:

pðyjðetÞÞ / exp
�� �j

e P
�
mj
e > fj

eðet; IeÞ
��
; (6)

with �j
e 2 Rþ a learned constant value which aims at pro-

viding a good localization of high likelihoods and at
impacting the influence of the feature fj

e on the tracking
procedure.

We now describe our four paired features: f1
e and f1e the

local gradients, f2
e and f2e the textural gradients, f3e and f3e

the oriented gradients, and f4
e and f4

e the profile gradients.
The main novelty about the proposed features comes from
the edgelet modeling. In particular, we are expecting to pro-
vide robust feature responses, since they are semi-local and

thus less dependent on noise. Again, the features being
identical at the coarse and reference scales, their definitions
are given using an edgelet e defined at the reference scale
and of length M (actually MðeÞ, but we omitted the refer-
ence to e for more clarity). Definitions of the coarse scale
features can simply be obtained using the corresponding
notation system.

3.3.1 Local Gradient

This classical feature uses the 2� 2 gradient norm jrIej. The
gradient feature f1

e is computed along the edgelets et:

f1e ðet; IeÞ ¼ F
�� rIe eit

� ��� ���
1	i	M

�
:

The flexibility comes from the fusion operator F. One can
set F ¼ min, F ¼ max, or a weighted mean Fðv1; . . . ; vMÞ ¼PM

i¼1 WðiÞ vi, with W : f1; . . . ;Mg ! ½0; 1� a weighting func-
tion. Note that since the image Ie is multidimensional, we
take on each point the maximum gradient value among the
different channels.

3.3.2 Textural Gradient

The textural gradient feature aims at getting low response
values on texture locations, while getting high ones on
object contours. For a point eit of an edgelet et, we consider
its normal segment. The two sides of the normal segment of
three consecutive points ðei�1t ; eit; e

iþ1
t Þ are noted n ðeitÞ and

n!ðeitÞ. In a texture, the intuition is that pixel values along
the first segment should not really differ from the ones of
the second segment. Let hT½a� ¼ fhr

T½a�gRr¼1 be the histogram
of a set of pixels a, where r is the bin index of a histogram of
length R. In the case of color images, the length R equals
RT �RT �RT, with RT the number of bins by channel. Dis-
tances between pairs of histograms along normals of the
curve are combined to form the textural gradient feature:

f2
e ðet; IeÞ ¼ C

��
dB

�
hT½ n ðeitÞ�; hT½ n!ðeitÞ�

��
2	i	M�1

�
;

with C the fusion operator, and dB the Bhattacharyya dis-

tance between two histograms, i.e., dBðh½a�; h½b�Þ is the

square root of 1�PR
r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr½a�hr½b�p

. In order to reduce the

spread of the histogram values, the widths of the bins are

defined by the RT-quantiles of each independent channel.

3.3.3 Oriented Gradient

The use of a histogram of oriented gradients [23] has been
proposed several times in the contour detection and seg-
mentation literature [9], [11], [12]. We keep the same nota-
tions introduced in the previous textural gradient feature
section except that here, the histogram hO½a� ¼ fhr

O½a�gRr¼1
contains R ¼ 4�Rm bins, with 4 the number of considered
orientations (vertical, horizontal, and two diagonals) and
Rm the number of magnitude bins. Hence for each point
belonging to the normal of an edgelet point eit, we compute
and store into the histogram its four oriented gradient val-
ues. Then, distances between pairs of histograms along
normals of the curve are combined to form the oriented
gradient feature:
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f3
e ðet; IeÞ ¼ �

��
dB

�
hO

�
n �

eit
��
; hO

�
n!ðeitÞ

���
2	i	M�1

�
;

with � the fusion operator, and dB the Bhattacharyya dis-
tance between two histograms. In the manner of the textural
gradient, the widths of the channel bins are defined by the
Rm-quantiles.

3.3.4 Profile Gradient

Sun et al. [24] proposed to analyze the gradient norm profile
for image enhancement and super-resolution. The idea is to
use the symmetry and the monotonicity of the gradient
norm profile rather than the norm value. This profile is
learned and represented by a parametric gradient profile
model. In our application, we compare this learned profile to
the ones extracted from the image. We expect that in pres-
ence of clutter, the shape of the gradient norm profile should
be more reliable than the gradient norm values themselves.
With nðeitÞ the normal segment of three consecutive points
ðei�1t ; eit; e

iþ1
t Þ, the profile gradient feature is defined as:

f4e ðet; IeÞ
¼ J

��� dKL

���r~I
�
n
�
eit
����; G�

n
�
eit
�
; eit; se; ke

���
2	i	M�1

�

with jr~I½nðaÞ�j a normalized vector of absolute gradient val-
ues computed along the normal nðaÞ; GðnðaÞ; a; s; kÞ a nor-
malized vector of generalized exponential density values
computed along the normal nðaÞ with respect to the center
point a and of shape parameters s and k; and dKL the Kull-
back-Leibler divergence between two discrete distributions
of L elements, i.e., dKLðp; qÞ ¼

