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MC-SSM: Nonparametric Semantic Image
Segmentation With the ICM Algorithm

Lazhar Khelifi ® and Max Mignotte ®

Abstract—In the last few years, there has been considerable
interest in scene parsing. This task consists of assigning a
predefined class label to each pixel (or pre-segmented region)
in an image. To best address the complexity challenge of
this task, first, we propose a new geometric retrieval strategy
to select nearest neighbors from a datab containing fully

1 and tated i Then, we introduce a novel and
simple energy-minimization model. The proposed cost function
of this model combines efficiently different global nonparametric
semantic likelihood energy terms. These terms are computed
from the (pre-)segmented regions of the (query) image and
their structural properties (location, texture, color, context, and
shape). Different from the traditional approaches, we use a
simple and local optimization procedure derived from the iterative
conditional modes algorithm to optimize our energy-based model.
Experimental results on two challenging datasets: 1) microsoft
research Cambridge dataset and 2) Stanford background dataset
demonstrate the feasibility and the success of the proposed
approach. Compared to existing annotation methods that require
training classifiers for each object and learning many parameters,
our thod is easy to impl t, has a few parameters, and
combines different criteria.

Index Terms—Image processing, semantic image segmentation,
energy minimization model, iterative conditional modes (ICM),
global consistency error (GCE).

I. INTRODUCTION

CENE parsing, also called semantic image segmentation,

has been attracting considerable interest in the last few
years. This task aims to divide an image into semantic re-
gions or objects [1], such as mountain, sky, building, etc. The
main challenge of scene parsing is that it combines three
traditional problems; detection [2], segmentation [3] [4] [5]
and multi-label recognition [6] in a single process [7]. This
task aims to assign an object class label from a predeter-

Manuscript received April 24, 2018: revised September 30, 2018 and Novem-
ber 27, 2018; accepted December 20, 2018. Date of publication January 9,2019;
date of current version July 19, 2019. This work was supported in part by the
National Science and Engineering Research Council of Canada (NSERC), and
in part by the Tunisia’s Universitary Mission in North-America (MUTAN). The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Jian Zhang. (Corresponding author: Lazhar Khelifi.)

The authors are with the Department of Computer Science and Operations Re-
search, Faculty of Arts and Sciences, University of Montreal, Montreal, QCH3C
3J7, Canada (e-mail: khelifil@iro. eal ig iro. Lca)

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2019.2891418

mined label set to each pixel (or super-pixel)! in an input
image [8], [9].

As an active research area, various methods for scene parsing
have been proposed in the literature. The existing methods fall
into three categories. The first one is the parametric approach
that uses machine learning techniques to learn compact para-
metric models for categories of interest in the image. Following
this strategy, we can learn parametric classifiers to recognize
objects (for example, building or sky) [12]. In this field sev-
eral deep leaming techniques [13]-[15] have been applied to
semantic segmentation, for example a parametric scene parsing
algorithm based on the convolutional neural networks (CNNs)
[16] has been presented recently in [7]. In this algorithm, CNNs
aim to learn strong features and classifiers to discriminate the lo-
cal visual subtleties. The second is the nonparametric approach
which aims to label the input image by matching parts of images
to similar parts in a large dataset of labeled images. Here, the
category classifier learning is replaced in general by a Markov
random field in which unary potentials are computed by nearest-
neighbor retrieval [12]. In the third category, a nonparametric
model is integrated with a parametric model [17]. In this context,
a quasi-parametric (hybrid) method, which integrates K -nearest
neighbor (KNN)-based nonparametric method and CNN-based
parametric method, has been proposed in [18]. Inspired by this
method, a new automatic nonparametric image parsing frame-
work towards leveraging the advantages of both parametric and
nonparametric methodologies, has been also developed in [19].

Although the parametric approach has achieved great success
on the scene parsing, all current parametric methods have cer-
tain limitations in terms of training time [20]. Another source of
the problem is the retraining of models as new training dataset
is added. This updating task is necessary and even important for
such task, by the fact that the number of object labels in such
parsing models is limited. However, the number of objects is
actually unlimited in the real world. In contrast, for nonpara-
metric approaches, no special accommodation is required when
the vocabulary of semantic category labels is expanded, because
there is no need to retrain category models when we add a new
data [12].

To cope with these aforementioned problems related to para-
metric methods, in this paper, following the nonparametric ap-
proach, we propose a simple energy-minimization model called
the multi-criteria semantic segmentation model (MC-SSM). The

'In general, super-pixel is defined as a set of connected pixels having similar
appearance [10], [11].
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potential aim of this new model is to take advantages of the com-
plementarity of different criteria or features. Thus, the proposed
model combines efficiently different global likelihood terms ei-
ther based on the spatial organization and distribution of the
region semantic labels within the image or on region-based
properties (location, texture, color, context and shape), and their
training adequacy, in a multi-criteria cost function. In order to
optimize our energy model, we use a simple local optimization
procedure derived from the iterative conditional modes (ICM)
algorithm.

The contributions of this work can be itemized as follows:

* This work presents a new geometric retrieval strategy to
select nearest neighbors from a database containing fully
segmented and annotated images. This strategy is based
on a new criterion called global consistency error (GCE).
An important benefit of this criterion is the ability to find
matches between the region map or the segmentation of
the input image and the region map of each image in the
dataset. This is particularly well suited and useful for find-
ing arelatively smaller and interesting set of images instead
of using the entire training set.

* Inspired by the recent progress in the field of image seg-
mentation, we propose a novel energy-minimization based
approach called the multi-criteria semantic segmentation
model (MC-SSM). This new approach aims to assign to
each region a single class label based on a global fitness
function, while limiting the number of parameters. Fur-
thermore, by combining different types of features into the
energy or the objective function, our model integrates more
information about the object possibly present in the scene.

® Generally, semantic segmentation models require large
datasets to train high-accuracy classifiers. On the contrary,
the proposed model is dedicated to small datasets which
characterized by a limited number of available images.

