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MDS-Based Multiresolution Nonlinear
Dimensionality Reduction Model for

Color Image Segmentation
Max Mignotte

Abstract— In this paper, we present an efficient coarse-to-
fine multiresolution framework for multidimensional scaling and
demonstrate its performance on a large-scale nonlinear dimen-
sionality reduction and embedding problem in a texture feature
extraction step for the unsupervised image segmentation problem.
We demonstrate both the efficiency of our multiresolution algo-
rithm and its real interest to learn a nonlinear low-dimensional
representation of the texture feature set of an image which
can then subsequently be exploited in a simple clustering-based
segmentation algorithm. The resulting segmentation procedure
has been successfully applied on the Berkeley image database,
demonstrating its efficiency compared to the best existing state-of-
the-art segmentation methods recently proposed in the literature.

Index Terms— Berkeley image database, color textured image,
multidimensional scaling, multiresolution optimization, nonlinear
dimensionality reduction, probability rand index, unsupervised
image segmentation.

I. INTRODUCTION

IMAGE segmentation is an important preprocessing step
which consists of dividing the image scene into spatially

coherent regions sharing similar attributes. This low-level
vision task, which changes the representation of an image
into something that reduces the complexity of its content, is
often the preliminary and also crucial step for higher level
applications often designed to emulate functionalities of the
human visual system (such as object localization or recogni-
tion, tracking, image retrieval, or understanding). Presently, the
problem of finding a fast, simple, and automatic method that
is able to efficiently segment a color textured image remains
unresolved.

A number of methods have been proposed and studied in
the last decades to solve the difficult problem of textured
image segmentation. Among them, we can cite segmentation
methods exploiting the connectivity information between
neighboring pixels such as Markov random field (MRF)-
based statistical methods [1]–[5] (or more generally Bayesian
framework [6]), graph-based models [7]–[9], neural networks
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[10], [11], variational methods [12], deformable surfaces [13],
mean-shift-based techniques [14]–[16], clustering schemes
[17]–[20] (with fuzzy sets [21] or Gaussian mixture models
[22], [23]), color histograms [24], watershed techniques [25],
region growing strategies [26], region-based split and merge
procedures (sometimes directly expressed by a global energy
function to be optimized [27]), and finally some fusion
methods [17], [28]–[30].

Most of these above-mentioned methods preliminarily use
(sometimes conjointly to the segmentation step) a texture
feature extraction step whose goal is to characterize each
meaningful textured region (to be segmented) with statistical
(or geometrical, morphological, fractal, etc.,) image features
which are then either characterized by their distribution or
simply gathered in a D-dimensional (feature) vector. When
the structure of these features is simple enough and the dimen-
sionality of the feature space is not too high (to be tractable),
a segmentation model exploiting a feature likelihood using
a mixture of Gaussians or other statistical distributions can
be efficiently used. However, when the dimensionality of the
classification problem is too high, a dimensionality reduction
technique has to be preliminarily applied to get a manageable
number of dimensions (avoiding the so-called “curse of
dimensionality” problem). This dimensionality reduction step
allows us to simplify (and to decrease the amount of time
and memory required to perform) the subsequently used
classification procedure (i.e., the clustering scheme or the
final optimization problem) of the segmentation method [31].
In addition to decreasing the complexity of the clustering
scheme or the final optimization problem, this dimensionality
reduction step also allows us to remove redundancy and
erroneous information from the data and sometimes to prevent
the classification model from overfitting in the training phase.
In this attempt, recent research in dimensionality reduction
and segmentation of color images has focused on linear
projection methods such as principal component analysis
(PCA) [31] or independent component analysis (ICA) [32].
However, ICA and PCA are linear projection methods, and
both assume that the underlying data manifold is linear, which
is not necessarily true in the case of texture feature data. If
the feature vectors are distributed along a nonlinear manifold
embedded in a high-dimensional space, this dimension
reduction step might lead to several classification errors.