PL
l¼1 p

l log pl=ql, with pl and
ql the probabilities at point l. By denoting by nðaÞk the kth
point of the normal, and by k � k2 the L2 norm, its general-
ized exponential density value is gðknðaÞk � ak2; s; kÞ, with
the density gðx; s; kÞ defined as:

gðx; s; kÞ ¼ ksðkÞ
2sG

�
1
k

� exp � sðkÞ x
s

���
���

� 	k� 	
;

with Gð:Þ the gamma function and sðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð3

k
Þ=Gð1

k
Þ

q
the

scaling factor that makes the second moment of the distribu-

tion g equal to s2.

3.4 Online Learning: Initialization Model

We finally estimate the initialization distributions pðe0jyÞ
and pðe0je0;yÞ. These distributions find their use in 1. the
generation of samples in the tracking initialization step
and 2. The reinitialization of samples in the tracking pro-
cedure. This latter action occurs, for example, when the
tracking of a contour is over, in which case the initializa-
tion distribution starts a tracking procedure on a novel
contour. Although it is possible to carry out these opera-
tions using the prior distributions pðe0Þ and pðe0je0Þ, the
observations are more likely to provide samples located
on true contours. The approximation procedures are
described in Algorithms 5 and 6.

4 CONTOUR DETECTION BY TRACKING BASED

ON PARTICLE FILTER

We defined in Section 3 several distributions that manipu-
late the edgelets et and et. In this section, we define the

framework that handles these distributions by integrating
them in a sequential Monte Carlo approach. Our goal is to
estimate the distribution of the joint edgelets x0:t ¼
ðe0:t; e0:tÞ conditioned by a set of joint observations z ¼ ðy;
yÞ. Hence, at a time t, e0:t defines a contour map at the refer-
ence scale of tþ 1 edgelet elements. The estimation of the
so-called trajectory distribution pðx0:tjzÞ is thus completed
using a particle filtering technique that we present now.

4.1 Estimating the Multi-Object
Trajectory Distribution

In this section, we consider a special case of the Bayesian
recursion, in which the observations are not indexed by time.

4.1.1 Estimating the Trajectory Distribution

Let xt 2 X be the hidden state of a stochastic process at time
t and z 2 Z be the measurement state. Under the Markovian
hypothesis of the hidden states and the conditional inde-
pendence hypothesis of the observations given the states,
the trajectory distribution pðx0:tjzÞ is given by [4]:

pðx0:tjzÞ / pðx0:t�1jzÞ pðzjxtÞ pðxtjxt�1Þ; (7)

whose normalizing term is independent from x0:t. As there
is no closed form expression of this distribution, we propose

WIDYNSKI AND MIGNOTTE: A MULTISCALE PARTICLE FILTER FRAMEWORK FOR CONTOUR DETECTION 1927



to estimate it in a recursive way using a sequential simula-
tion-based method, the particle filter. The method consists in
computing the empirical distribution [25]:

PNðdx0:tjzÞ ¼
XN
n¼1

w
ðnÞ
0:t dxðnÞ

0:t

ðdx0:tÞ; (8)

where d
x
ðnÞ
0:t

ð�Þ is a Dirac mass centered on a hypothetic state

realization x
ðnÞ
0:t of the state x0:t, also called particle, w

ðnÞ
0:t is its

weight, dx0:t is an event of infinitesimal support, and N is

the number of particles. The recursion estimation of the tra-

jectory distribution in (7) can be carried out by three steps:

1) The diffusion step propagates the particle swarm

fxðnÞ0:t�1; w
ðnÞ
t�1gNn¼1 using an importance function

qðxtjxðnÞ0:t�1; zÞ.
2) The update step then computes new particle weights

using observation z, as:

w
ðnÞ
t / w

ðnÞ
t�1

p
�
zjxðnÞt

�
p
�
x
ðnÞ
t jxðnÞt�1

�

q
�
xtjxðnÞ0:t�1; z

� ; s.t.
XN
n¼1

w
ðnÞ
t ¼ 1:

3) If necessary, the resampling step avoids a particle
degeneracy problems by repopulating the particle
set [25].