* We report evaluations of our method on two challenging
datasets; Microsoft research Cambridge dataset (MSRC-
21) and Stanford background dataset (SBD), which are
publicly available. The obtained results demonstrate the
feasibility and the success of the proposed approach.

In the following, the paper is structured as follows: A liter-
ature review concerning the nonparametric approach for scene
parsing is presented in Section II. Then our semantic segmen-
tation model is discussed in detail in Section III. Experimental
results and comparisons with existing scene parsing methods are
illustrated in Section IV. In this section, our method is validated
on two publicly available databases. A summary of our method
and discussion of the conclusions are presented in Section V.

II. RELATED WORK

In nonparametric scene parsing approach, methods can be
generally classified into three groups based on the relationships
(dependencies) which are encoded between different pixels in
the image. The first type contains methods which solve the
pixel-labeling problem by classifying each pixel independently
[21] [22]. Following this strategy, we can mention the system
proposed by Liu et al. [23], which selects a subset of the nearest
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neighbors for an input image, using a large dataset that contains
fully annotated images. In this system, a dense correspondence
is established between the query image and each of the nearest
neighbors using the SIFT flow algorithm [24]. Then, the an-
notations are transferred from the retrieved subset to the input
image using a Markov random field (MRF) defined over pixels.
However, the high computational cost of these types of methods
and their inefficiency makes them unattractive to applications.
The second type of methods is based on the pairwise MRF or
conditional random field (CRF) models [25], where nodes in the
graph represent the semantic label associated with a pixel, and
potentials are created to define the energy of the system. Thus, a
relationship between pairs of neighboring pixels is incorporated
in the graph, which encourages adjacent pixels that are simi-
lar in appearance to take the same semantic label. However, in
this type of framework, the learning and inference of complex
pairwise terms are often expensive. In addition, this approach
is still too local and not descriptive enough to capture long-
range relationships observed between adjacent regions. In the
third group, pixels are grouped into segments (or super-pixels)
and a single label is assigned to each group [26]. Following
this approach, an efficient nonparametric image parsing method
called Superparsing [27] has been proposed by Tighe et al., in
this method, an MREF is applied over super-pixels instead of
pixels, then labels are transferred from a set of neighbor images
to the input image based on super-pixels similarity. Also, Zand
et al. [28] have proposed recently an ontology-based semantic
image segmentation using mixture models and multiple CRFs.
By doing so, the problem of image segmentation is then re-
duced to that of a classification task where CRFs individually
classify image regions into appropriate labels for each visual
feature. Moreover, Xie et al. [8] have proposed a new semantic
image segmentation method addressing multiscale features and
contextual information. In their work, an over-segmentation is
applied on a given image to generate various small-scale seg-
ments, and a segment-based classifier with a CRF model are
used to generate large-scale regions, then the features of regions
are exploited to train a region-based classifier.

It is important to note that, there are two main questions that
need to be asked when we follow the nonparametric image pars-
ing approach, which are: a) How to retrieve some similar images
from a training dataset for a query test image; b) How to parse
the test image with the retrieved images by transferring the an-
notation associated with the retrieved images to the query image
[29]. In this work, to solve the first problem, we propose a new
selection process based on a new criterion called global consis-
tency error. For the second issue, as shown in the preliminary
work [30], we propose a novel energy-minimizing framework,
which aims to assign to each region a single class label based
on a global fitness function.

III. MODEL DESCRIPTION

As mentioned in Section I, our main aim is to decompose an
image I into an unknown number (K) of geometric regions, and
then to identify their categories (i.e., tree, building, mountain,
etc.) by iteratively optimizing a multi-criteria energy function
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System overview. Given an input image (a), we generate its set of regions with the GCEBFM algorithm (b), we retrieve similar images from the full

dataset (c) using the GCE criterion, we extract different features both for the input image (f) and the retrieved images (d). Based on the labeled segmentation corpus
(e). a single class label is assigned to each region (g) using energy minimization based on the ICM.

that evaluates the quality of the solution at hand. Fig. 1 illustrates
the proposed system overview, which consists of following four
steps: i) Region generation creates a set of regions (i.e., objects)
for a given input image. ii) Geometric retrieval set selects a
subset of images from the entire dataset, by a new matching
scheme based on the global consistency error (GCE) measure.
iii) Region features extract different types of features for each
region, including color, texture, shape, image location and se-
mantic contextual information (both for the input image and the
retrieval set). iv) Image labeling assigns each region with an
object class label by using an energy minimization scheme. In
the following subsections, each step of our model is discussed
in detail.

A. Regions Generation

In this first step, a set of segments (regions) is generated by
a new pre-segmentation algorithm called GCEBFM [31], [32].
This novel algorithm aims to obtain a final refined segmentation
by combining multiple and eventually weak segmentation maps
generated by the standard K-means algorithm. This algorithm is
applied on 12 different color spaces in order to ensure variabil-
ity in the segmentation ensemble, those are, YCbCr, TSL, YIQ,
XYZ, h123, P1P2, HSL, LAB, RGB, HSV, 1123, and LUV. This
new algorithm has been adopted in our work mainly for two
reasons; Firstly, as it has been mentioned in [31], this fusion
algorithm remains simple to implement, perfectible, by incre-
menting the number of segmentations to be fused, and general

enough to be applied to different types of images. Secondly, pre-
viously published studies [10] that use predefined super-pixels,'
generated by an over-segmentation, provide boundaries which
are often inconsistent with the true region boundaries, and in
most cases, objects are segmented into many regions, making
an accurate decomposition of the image impossible. On the con-
trary, this algorithm aims to generate large regions which allow
us to derive global properties for each region (see Section ITI-C),
and on the other hand, to reduce the complexity and the memory
requirement of the full model. Also, it is important to note that
the performance of this new fusion model was evaluated on the
Berkeley dataset [33] including various segmentations given by
humans (in [31] more explanations are given about this new
algorithm). Fig. 2 shows examples of initial segmentation en-
semble and fusion results of an input image chosen from the
MSRC-21 dataset [34].