Although the goals of segmentation/classification and
dimensionality reduction are closely related, relatively lit-
tle research has been conducted on the use of nonlinear
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dimensionality reduction and its benefit in segmentation of
natural color images. However, in this attempt, a nonlinear
dimensionality reduction was recently proposed in motion
segmentation to deal with motion of different types [33] and
in hyperspectral imagery [34] in order both to reduce the
huge amount of high-dimensional spectral data information
(related to each hyperspectral image) and to take into account
its nonlinear characteristics (whose multiple sources of non-
linearity have been pointed out in [35]). To this end, Mohan
et al. in hyperspectral imagery and Goh et al. [33] in motion
segmentation have investigated the use of the locally linear
embedding (LLE) algorithm [36] and its advantages in image
segmentation. LLE attempts to represent the data manifold
locally by reconstructing each feature vector as a weighted
combination of its neighbors. Based on these affine (local
linear) approximations, LLE finds a low-dimensional embed-
ding of the data. In the same family, Laplacian eigenmaps
(LEs) [37] and Hessian LLE (HLLE) [38] have also been
proposed as LLE techniques. Contrary to LLE, LE and HLLE
are based on computing the low-dimensional representation
that best preserves locality instead of local linearity in LLE.
A good review of these three algorithms is given in [33].
In a somewhat similar manner, it is also worth mentioning
the curvilinear distance analysis (CDA) [39] and the isometric
mapping (ISOMAP) [40]. Both begin by finding a set of the
nearest neighbors of each point and then seek to preserve the
geodesic distances between feature points while projecting the
data into fewer dimensions. Geodesic distance is defined as the
length of the shortest path between two points that stays on
the manifold surface and can be computed using the Dijkstras
algorithm [41].

Another interesting nonlinear dimensionality reduction
is based on multidimensional scaling (MDS) [42], which
attempts to preserve pairwise distances between data points.
More precisely, MDS attempts to find an embedding from the
initial feature vectors in the high-dimensional space such that
distances (usually the Euclidean distance but more generally, it
may be a metric or arbitrary distance function) are preserved
in a low-dimensional space. The foundational ideas behind
MDS were first proposed by Young and Householder [43]
and then further developed by Torgerson [44]. The MDS
algorithm works by minimizing an objective function (called
the strain or stress function) based on the discrepancy of
these distances. The original algorithm, called classic MDS
[44], exploits a spectral method which consists of finding
embedding coordinates by computing the top eigenvectors of a
“double-centered” transformation of the distance matrix sorted
by decreasing eigenvalue. When a singular value decomposi-
tion is used for this purpose, the computational cost of classic
MDS is of order O(N3) (where N is the number of feature
vectors), and when a more sophisticated method based on the
power method is used to estimate the different eigenvectors,
it is of order O(N2). It is also worth mentioning the ma-
jorization algorithm (called SMACOF) proposed by De Leeuw
[45] which monotonically converges to a local minimum by
minimizing a quadratic approximation at each iteration but
also at a large computational cost of O(N2d) (d being the
dimensionality of the low-dimensional target space). In any

event, this nonlinear dimension reduction approach based on
the original MDS algorithm requires too much computing
when applied to all pixels of the image (especially when
a high-dimensional vector is related to each pixel) and this
certainly explains why such nonlinear reduction methods have
not been further tested in image segmentation.