4.1.2 Partitioned Sampling

Estimating the posterior distribution pðx0:tjzÞ with the
multiscale nature of the state x0:t ¼ ðe0:t; e0:tÞ may raise a
problem. In fact, as described in Section 4.1.1, the particle
filter makes use of an importance sampling procedure
which involves the simulation and the weighting of the
particles. This procedure suffers from a curse of the
dimensionality: it has been shown in [26] that N2 particles
are necessary to achieve the same level of estimation per-
formance as when estimating a single scale with N par-
ticles. To alleviate this problem, MacCormick et al.
proposed the Partitioned Sampling algorithm which
decomposes the vector state by partitioning the state
space, and then by handling one component, i.e., scale, at
a time [26], [27]. We present here a basic version of this
algorithm, adapted to our purpose.

First, we introduce the weighted resampling procedure.

This transforms a particle set


x
ðnÞ
0:t ; w

ðnÞ
t

�N

n¼1 into another one

~x
ðnÞ
0:t ; w

ðnÞ
t =gðxðnÞ0:t Þ

�N

n¼1 while keeping the distribution intact

[27]. The weighting function g is strictly positive and defined

such that
PN

n¼1 gðxðnÞ0:t Þ ¼ 1. The new particle set is obtained

by simulating according to the empirical distribution defined
by theweights fgðxðnÞ0:t ÞgNn¼1.

We describe now the Partitioned Sampling algorithm.
From Section 3, we know that the edgelet propagations can
be performed sequentially and that the likelihood factoriza-
tion enables to deal with each scale independently, hence
each vector observation is related to one edgelet scale. By
considering the state et first, the Partitioned Sampling algo-
rithm consists in

1) Propagating the particles using the marginal impor-
tance function of et;

2) Computing the weighting function such that gðxðnÞ0:t Þ
/ pðyjeðnÞt ÞpðeðnÞt jeðnÞt�1; e

ðnÞ
t�1Þ=qðeðnÞt jeðnÞ0:t�1; e

ðnÞ
t�1; yÞ;

3) Performing a weighted resampling procedure on

the particle set

ðeðnÞ0:t ; e

ðnÞ
0:t�1Þ; wðnÞt

�N

n¼1;
4) Propagating the particles using the marginal impor-

tance function of et; and
5) Computing the particle weights w

ðnÞ
t / pðyjeðnÞt Þ

pðeðnÞt jeðnÞt ; e
ðnÞ
t�1Þ=qðeðnÞt jeðnÞt ; e

ðnÞ
t�1;yÞ.

Defining the weighting function g in that way enables the
generation of more samples for higher values of the mar-
ginal likelihood of et and greatly simplifies the computation
in the last step of the Partitioned Sampling procedure since
the g term is present both at the numerator and denomina-
tor of the final particle weight computation.

4.2 Particle Filter Contour Detection Algorithm

In this section, we describe our particle filter method ded-
icated to the contour detection task. We introduce
ct 2 f0; 1g a binary random variable of jump: if ct ¼ 0, the
tracking of contour at time t goes on, otherwise, i.e., if
ct ¼ 1, the edgelet is initialized to a new contour. This is
useful when the tracking of the current contour is lost or
finished. The hidden state xt is then composed of an
edgelet et at the coarse scale, an edgelet et at the reference
scale, and a jump variable ct, yielding to xt ¼ ðet; et; ctÞ. A
particle filter requires the definition of four distributions:
a prior pðx0Þ, to initialize particles; an importance func-
tion qðxtjx0:t�1; zÞ, to predict a particle at time t given the
past states and observations; a trajectory prediction
pðxtjxt�1Þ, to define the prior evolution of a particle at
time t given the past states; and a likelihood pðzjxtÞ, to
weight the particles using the last known measure. While
the prior and the likelihood are learned in Section 3, the
importance function and the transition need to be
defined. The tracking procedure is summarized in Fig. 2.