B. Geometric Retrieval Set

In our method, we follow the hypothesis, indicating that us-
ing a subset of images which are similar to the query image,
instead of using the entire dataset, is more useful for the label-
ing task. Note that it could be meaningful to labeling an object
as a tree if we search for the nearest neighbors in images of
gardens and eliminate views from indoor scenes. With the aim
of finding a relatively smaller and interesting set of images in-
stead of using the entire training set, we use a new criterion
called global consistency error (GCE) to find matches between
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Fig.2. Regions generation by the GCEBFM algorithm [32]. (a) Input image.
(b) Examples of initial se, ion ble. (¢) ion result.

the region map or the segmentation of the input image (see
Section III-A) and the region map of each image in the dataset.
This new similarity criterion was recently proposed in the seg-
mentation fusion framework [31] based on the median partition
solution (which conceptually defines the consensus segmenta-
tion as being the partition that minimizes the average pairwise
distance between itself and all other segmentations) and before
that, as a quantitative metric to compare and evaluate a machine
segmentation with multiple (possible) ground truths (i.e., man-
ually segmented images provided by experts) [35]. Based on
this metric, a perfect correspondence is yielded if each region
in one of the segmentation is a subset or geometrically similar
to a region in the other segmentation (this appealing property
inherent to GCE makes this criterion relatively invariant to a
possible over-segmentation). The GCE measure is originated
from the so-called local refinement error (LRE) [35] which is
expressed at each pixel. Mathematically, let n be the number
of pixels within the image  and let R;={r},r},..., r'I'L"} &
Ry = {r};.r3;...., 740" } be, respectively, the segmentation
result of the input image to be measured and the segmentation
of an image that belongs to the dataset, nb; being the number of
segments or regions in Ry and nby; the number of regionsin Ryy.
Let now p; be a particular pixel and the couple (r; ", ry""”)
be the two segments including this pixel (respectively, in Rj and
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Ryp). The local refinement error (LRE) can be computed at a
pixel p; as follows:

B ‘r<p,>\r<p,>|

LRE(TIVTMJ)I') - %- (1)

o
Where |r| denotes the cardinality of the set of pixels r and \
represents the algebraic operator of difference. Particularly, a
value of 1 means that the two regions overlap, in an inconsistent
manner, on the contrary, an error of 0 expresses that the pixel
is practically included in the refinement area [33]. A great way
of forcing all local refinement to be in the same direction is
to combine the LRE. On this basis, every pixel p; must be
computed twice, once in each sense, and in fact, gives as result
the so-called global consistency error (GCE):

GCE"(Ry, Rm) =

% {; LRE(ry, . pi) + ;LRE(TM, m, p,)}. ()}
The GCE* value belongs in the interval of [0, 1], on the one
hand, a value of 0 expresses a maximum similarity between the
two segmentations [; and Ry, on the other hand, a value of
1 represents a bad match or correspondence between the two
segmentations to be compared.

Finally, based on this GCE distance and in ascending order
from the query image, we rank all the images of the entire dataset
T'. Then, we eliminate unhelpful images that have a higher GCE
value, and we select a subset of images M from the entire dataset
T as the retrieval set.

C. Region Features

A key idea with the proposed approach is that it simply uses
large regions as the basic semantic unit. To perform the label-
ing process, we define the characteristics of those regions by
extracting different features for each one. These used features
are divided into five types;

® Color: This feature gives a relevant information about the

statistical distribution of color related to each region. For
each pixel, we estimate the re-quantized color histogram,
with equidistant binning (Pg;y = 5) for each color chan-
nel (RGB), by considering the set of color values existing
in an overlapping squared neighborhood (SN = 7) cen-
tered around this pixel. A normalized re-quantized color
histogram is then estimated for each region by simply av-
eraging the local histograms of each pixel belonging to the
same region.

® Texture: To quantify the perceived texture of different re-

gions in an image we use three features:

— Histogram of oriented gradients (HOG): We compute
the 40-bin normalized HOG with 4 different directions
(respectively, vertical, horizontal, right diagonal, and
left diagonal) and 10 amplitude values. By doing so,
each histogram is computed on the luminance compo-
nent of each pixel contained in an overlapping squared
neighborhood (SN = 7) centered around each pixel in
the image. Then, we average all histograms of pixels
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Fig. 3. Generation of the OCLBP histogram for each region. (a) The regions map of the input image. (b) Estimation of LBP value of a center pixel from one
color channel based on neighborhoods from another channel [see (4)]. (¢)-(d) Estimation, for each pixel X, of the N} bin descriptor ¢ = 5 in the cube of pair
channels. Each LbpR — Gx, LbpR — Bx, LbpG — Bx value associated with each pixel contained in a squared neighborhood region of size 7 x 7 centered at
apixel X, increments (+ 1) a particular bin. (¢) OCLBP histogram of each region.

which belong to the same region. Note that this region-
based strategy of normalization aims to make this fea-
ture more invariant to changes in shading and illumina-
tion comparatively to a pixel-based approach.