4.2.1 Transition

First, we define the trajectory transition pðxtjxt�1Þ such
that the edgelet distribution depends on the jump vari-
able. Also, we consider the edgelet transition at the coarse
scale first, and make the edgelet transition at the reference
scale dependent from the coarse scale edgelet, as pro-
posed in Section 3:

pðxtjxt�1Þ ¼ pðetjet�1; et�1; ctÞ pðetjet; et�1; ctÞ pðctÞ: (9)

The jump variable ct is assumed independent from ct�1
by simplicity. This way, it is related to the length of a con-
tour. Let pðct ¼ 1Þ ¼ b be the probability of jump. The edge-
let transition of the coarse scale is a mixture of the prior and
the transition distributions learned in Sections 3.1 and 3.2,
respectively. It depends on the value of the switching vari-
able ct in such a way that if it designates a jump, then the
prior distribution is considered. Otherwise, it consists in a
transition:

pðetjet�1; et�1; ctÞ ¼ ct p
�
e2:Mt je1t

�
p
�
e1t
�

þ ð1� ctÞ pðetjet�1; et�1Þ;
(10)
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with the prior pðe2:Mt je1t Þ learned in Section 3.1, the starting
point defined using a uniform distribution over Ve, i.e.,
pðe1t Þ ¼ U½Ve�, and the transition pðetjet�1; et�1Þ learned in
Section 3.2. Following the example of the coarse scale, the
edgelet transition of the reference scale is defined as:

pðetjet; et�1; ctÞ ¼ ct pðetjetÞ þ ð1� ctÞ pðetjet; et�1Þ; (11)

with the prior pðetjetÞ learned in Section 3.1 and the transi-
tion pðetjet�1; et�1Þ learned in Section 3.2.

4.2.2 Importance Function

We now consider the importance function. Its role is to gen-
erate the particles. It is possible to set qðxtjx0:t�1; zÞ ¼
pðxtjxt�1Þ in order to propagate the particles using the previ-
ous transition. However, a more sophisticated design can
drastically improve the estimation efficiency by reducing the
variance of the particle weights [25], [28]. Thus, a good
importance function should integrate both the transition and
the likelihood, in order to get a support that includes the one
of the posterior distribution.We propose to define the proba-
bility of jump as a function of themeaningfulness of an edge-
let at t� 1. The importance function also uses the edgelet
trajectory to constrain the particle to move on unvisited pix-
els. Like the transition defined in the previous section, the
jump propagation is considered first, then the edgelet at the
coarse scale, and finally the one at the reference scale:

qðxtjx0:t�1; zÞ ¼ qðetje0:t�1; et�1; ct; yÞ
� qðetjet; et�1; ct;yÞ
� qðctjet�1; et�1; ct�1; y;yÞ:

(12)

The distribution qðctjet�1; et�1; ct�1; y;yÞ is set to ð1� ctÞ
ð1� aÞ þ ct a. The value a is the probability to jump to an
unexplored contour, and depends on how meaningful the
past edgelets were according to the J feature distributions:

a ¼ 1

2

XJ
j¼1

~�j
e P

�
mj
e > fjeðet�1; IeÞ

�þ ~�j
e P

�
mj
e > fj

eðet�1; IeÞ
�
;

(13)

with ~�j
e and ~�j

e the normalized values of �j
e and �j

e of (6),
respectively. The edgelet importance function at the coarse
scale includes a trajectory constraint fcheck as well as the
transition and initialization distributions respectively
learned in Sections 3.2 and 3.4:

qðetje0:t�1; et�1; ct; yÞ ¼ n�1q fcheckðet; e0:t�1Þ
� ½ct pðetjyÞ þ ð1� ctÞ pðetjet�1; et�1Þ�:

(14)

To avoid an echo detection effect, the trajectory con-

straint fcheck is set to 0 if any point in the edgelet et is closer

than a Manhattan distance of 1with any point of the current

contour (with exception of the edgelet at t� 1) or is closer

than a Manhattan distance of 2 with any point of the past

contours. Otherwise fcheckð�Þ is set to 1. Generating particles

according to this distribution can be done using a rejection

sampling: a sample e
ðnÞ
t is generated according to

c
ðnÞ
t pðetjyÞ þ ð1� c

ðnÞ
t Þ pðetjeðnÞt�1; e

ðnÞ
t�1Þ and accepted with a

probability of fcheckðeðnÞt ; e
ðnÞ
0:t�1Þ. The normalizing constant nq

is approximated using an importance sampling method:

nq � 1

Nq

XNq

m¼1
fcheck

�
e
ðmÞ
t ; e0:t�1

�
; (15)

with e
ðmÞ
t 
 ct pðetjyÞ þ ð1� ctÞ pðetjet�1; et�1Þ and Nq a

small number of samples. Once the state of the coarse scale
edgelet has been generated, it remains to propagate that of
the reference scale edgelet. The edgelet importance function
at the reference scale is then simply a mixture of an initiali-
zation distribution learned in Section 3.4 and the transition
distribution learned in Section 3.2:

Fig. 2. The particle filter method approximates the trajectory distribution by a finite discrete set of samples called particles. In a contour tracking appli-
cation, we propose to model the state of a particle with two components: ðet; etÞ an edgelet at two scales and ct a jump variable, the latter being useful
when the tracking of the current contour is finished. Each scale is proceeded sequentially. The tracking procedure at a particular scale is divided into
two steps. The proposition step propagates the particles from time t� 1 to time t, using the transition, the initialization, and the feature distributions
defined in Section 3. The second step weights the propagated particles proportionately to their likelihood, giving more importance to relevant edge-
lets. These two steps approximate the trajectory distribution.
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qðetjet; et�1; ct;yÞ ¼ ct pðetjet;yÞ
þ ð1� ctÞ pðetjet; et�1Þ:

(16)

4.2.3 Stopping Criterion

Although it is popular to perform tracking tasks, the particle
filter does not embed a natural stopping procedure. In most
of the cases, defining it is clearly not obvious. Here, we can
take benefit of the feature tail distributions, which provide
robust statistics of the data to be retrieved. We assume that
the algorithm first tracks the most meaningful contours.
This is due to the resampling technique used in the particle
filters, which duplicates the good particles and discards the
bad ones. Thus, because of the trajectory constraint fcheck
that compels the tracking to visit new contours, the detec-
tions become less and less meaningful. So, one could
stop the algorithm after t steps, and in this case the stopping
criterion would be related to the number of contour points
in an image. However, besides not being adaptive to the
image, this criterion would depend on the image dimen-
sions. Therefore, we define the stopping criterion such that
it depends on the meaningfulness of the last extracted con-
tours. To this end, we defined in (13) the probability of
jump using the meaningfulness of an edgelet, and this prob-
ability grows with time. Hence, we stop the detection when
the proportion of jumps reaches a fixed threshold:

1

KN

XK
k¼1

XN
n¼1

c
ðnÞ
t�kþ1 � g: (17)

Since it relies on the number of jump operated in the K
last steps, this criterion also depends on the length of the
retrieved contours, meaning that the repetition of small con-
tour detections likely indicates that the detection is over.

4.2.4 Diversity

The resampling technique does not alter the posterior distri-
bution but impacts on the diversity of the particles, espe-
cially for the past states. In practice, this means that most of
the particles share the same trajectory, which may degrade
the quality of the estimator. To alleviate this effect, we pro-
pose to divide the N particles into L independent particle
filters, leading to the following final posterior distribution:

pðx0:tjy;yÞ ¼ 1

L

XL
l¼1

pðx0:t;ljy;yÞ: (18)

Each particle filter approximates the trajectory distribu-
tion using NL ¼ N=L particles. More elaborated techniques
[29] aim at reducing the particle impoverishment effect, and
at the cost of an increase of the algorithm computational
complexity, might also be applied to our model.

4.2.5 Contour Detector

We consider here the contour detector at the reference scale,
but the definition at the coarse scale can be similarly
obtained. The soft contour detector is an image
O : Ve ! ½0; 1�, with OðzÞ the confidence value that the pixel
z belongs to a contour. This is computed by an average of
the estimations given by the L particle filters:

8z 2 Ve; OðzÞ ¼ 1

L

XL
l¼1

max
n

w
ðnÞ
tl;l

1
e
ðnÞ
0:tl ;l

ðzÞ; (19)

with tl the last step performed by the lth particle filter. An
optional non-maximum suppression step may then be
employed to produce thin contours [9], [30]. The final track-
ing procedure is given in Algorithm 7.

5 EXPERIMENTS

Experiments on contour detection have been conducted on
the BSDS300 and the BSDS500 to compare the proposed
approach to state-of-the-art contour detection methods [9],
[10], [11], [12], [14], [15], [16], [17], [18], [22]. As stated in Sec-
tion 2, only contour detection methods are presented here.
Thus, we considered the contour detector gPb and not the
segmentation method from the gPb, namely the gPb-owt-
ucm [9]. In the same manner, we considered the edge detec-
tor tPb proposed in [22], instead of the boundary detector,
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the tPb-SLEDGE, which achieved greater results by using a
graph representation with a formulation of the Helmholtz
principle to recover the missing edges.

5.1 Parameter Discussion

All the parameters have been learned using a gradient ascent
on the F-measure on the training data set of the BSDS300.