— Opponent color local binary pattern (OCLBP): The
original LBP operator proposed by Ojala et al. [36] was
aimed to represent statistics of micro patterns contained
in an image by encoding the difference between the
pixel value of the center point and those of its neigh-
bors. Formally, let 7 be a color image and let ¢. be
the value of the center pixel ¢ of a local neighborhood
andlet g,(p = 0,..., P — 1) be the values of P equally
spaced pixels on a circle of radius R that form a cir-
cularly symmetric set of neighbors. If the coordinates
of g, are (0,0), then the coordinates of g,, are given by
(Rsin(2L), R cos(25L)). Particularly, a bilinear inter-
polation is used to estimate the values of neighbors
which do not fall exactly in the center of a pixel. The
LBP operator on this pixel (¢) is defined as follows:

x < 0.
3)

P-1
1, >0
LBPpp = s(q, —q.)27, s(x) = -
pr = s(d. — a) () {0‘

p=0

In our method we apply the opponent color version of
LBP (OCLBP) presented in [37] and used recently in
[38]. The idea within this extended version is to take a
center pixel from one color channel and neighborhood
from other color channel. For example, the OCLBP
operator for a pixel ¢ and between color channel pair
(C,,Cy) can be defined as:

P-1
OCLBPp (C,,Cy) = Z s(q% —qS) 20, @

p=0

After computing the OCLBP for three pairs of color
channels (red-green, red-blue and green-blue), as in-
put multidimensional descriptor of feature, we compute
the set of values of the re-quantized OCLBP histogram
(in each OCLBP result of color channel pair), with

Algorithm 1: Estimation of the Laplacian Operator

Mathematical notation:
r Radius (r = 1)
. for each pixel z(l, k) with color value R*, G*, B* do
2(l, k) = 1/3 x (R*EK) 4 G=(bk) 4 grth))

. end for
. for each pixel z(l, k) do
Xol, k) =log(l + x(l,k+1) —2x z(, ) + =, k — 1)
Xl k) =logl +zl+rk) —2xzl, k) +zl —r k)
Xa(l, k) =
log(1+z(lLk+7r)—2xz(lk)+z(l—rk—r))
8: end for

A o

equidistant binning, Py = 5. Thus, each histogram
of 125 bins (as the feature descriptor) is estimated at
an overlapping, fixed size squared (N,, = 7) neighbor-
hood centered around the pixel. Finally, we average all
histograms of pixels which belong to the same region
(see Fig. 3).

— Laplacian operator (LAP): In order to more efficiently
capture local textural properties of each region, we also
propose a new criterion derived from the Laplacian op-
erator expressed in the logarithmic space [39] which ef-
ficiently complements the HOG features. The two steps
of the estimation of this criterion are summarized in
Algorithm 1.

Context: As the context plays an important role in natu-

ral human recognition of objects and scene understanding

[40], we decide to exploit the semantic contextual informa-

tion around each region. More precisely, we compute the

z-bin (z is the number of classes in the dataset) normalized
histogram over the labels of the neighbors of each region
excluding its own semantic label.

Shape: Motivated by the efficacy of this classic feature,
and in order to provide a simple geometric property, in
our approach, we calculate the normalized area (i.e, the
number of pixels in a region divided by the number of
pixels within the image) of each region in the image.
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® Location: This feature aims to capture the global position
of each region with respect to the topmost pixel in the
image (by computing the maximum y-coordinate). For ex-
ample, sky region tends to have the minimum distance to
the horizon.

D. Image Labeling

1) Principle: After extracting the feature descriptors used
to describe regions and given an available labeled segmentation
corpus, a single class label is assigned to each region by opti-
mizing a global fitness function that measures the quality of the
generated solution.

More formally, let us assume that we have an input image
I and its region segmentation Ry= {r},r},...,7]"} to be
semantically labeled, where mn represents the number of regions
(r)in Ry. Let also C = {Z, S } i<k represents respectively a
set (oratraining corpus) of /' images Z,. and their corresponding
semantic segmentations Sj.. In our framework, if Sq, represents
the set of all possible semantically labeled segmentation maps
of I (based on its partition into regions [?;) then, our semantic
labeling problem Sme= {s},s2,...,s7} is formulated as the
result of the following multi-criteria optimization problem:

Swc = arg 5125:1 MC (I‘ Ry, S {7, S }kgl\')

with: W (1, Rl‘ S, {IA»‘ Sk }A’Sl\')

m

= a1y COL(I, 1y, 57, {Z, Sk}')
i=1

+a Y TEX(L, 7y, 7 {Th S }'7)
i=1

m

+ay Y OCLBP(I,ry, s, {Z), S }'")
i=1

m

+as Y LAP(L,r}.s7,{Zk, Si}*7)
i=1

+as Z SHA(ry, s7 . {Zi, Sk }'7)
i=1

+ag Y LOC(ry,sp,{Z, S ')
i=1

1 : .
+tazy i {Z CTX(r}", sy, {Th, S} )}. (5)

i=1

Where the parameters v, ay, (vg, avy, (5, o and a7 are used to
weight the different terms of this energy function. COL, TEX,
OCLBP, LAP, SHA, LOC and CTX designate respectively the
different energy terms, or nonparametric distance measures, of
this cost function, reflecting the adequacy of a specific semantic
label (existing in the training corpus {Z;,S; }r<x) for each
region of the image, in terms of its color, texture, shape, image
location and semantic contextual information.

More precisely, let {C}*1 = {Z}, S} denotes the set of
images 7, and their associated semantic segmentation solu-
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TABLE 1
SUMMARY OF THE COMBINED CRITERIA USED IN OUR MODEL
TYPE CRITERION DIMENSION
Color Color histogram 125
Oriented gradient histogram 40
Texture Opponent color local binary pattern histogram | 125
Laplacian operator histogram 125
Shape Pixel area 1
Location Top height 1
Context Context histogram 21

tions S; (belonging to the training corpus) that contain a re-
gion semantically labeled s and let also & be the total number
of those semantic segmentations in the corpus {C}*! (see Ta-
ble I). Then, COL(.), TEX(.), OCLBP(.), LAP(.) and CTX(.) are,
respectively, the minimum Ruzicka distance® between the p-bin
normalized color histogram, the ¢-bin normalized histogram of
oriented gradients (HOG), the p-bin normalized OCLBP his-
togram, the p-bin normalized LAP histogram,the z-bin normal-
ized histogram of semantic labels of 7} and those of each region
corresponding to the semantic label assigned to r; (i.e., s7) and
existing in {C}*. Also, LOC(.) and SHA(.) are, respectively,
the minimum absolute distance between the normalized area, the
height of the topmost pixel existing in the region 7}, and normal-
ized area and the topmost pixel of each region corresponding to
the semantic label assigned to % (i.e., s}) and existing in {C}*7 .
2) Optimization of the Energy Function: The proposed se-
mantic segmentation model of multiple label fields is formu-
lated as a global optimization problem incorporating a nonlin-
ear multi-objective function. In order to achieve the minimum
of this energy function [see (5)], approximation approaches
based on different optimization algorithms such as the explo-
ration/selection/estimation (ESE) [41], the genetic algorithm or
the simulated annealing can be exploited. These algorithms are
guaranteed to find the optimal solution, but with the drawback
of a huge computational time. To avoid this problem, in this
work we adopt the iterated conditional modes (ICM) method
proposed by Besag [42] (i.e.; a Gauss-Seidel relaxation), where
pixels (semantic label of each region in our case) are updated
one at a time. In our case, this algorithm turned out to be both
easy to implement, fast and efficient in terms of convergence
properties (the algorithm is fast converging after 100 iterations
according to our experiments). The entire pseudo-code of our
MC-SSM based on ICM is presented in Algorithm 2.

IV. EXPERIMENTS
A. Datasets

To evaluate the performance of our model, we compared it
with different nonparametric methods, tested on two challenging
semantic segmentation datasets; Microsoft Research Cambridge
dataset [34] and the Stanford background dataset [43].

1) Microsoft Research Cambridge Dataset (MSRC-21): The
MSRC-21 (v2) dataset® is an extension of the MSRC-9 (v1)

2distanceg yyicks = 1 — 21 [min(P;, Q;)/ max(P;.Q;)).
The MSRC-21 dataset can be downloaded here: http://www.cs.cmu.
edu/ tmalisie/projects/bmvc07/.
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Algorithm 2: MC-Semantic Segmentation Model algorithm
Mathematical notation:

MC Multi-criteria function

{Ti }rex Set of K images

{Sk Ykex Set of K semantic segmentations (related to
{Zi bk<r)

£ Set of class labels in {Sj }r<x

Tinax Maximal number of iterations (= 100)

f;‘_w c Semantic segmentation result
Image to be labeled

Ry Region segmentation of image 1

Input: I, {Z; }i<rc, { Sk brerc
Output: Sy,
A. Initialization:
I:  Segment image / into different coherent regions Ry
(with the GCEBFM algorithm)
2:  Assign class label for each r; region € R; using
random element from &
B. Steepest Local Energy Descent:
3: while p < T do

4: for for each r; region € R; do
5: Draw a new label y according to the
uniform distribution in the set &
6: Let R}"™" the new semantic segmentation map
including r; with the class label y
7: Compute MC (I, R}""™™, S {Zy, Sk }r<k)
[see (5)]
8: if MC (2, R, S ATy, Sk ek ) <
MC (I, R}",S,{TZy, Sk }r<x ) then
9: MC = MC™"
10: RY = Ry
11: SM(' = R’II“
12: end if
13: end for

14: pe—p+1
15: end while

dataset. It contains 591 color images with corresponding ground
truth labeling for 23 object classes (building, grass, tree, cow,
etc.). Among the 23 object classes, only 21 classes are com-
monly used. The unused labels are (void = 0, horse = 5, moun-
tain = 8) due to background or too few training samples.

2) Stanford Background Dataset (SBD): The SBD dataset*
contains a set of outdoor scene images imported from existing
public datasets: LabelMe [44], MSRC [34], PASCAL VOC [45]
and Geometric Context [46]. Each image in this dataset contains
at least one foreground object. The dataset is pixel-wise anno-
tated (horizon location, pixel semantic class, pixel geometric
class and image region) for evaluating methods for semantic
scene understanding.

B. Evaluation Metrics

To provide a basis of comparison for the MC-SSM model,
we quantitatively evaluate the annotation performance from two
link:

“The SBD dataset is publicly accessible via this

http://dags.stanford.edu/data/iccv09Data.tar.gz
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TABLE I
PERFORMANCE OF OUR MODEL ON THE MSRC-21 SEGMENTATION DATASET IN
TERMS OF GLOBAL PER-PIXEL ACCURACY AND AVERAGE PER-CLASS
ACCURACY (HIGHER 1S BETTER)

ALGORITHMS PERFORMANCE MEASURES
Global (GPA) | Average (ACA)
Nonparametric (non-learning-based) methods
MC-SSM 0.75 0.63
SuperParsing [51] i (s4) 0.62 NA
Hierarchical [53] NA 0.53
Parametric (learning-based) methods
SVM on segment [8] 0.51 NA
CRF on segment [8] 0.64 NA
CRF+N=2 [55] in18) 0.68 NA
CRF+N=3 [55] in18) 0.68 NA
SVM on region [8] 0.69 NA
Tree model [8] 0.70 NA
TextonBoost [34] 0.72 0.58
Graphical model [56] 0.75 0.65
Auto-context [49] 0.75 NA
GP [57] 0.72 NA
SVMS in (58] 0.64 0.47
AdaBoost in (58] 0.69 0.52
SSVMS in 158] 0.71 0.57
CRFTree in (s8] 0.74 0.65
CRFTree (FL) 58] 0.82 0.75
Csurka [60] in (59 NA 0.63

levels, which are widely used for evaluating the performances of
related tasks. The first is the global (overall) per-pixel accuracy
(GPA) which represents the total proportion of pixels correctly
labeled. Mathematically, the global accuracy is computed as:

V(JI:){1 v =l 6)

0 otherwise

GPA — 2 V( )
n

Where v(.) denotes the indicator function, n is the number
of pixels within the input image, y; represents the label for
pixel i predicted by the algorithm and [; denotes the ground
truth label for pixel i. The second level is the average per-class
accuracy (ACA) which represents the average proportion of
pixels correctly labeled in each category. Formally, the class-
averaged accuracy is computed as follows:

nxnb o -
ACA — LZ i v - WAvli=e) o
Il Y vl =)

Where |C| denotes the number of classes within the input image,
nb is the number of images in the dataset and A represents the
logic operator And.