The length of an edgelet at the coarse scale has been
found optimal at Me ¼ 3 (with a 4-connexity neighbor-
hood). The number of samples in the learning procedures
must be large enough to obtain a good approximation of the
respective distributions, depending on the length of an
edgelet. We set Sp ¼ 2� 106 for the prior, St ¼ 105 for the
transition, Sf ¼ 106 for the features and Sie ¼ 1:5� 105 and
Sie ¼ 15 for the initialization distributions. Results obtained
with edgelets of greater lengths, i.e., Me ¼ 4, and Me ¼ 5,
showed a slight decline in the F-measure scores, while
requiring considerably more samples (Sp and St) to be esti-
mated. This can be attributed to the increase of the
dimensionality that imposes more particles to estimate the
trajectory distribution.

For the observation model, we compute the textural gra-
dient using a histogram of R ¼ 5� 5� 5 ¼ 125 bins. For
this feature, the image is defined on the CIE Lab colorspace.
The number of bins by orientation Rm for the oriented gra-
dient feature is 10. In order to consider enough points to cre-
ate the histograms, the length of each side of the normal
segment is set to 11 pixels, with a line width of 5. For the
profile gradient, the parameters se ¼ se and ke ¼ ke are
respectively set to 0:7 and 1:6 and the profile is computed
on a 5-pixel-long vector normal segment [24]. We use a
mean for the fusion operatorsC, �, andJ, and a min opera-
tor for F. The values of the feature multiplicative constants
are set to �1

e ¼ 5, �2
e ¼ 6, �3

e ¼ 2, and �4
e ¼ 16 at the coarse

scale, and set to �1
e ¼ 5, �2

e ¼ 6, �3
e ¼ 3, and �4

e ¼ 16 at the
reference scale. The prior probability of jump b is set to

0:00015. The parameter K ¼ 200 ensures the monotonical
increase of the stopping criterion. Finally, a particle filter is
stopped whenever its number of steps is greater than 150
and the proportion of its jumps g reach 0:137.

We fix the total number of particles N to 5;625 to pro-
vide a good tradeoff between detection performance and
computational cost. We set the number of particle filters
L to 75 in order to smooth the results. Thus the number
of particles by filter NL is 5;625=75 ¼ 75, which is enough
to obtain a satisfying accuracy of each particle filter. Note
that NL may impact on the stopping criteria: using a
larger number of particles results in a slight reduction of
g, although it does not compensate for the additional
computational cost. We approximate nq using a small
number of samples Nq ¼ 50.

5.2 Results

As we can see in the precision-recall curves illustrated in
Fig. 3, our MS-PFCD method performs well, with a F-
Measure score at 0:70 (recall: 0:70, precision: 0:69) on the
100 test images of the BSDS300, and a F-Measure score
at 0:72 (r: 0:73, p: 0:71) on the 200 test images of the
BSDS500. Due to the stochastic nature of the algorithm,
we performed the experiment 15 times and obtained a
variance of 2:96� 10�7.

Full results are reported in Table 1, which presents three
measures. Only the methods providing the three measures
on either data set are reported. The first and most popular
measure is the optimal data set scale (ODS) F-Measure
score. It is obtained using the global optimal threshold on
the data set. When no additional information is provided,
this metric is simply referred to as the F-Measure score. The
optimal image scale (OIS) is the F-Measure score obtained
using the optimal threshold on each image. The last mea-
sure is the average precision (AP) and corresponds to the
area under the precision-recall curves of Fig. 3. Both the

Fig. 3. Scores obtained by state-of-the-art methods and our proposed MultiScale Particle Filter Contour Detector model on (left) the BSDS300 and
(right) the BSDS500. The evaluation is based on the F-Measure, which is a combination of the precision measure and the recall one: it supports a
high number of true detections while it penalizes over-segmentation and missed detections. The final score is the optimal threshold computed among
the 100 and 200 test images of the BSDS300 and BSDS500, respectively.
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precision-recall curves and the quantitative table results
show that our MS-PFCD performs well compared to state-
of-the-art contour detection methods, while it compares
favorably to the reference method, i.e., the gPb, on the
BSDS500. The difference is especially visible for the AP
measure in both data sets.