ceC

C. Results and Discussion

To validate our model on the MSRC-21 dataset, we adopt the
leave-one-out evaluation strategy. Thus, for each image, we use
it as a query image and we classify its region based on the rest
of the images in the dataset.
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TABLE III
ACCURACY OF SEGMENTATION FOR THE MSRC 21-CLASS DATASET. CONFUSION MATRIX WITH PERCENTAGES ROW-NORMALIZED. THE OVERALL PER-PIXEL
ACCURACY IS 75%

INFERRED CLA

building 53.6 | 3.6 3.6 3.6 1.2 . 3.6 24 12 |95 3.6 71 24 1.2 1.2

grass 89.9 | 2.9 0.7 0.7 0.7 36 0.7 0.7
tree 56 | 125 |55.6 |28 |28 14 125 14 42 14
cow 727 | 0.1 9.1 9.1
sheep 5.0 80.0 5.0 5.0 5.0
sky 95.1 2.4 12 12
aeroplance Kl 87.5 6.2
water 25 2.5 10.0 57.5 25 25.0
% 69.7 | 3.0 9.1 3.0 6.1 6.1 3.0
pyl| car 8.3 83 58.3 25.0
Z bicycle 118 64.7 118 11.8
E flower 5.6 5.6 56 61.1 | 5.6 5.6 5.6 5.6
- sign 5.6 5.6 72.2 |56 5.6 5.6
bird 5.0 10.0 5.0 50.0 5.0 15.0 | 5.0 5.0
book 5.6 111 83.3
chair 11.8 | 11.8 | | 59 17.6 17.6 176 | 5.9
road 5.7 2.3 8.0 11 11 11 72.4 |23 34 1.1 1.1
cat 77 |77 7.7 76.9
dog. 6.2 125 | 18.8 18.8 | 6.2 125 | 18.8 | 6.2
body 2.7 27 |27 2.7 2.7 27 | 243 27 |54 48.6 | 2.7
boat 235 59 59 59 176 |59 35.3
TABLE IV

TEXTURE SIMILARITY LEVEL BETWEEN THE DIFFERENT CLASSES OF THE MSRC 21-CLASS DATASET. LOWER VALUES INDICATE MORE SIMILARITY

building 19.2 | 17.9 | 15.7 | 156 | 37.6 | 154 | 23.0 [ 17.9 [ 16.5 | 20.1 | 18.0 | 22.2 | 16.8 | 18.6 | 15.7 [ 19.2 [ 16.4 | 16.2 | 17.6 | 16.7

ass 212|175 | 181 [ 398 [ 174 [ 22,0 [ 203 | 195 | 255 | 199 | 258 [ 19.9 | 22.7 | 19.0 | 17.9 | 187 | 17.1 | 19.3 | 19.9
tree 18.0 | 152 | 422 | 17.1 | 26.0 [ 16.2 [ 174 | 13.0 | 19.5 | 26.5 | 16.0 | 22.0 | 14.6 | 22.0 | 17.1 | 184 | 199 | 154
cow 123 | 37.3 | 16.7 | 22.2 [ 154 [ 17.2 | 21.3 | 155 | 22.1 | 156 | 16.2 | 15.0 | 17.3 | 14.2 | 124 | 154 | 17.6
sheep 39.5 | 166 | 23.5 | 13.8 | 16.7 | 16.3 | 16.1 | 23.9 | 14.0 | 176 | 13.1 | 184 | 13.6 | 129 | 16.0 | 16.2
sky 38.1 [ 36.3 | 41.8 | 38.1 | 45.4 | 38.6 | 30.1 | 40.1 | 34.5 | 40.7 | 37.9 | 39.1 | 38.3 | 37.2 | 40.9
aeroplane 198 [ 183 [ 11.6 | 199 | 17.7 | 20.5 | 158 | 206 | 14.2 | 16.6 | 15.9 | 16.3 | 17.1 | 12.0
water 254 222|301 | 23.7 254|243 [ 25.0 [ 23.6 | 21.3 | 23.2 | 22.0 | 22.7 | 23.3
face 185 | 16.0 | 18.2 | 26.1 | 16.2 | 20.4 | 15.1 | 20.9 | 16.3 | 16.0 | 18.6 | 17.1

@ car 19.1 | 186 | 21.3 [ 16.6 | 204 | 15.2 | 18.8 | 16.8 | 17.4 | 18.2 | 13.9

K| vicycle 21.7 | 20.1 [ 15.9 [ 23.8 [ 14.3 | 26.2 | 186 | 22.0 | 227 | 15.6

© flower 235|179 194 [ 17.2 | 16.1 | 17.9 | 18.7
sign 23.9 {205 | 238 | 23.9 224|226 | 236
bird 10.7 [ 143 [ 200 | 15.9 | 163 | 18.0 | 15.5
book 19.4 | 216 | 186 | 17.4 | 18.4 | 22.0
chair 19.4 | 14.7 | 155 | 17.2 | 13.9
road 19.1 [ 17.4 [ 191 | 203
cat 14.6 | 16.9 | 16.0
dog 157 [ 17.4
body 18.8
boat
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TABLE V

COLOR SIMILARITY LEVEL BETWEEN THE DIFFERENT CLASSES OF THE

MSRC 21-CLASS DATASET. LOWER VALUES INDICATE MORE SIMILARITY

CLASS

building 90.9 | 83.1 | 84.5 | 72.7 | 93.5 85.0 | 84.4 | 79.0 | 70.0 | 91.8 | 85.6 | 76.5 | 81.2 [ 77.1 | 81.0 | 75.3 | 774
grass 85.4 | 910 | 88.4 | 99.0 | 89.7 [ 95.6 | 94.0 [ 93.8 | 88.4 | 95.1 | 96.1 | 89.9 | 92.6 | 90.1 | 94.3 | 91.4 | 91.1
tree 774 | 76.8 | 97.9 | 74.9 | 91.3 | 87.6 89.6 | 78.4 | 82.8 | 824 [ 90.9 | 73.8 | 79.0
cow 79.0 82.1 88.3 | 80.0 | 80.4 | 80.9 | 90.2 | 726 | 77.3
sheep 92.7 | 66.1 | 84.3 | 79.9 84.0 | 72.0 [ 76.9 | 73.6 | 80.0 | 69.2 | 72.6
sky 91.6 | 93.3 | 97.3 93.6 | 91.5 | 97.2 | 96.1 | 91.0 | 95.1 | 94.7
aeroplar 82.1 | 80.6 80.2 | 68.8 | 75.4 | 72.4
water 93.2 88.4 | 86.2 | 90.0 | 87.4
face 90.7 | 84.2 | 83.2 | 81.6

R car 83.3 76.1 | 79.6

i bic L 81.6 716 | 70.6

~ flower 91.9 | 88.8 | 88.5 | 89.1
sign 84.2 [ 86.2 | 85.8
bird 79.8 | 77.0
book 8.8
chair
road
cat
dog
body 811
boat

Image Unary |48] Auto context [49]
Geodesic [50] MC-SSM Ground (ruth
Fig. 4. Example of segmentation result obtained by our algorithm MC-SSM on an input image from the MSRC-21 compared to other algorithms.

To guarantee the integrity of the benchmark results, the
seven weight parameters of our algorithm [i.e., oy, a2, a3,
ay, a5, ag and a7, see (5)] are optimized on the ensemble
of 276 training images by using a local linear search proce-
dure in the feasible ranges of parameter values ([1 : 2]) with
a fixed step-size = 1072, We have found that a; = 1.83, ay
1.53,a3 = 1.55, a4 = 1.44, a5 = 135,045 = 1.70and a7 = 1,

are reliable hyper-parameters for the model yielding the best
performance.

As we show in Table II, MC-SSM outperforms the nonpara-
metric SuperParsing method [51] with a GPA and ACA scores
equal to, respectively, 0.75 and 0.63 (we perform tests on the
315 test images). Also, compared with state-of-the-art paramet-
ric methods, our method gives good results while not requiring
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Fig. 5.
segmentations).

TABLE VI
PERFORMANCE OF OUR MODEL ON THE STANFORD BACKGROUND DATASET
(SBD) IN TERMS OF GLOBAL PER-PIXEL ACCURACY AND AVERAGE
PER-CLASS ACCURACY (HIGHER IS BETTER)

PERFORMANCE MEASURES
Global (GPA) | Average (ACA)

ALGORITHMS

Nonparametric (non-learning-based) methods
0.68 0.62
0.76 NA

MC-SSM
SuperParsing [51]

Parametric (learning-based) methods

SVM on segment [8] 0.51 NA
ContextL [52] 0.54 0.45
CRF on segment [8] 0.62 NA
CRF+N=2 [55] i8] 0.67 NA
CRF+N=3 [55] in (%) 0.66 NA
Singlescale ConvNet (7] 0.66 0.57
SVM on region [8] 0.69 NA
Tree model [8] 0.69 NA
ConvNet [52] 0.69 0.66
Leaf Level [61] 0.73 0.58
DeepLab-largeFOV [62] in 163] NA 0.65
RWN-largeFOV [63] NA 0.68
Recurrent CNNs [64] 0.76 0.67
HGDN [65] 0.82 0.72

expensive model training and being much simpler. It is worth
mentioning that parametric scene parsing methods have a small
advantage in accuracy over nonparametric methods. However,
they require large amounts of model training, making them less
practical for open datasets [47]. The confusion matrix experi-
mented from the MSRC-21 dataset is shown in Table III. From
this table we can see that better result in terms of class accuracy
is yielded for the following classes: sky, grass, aeroplane, sheep

1955

grass

building

Example results obtained by our MC-SSM model on the MSRC-21 dataset (for more clarity, we have superimposed textual labels on the resulting

TABLE VII
ACCURACY OF SEGMENTATION FOR THE SBD DATASET. CONFUSION MATRIX
WITH PERCENTAGES ROW-NORMALIZED. THE OVERALL PER-PIXEL
ACCURACY 1S 68%

INFERRED CLASS

Suping

urejunNoOu

[punoasaaioy

sky 92.3 | 25 2.7 15 0.2 0.2 0.7

tree 0.4 32.1 | 2.7 1.6 |04 5.7 18 55.4

é road 13 (20 |s02[14 |81 [18 |18 |34
Bl crass 98 |93 [s521 (21 |180 [46 |41
=y water 52 |21 [351 |10 |43.3 (82 |31 |21
=l building [N 37 |o7 o4 |7aaf11 |71

42 16.9 | 2.8 4.2

336 | 3.9 1.1 2.0

mountain

foreground X 38.4

and book, with values are higher than 80%. However, lower
accuracy is achieved for the chair class with a value equal to
17.6%, this class is often confused with the bird class due to
the similarity in color and texture between these two classes
(see Table IV and Table V). Additionally, we present a qualita-
tive comparison with other methods; Unary [48], Auto context
[49] and Geodesic [50] (see Fig. 4). Also, Fig. 5 shows ex-
ample results of success on the MSRC-21 generated by our
algorithm.

In addition, we validated our model on the SBD dataset and
we adopt the same evaluation strategy, the leave-one-out, but for
the entire dataset as we used the same value of the parameters
fixed on the training set of the MSRC-21 dataset. Table VI
shows that our model is still competitive with different methods
with a GPA value equal to 0.68 and ACA value equal to 0.53.
These values are less better compared to those achieved on the
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TABLE VIII

PERFORMANCE OF OUR MODEL USING SINGLE AND MULTIPLE CRITERIA (ON THE MSRC-21 DATASET)

CRITERION MEASURES
(GPA) | (ACA)
CTX 0.13 0.07
Loc 0.15 0.13
SINGLE SHA 0.19 0.13
CRITERION TEX 0.26 0.18
OCLBP 0.54 0.43
LAP 0.59 0.49
COL 0.65 0.55
TEX+CTX 0.27 0.19
MULTIPLE TEX+CTX+LOC+SHA 0.38 0.23
CRITERIA TEX+CTX+LOC+SHA+COL 0.71 0.58
TEX+CTX+LOC+SHA+COL+OCLBP+LAP 0.75 0.63
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Fig. 6. Effects of varying the retrieval set size K for the MSRC-21 dataset; shown are the overall per-pixel accuracy and the average per-class accuracy.