We also propose to compare the methods on single
images based on the OIS scores in Table 2. Again, only the
methods providing these data are reported. The upper part
of the table compares the methods in a pairwise manner.
We can observe that although the OIS score of the MS-
PFCD method is slightly below the one of the gPb on the
BSDS300 (Table 1), the two methods are almost even when
compared side by side. This could suggest that these meth-
ods outperform each other for very different images. This
interpretation seems consistent with the one-against-all
comparison reported on the right side of Table 2 in which
the MS-PFCD method obtains the best OIS result for nearly
half the test data set. Fig. 4 illustrates a few contour detec-
tion results obtained by the proposed algorithm using the
output at the reference scale defined in (19). From these,
we can see that the method successfully ignores very tex-
tured regions of the image. This is especially visible in the
socks pattern of the young lady and in the leopard marks.
This ability may be partly attributed to the use of the tail
distributions of the features, that tend to highlight only the
most significant contours. This is also due to the problem
formulation as a sequential model that gives more detec-
tion probability to long contours. However, these two par-
ticularities may also explain the bad result observed with
the fish image. The contours are not well-defined and
salient enough to be deemed more meaningful than the
texture of the scales.

In order to evaluate the contribution of each feature,
and of the multiscale framework, an ablation study has
been conducted on the BSDS300. F-measure scores have
been computed using re-optimized model parameters.
Outputs without the local gradient f1, the textural gradi-
ent f2, the oriented gradient f3 and the profile gradient
f4, obtained F-measure scores of 0:67, 0:68, 0:69, and 0:66,
respectively. These results are consistent with the optimal
likelihood parameters obtained using the four features,
which particularly demonstrate the importance of the
profile gradient. Moreover, differences between the PFCD
and the MS-PFCD algorithms are that the former is a sin-
gle scale algorithm which does not use the oriented gradi-
ent. So, by comparing results obtained by the PFCD and
by the MS-PFCD without the oriented gradient feature,

this indicates that considering two scales instead of one
improved the F-measure scores from 0:68 to 0:69.

On average, our C++ code runs in 3 minutes and 30
seconds on a single-thread Intel Core i7-980X CPU for a
single image whose dimensions at the reference scale are
481-by-321 pixels. This approximatively corresponds to
450 iterations of the algorithm. Also, our algorithm can
easily be parallelized since both the samples in the online
learning step and the particle filters during the tracking
one are independent. To this end, a Cuda implementation
is also available and processes an image in 0:75 second on
a Nvidia GTX 670 GPU card. Codes are available at
http://www.iro.umontreal.ca/~mignotte/mspfcd/.

6 INTERACTIVE CUT-OUT

Interactive cut-out aims at allowing the user to extract a
region of interest from an image. As mentioned in Section 1,
P�erez et al. [4] proposed a Bayesian probabilistic approach,
the JetStream algorithm, to sequentially track control points
spaced by a fixed distance. The authors suggested to con-
strain the tracking using manually defined regions through
which the contour algorithmmust not go. Formulating inter-
active cut-out task as a tracking approach is not specific to
particle filtering techniques, as it has in particular been pro-
posed before using dynamic programming and shortest-
path algorithms, see, e.g., [31]. However, compared to deter-
ministic approaches, a probabilistic formulation often offer
more flexibility to be able to handle various contour configu-
rations. In this section, we propose to adapt our contour
detection algorithm to this semi-supervised case. We also
extend the human interaction possibilities from the JetStream
algorithm by defining two new tools. The first one compels
the algorithm to go through manually-defined regions. The
other tool enables the extraction of a complete contour by
defining a rough contour of fixed width manually. Interac-
tive segmentation results using these three tools are illus-
trated in Fig. 5.

Adapting our MS-PFCD to interactive cut-out is straight-
forward. In such an application, we assume the initializa-
tion point or region given, from which edgelets ðe0; e0Þ are
generated. Plus, the goal is to extract only one curve at a
time. Thus, we remove the jump variable ct from the state
xt. This means that, at the coarse scale, particles are propa-
gated using the importance function:

TABLE 2
Single Comparisons of Contour Detection

Methods on the BSDS300

Scores are compared based on the OIS criteria. Each row indicates the
number of images that obtain better scores than the method in the corre-
sponding column. Number of equalities are pointed out in parentheses.
The left part of the table presents one-to-one comparisons whereas the
column on the right presents a one-against-all comparison.

TABLE 1
Comparison of Results Obtained on the BSDS300

and the BSDS500

ODS is the optimal scale on the data set, OIS the optimal scale on each
image, and AP the average precision on the recall range.
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Fig. 4. Examples of contour detections obtained by the proposed MS-PFCD algorithm at the reference scale.