MSRC-21 dataset. This result is not surprising, because the
SBD dataset contains a foreground class that refers to different
types of objects which increases significantly the intra-class
variability.

Table VII shows the confusion matrix for our model in the
SBD dataset. From this table, we can note that better result in
terms of class accuracy is yielded for the following classes; sky
and grass classes, with values are higher than 80%. In contrast,
lower accuracy is achieved for the mountain class with a value
equal to 15.5%.

We have also tested the effects of varying the retrieval set
size K in Fig. 6. This test shows that K" = 197 (the 1/3 of the
dataset) is a reliable value that yielding the best accuracy for our
model. As another evaluation test, in Table VII we report the
results of our model using single criterion and multiple criteria.
In fact, compared to the mono-criterion case our multi-criteria
approach (in bold) achieves a better result. This shows clearly
that our strategy of combining different criteria is effective. In
addition, in this table, we present the relative importance of
each used feature. As we can see, color histogram, OCLBP
and Laplacian operator histogram are the criteria that provide

the best accuracy scores. In order to test the convergence prop-
erties of our iterative optimization procedure, we have tested
our algorithm with different random initializations (step 2 in
Algorithm 2) and we have found similar results, this result shows
clearly that the consensus cost function [see Eq. (5)] is nearly
convex. This also means that the proposed semantic labeling
model is numerically rendered well-posed (and the optimiza-
tion problem tractable) thanks to appropriate convex constraints
or appropriate feature descriptors for this kind of problem. Also,
we have evaluated the proposed model with different iteration
numbers of the optimization algorithm and we have found that
Twax = 100 is the best value which gives the asymptotic result
in terms of GPA and ACA on the MSRC-21 dataset (see Fig. 7).

As we can notice, our multi-criteria semantic segmentation
model (MC-SSM) is both simple and efficient and can be
regarded as a robust alternative to complex, computationally
demanding semantic segmentation models existing in the
literature. Finally, it is worth mentioning that improvements
can be made efficiently in our algorithm by adding other
interesting invariant features (to the multi-criteria function)
such as the SIFT (scale-invariant feature transform) or the LSD
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Overall per-pixel accuracy

|
2 ) F) o 100 120
Maximal number of iterations (Tmax)

Fig. 7.

from a random initialization on the MSRC-21 dataset.

TABLE IX
COMPARISON OF TIME COMPETITION

ALGORITHMS H SEGMENTATION TIME ‘ IMAGE ‘
SIZE
SuperParsing [51] NA (train.) + 6 minutes (test.) 640 x 480
TextonBoost [34] 42 hours (train.) + 3 minutes (test.) | 320 x 213
Auto-Context [49] NA (train.) + 70 seconds (test.) 300 x 200
MC-SSM 5 minutes 240 x 240

(line segment detector) descriptors or other similarity measures
between segmentations.

D. Computation Time

The computational complexity of the proposed model de-
pends on two factors; the number of the images in the dataset
and the number of the used criteria (combined as a global en-
ergy function). On the MSRC-21 dataset, the execution time
takes, on average, between 5 and 6 minutes for an Intel 64 Pro-
cessor core 17-4800MQ, 2.7 GHz, 8 GB of RAM memory and
non-optimized code running on Linux for a 240 x 240 image.
More accurately, the labeling process takes 0.14 second and the
geometric retrieval step takes 0.32 second. However, the com-
putation time of the proposed model (for each image) is mainly
occupied by the region generation code with 205 seconds and
the features extraction (from the full dataset) with 171 seconds.
The former can be reduced by a parallelized implementation
while the latter can be easily sped up by performing the ex-
traction only once and then storing the extracted features on a
data structure. We summarize the available segmentation time
required by other related works in Table IX. The whole unop-
timized and unparallelized implementation of our method was
developed using the C++ language.

V. CONCLUSION

The aim of this present research was to address the problem
of scene parsing (also called semantic segmentation). Towards
this goal, we proposed a novel and simple energy-minimization

1957

Average per-class accuracy

20 4 6 ) 100 120

Maximal number of iterations (Tmax)

Evolution of the overall per-pixel accuracy and the average global per-class accuracy along the number of iterations of the proposed MC-SSM starting

based approach called the multi-criteria semantic segmentation
model (MC-SSM).

Moreover, by using a new geometric retrieval strategy, we
selected nearest neighbors from a database containing fully seg-
mented and annotated images. This strategy is based on a new
criterion called global consistency error (GCE). This criterion
aims to find matches between the region map or the segmenta-
tion of the input image and the region map of each image in the
dataset. In addition, the proposed cost function of this model
combines efficiently different global nonparametric semantic
likelihood energy terms computed from the (pre-)segmented re-
gions of the (query) image and defined according to their struc-
tural properties (location, texture, color, context and shape).
Furthermore, by combining different features into the energy or
the objective function, our model integrates more information
about the object possibly present in the scene. To optimize our
energy-based model we resort to a simple and local optimization
procedure derived from the iterative conditional modes (ICM)
algorithm. Our approach achieved state-of-the-art performance
in two popular datasets (MSRC-21 and SBD). An interesting
finding that can be observed from the experiments, is that com-
bining different criteria improves significantly the final result
of scene parsing. This suggests our method to be a suitable
alternative, to methods that require large datasets to train high-
accuracy classifiers. Thus, the proposed model is dedicated to
small datasets which are characterized by a limited number of
available images. One area of future work will be, to improve
further the classification accuracy by incorporating other cri-
teria (possibly at different geometric and semantic abstraction
levels).
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