Fig. 5. Interactive cut-out experiments. Starting points are colored in purple. (Left) Forbidden points region tool. The contour detector runs without any
interaction, unless the algorithm goes wrong, in which case forbidden points regions are drawn (in red). (Middle) Control points region tool. The pro-
cedure is iterative, each green dot defines a control points region, meaning that the algorithm must go through the next one. The number of interac-
tions illustrated here is not necessarily minimal. (Right) Rough contour tool. The user roughly draws a contour. Then, the tracking algorithm extracts
the contour by locally following the ordered path.
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qðetje0:t�1; et�1;yÞ ¼ n�1q fcheckðet; e0:t�1Þ pðetjet�1; et�1Þ:

Transitions pðetjet�1; et�1Þ and pðetjet; et�1Þ now simply
correspond to those learned in Section 3.2. This also implies
that the initialization distribution and the stopping criterion
become useless. Besides, we use only one particle filter with
N ¼ 200 particles. Since the initialization distribution is
removed from this application, the number of samples used
for the feature distribution learning may be drastically
reduced, e.g., Sf ¼ 5;000. We get a practical interactive con-
tour detector, with an efficient learning stage, and a detec-
tion stage computational time that depends on the
complexity of the constraint. The displayed contour corre-
sponds to the particle that obtained the maximum weight
before resampling.

6.1 Forbidden Points Region

This tool has been proposed with the JetStream algorithm [4].
The methodology consists in multiplying the likelihood by a
very low constant value to particles going through a for-
bidden points region. It is preferable to multiply by a low
value (e.g., 10�7) instead of 0 to allow the algorithm to escape
from a forbidden region in the unfortunate case where all the
particles have been propagated in there. This tool is well
adapted to particle filters due to the stochastic nature of the
algorithm which tends to propose alternative paths in order
to avoid a forbidden points region. The extraction is auto-
matically stopped and contours are closed when current
edgelets are found very close to the initial point.

6.2 Control Points Region

Besides the forbidden points region tool, it would also be
useful to define a “must go through” tool. Such a zone is
called a control points region. In [4], it is suggested, but not
experimentally validated, to multiply the likelihood by a
very high constant value when particles go through the con-
trol points region. This technique might be inefficient since
it does not force the algorithm to go through the region of
interest. Moreover, when it does, a stuck side effect may
happen. Hence, we propose to proceed differently. At a cer-
tain time t of the contour extraction algorithm, if the user
sets a new control points region, the algorithm generates
trajectories using several particle filters until one of them
reaches the region of interest. The maximal length of the
generated paths is related to the Manhattan distance from
the edgelet at t to the closest control point (e.g., twice this
distance). The success of this technique depends on the con-
trol points region localization and size: if it is far from the
edgelet at t or if it is small, it may take some time before a
particle filter reaches the region area. For this tool, as well
as the next one, closing the contours is handled explicitly by
the user, as we can see in Fig. 5.

6.3 Rough Contour

We finally propose one last tool that is a combination of the
two previous ones. The user manually defines a rough con-
tour and the algorithm aims at extracting an accurate con-
tour path from it. First, all the pixels that do not belong to
the rough contour are considered forbidden. Then, taking

advantage of the user interaction, we consider that the
rough contour path is ordered and follows the true contour.
Thus, intermediate control points regions are automatically
spread at regular intervals within the rough contour.

Using the rough contour tool has several advantages.
First, the extraction process is efficient since the space prob-
lem is constrained. Second, it is certainly more convenient
for the user since, unlike the first two tools that often result in
a trial-and-error procedure, this one only needs one simple
fast interaction. This is especially obvious when comparing
the number of user interactions in Fig. 5. Finally, by adjusting
the rough contour pencil size, the user can balance between
the burden of defining a quite precise contour and the accu-
racy of the contour extraction. However, drawing a rough
contour may be fastidious when dealing with large images
(e.g., satellite images), in which case one of the other tools, or
the combination of the two,may bemore appropriate.

7 CONCLUSION

We proposed a multiscale particle filter approach to track
contours in complex natural images. The basic element of
our model is a pair of edgelets, i.e., sets of connected pixels
defined at two scales, that naturally embeds semi-local
information. The underlying Bayesian model involves mul-
tiscale prior and transition distributions, which are learned
on a shape database, and a multiscale likelihood compo-
nent, which is adaptive to an image in order to retrieve only
the most relevant contours. Experiments have been con-
ducted on the Berkeley data sets and the proposed approach
obtained competitive results with the state-of-the-art. We
also extended our model for the interactive cut-out task.
Qualitative results and reduced computational cost make of
this method a practical tool.

Possible improvements of this work include: more elabo-
rated features, in agreement with other state-of-the-art meth-
ods; multiscale parametric edgelet distributions, that would
possess the advantage of being independent from the image
dimensions; and finally a more sophisticated strategy to
maintain an acceptable particle cloud diversity, in this case
recent advances in the particle filtering literaturemight help.
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