However, over the past 15 years, some strategies have been
developed to allow the classical MDS algorithm to be applied
for large-scale applications (i.e., for large sample size). To this
end, three algorithms, i.e., FastMap [46], MetricMap [47], and
Landmark MDS [48] (and its variant [49], [50]), have been
proposed. The baseline strategy for these three algorithms is
based on the Nyström approximation [51] of the eigenvectors
of a large matrix (in this case, a Gramian matrix derived from
the previously mentioned input distance matrix which costs
O(N3) complexity in time). The basic idea of the Nyström
method can be deemed as choosing a subset of samples
(approximating the eigensystem of this large distance matrix)
to find a first nonlinear embedding and then extending the
obtained solution to the complete set of remaining samples
(using a mapping or a triangulation technique relative to the
original data). Another approximation algorithm for MDS for
use with large datasets is the FastMDS algorithm [52]. Fast-
MDS exploits a divide-and-conquer approach by first dividing
the large source matrix into submatrices of reasonable size
to perform the classical MDS algorithm (on each of them)
and then by stitching the subproblem solutions back together
for a complete solution (with an affine mapping in a least-
squares sense). All these above-mentioned methods chose
the strategy of transforming the initial nonlinear optimization
problem, i.e., the minimization of the so-called stress function
(proportional to the distortion of all pairwise distances) into
a linear algebra problem of eigendecomposition along with
a Nyström sampling or a divide-and-conquer scheme that
facilitates the eigendecomposition. To our knowledge, none of
them tackles this scalable MDS task directly as an optimiza-
tion problem and uses a (multiresolution) subsampling and
interpolation schemes which exploit the important features of a
(textured) natural image, i.e., the inherent spatial dependencies
between spatial neighboring samples (and modeling the fact
that for a sample or a texture feature vector belonging to a
particular region, its spatial neighboring samples likely belong
to the same region). In our application, these inherent spatial
dependencies between (spatial) neighboring samples allow
us to define a multiresolution representation of the data in
order to construct approximate coarser versions of the original
(nonconvex and difficult) optimization problem and to use the
solution of the coarser (and hence computationally simpler)
version of this optimization to obtain a good initial guess that
guides and accelerates the solution of finer versions.

Scalable MDS (or projection) methods are also useful
techniques for (text) data mining. In particular, these dimen-
sionality reduction methods can create a visual and logical
representation of a large data document set (based on the
word frequency) in a low-dimensional space that is most
expressive and thus leads to an easier interpretation of a large
text corpus. In this field of research, Chen et al. [53] have
proposed a scalable dimensionality reduction technique which
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exploits both a Nyström approximation-based method and, in
a somewhat similar way to our strategy, relevant information
about the latent structure in the given data. More precisely,
they first select a subset of representative exemplars (summa-
rizing the entire dataset) in order to generate a first nonlinear
embedding (in the low-rank space) on which they obtain a
“soft” classification, representing the class or the topic of each
document in the document collection. The following step of
their method is to use this soft clustering and a parametric
embedding to extend to the remaining documents. In this strat-
egy, the “soft” classification, which concretely represents the
empirical probability of each document to the different topics,
turns out to be more efficient than the class of hierarchical-
clustering-based dimensionality reduction techniques [53] usu-
ally proposed as large-scale document visualization methods
and which use a first “hard” classification (and for which an
incorrect assignment made during the classification step can
lead to error in the final text mining results).

In this paper, we present an efficient coarse-to-fine multires-
olution framework for the MDS technique especially suited
for large-scale dimensionality reduction problems such as
those occurring during the texture feature extraction step in
(texture) image segmentation or (more generally) occurring
in large-scale high-dimensional clustering applications (e.g.,
bioinformatics). In this context, we demonstrate the efficiency
of such a technique and its real interest to learn a nonlinear
low-dimensional representation of the texture feature data of
a natural image, which will be then efficiently exploited in
a segmentation procedure. As is usually the case in such
a coarse-to-fine strategy, our multiresolution MDS technique
estimates approximate coarser versions of the original op-
timization MDS problem (i.e., the minimization of the so-
called strain objective function) and then uses the solution
of the coarser (and hence computationally simpler) estimate
of this optimization to obtain (via an interpolation scheme) a
good initial guess that guides and accelerates the optimization
of finer versions. In our application, in order to obtain an
accurate solution at each scale, we have designed a hybrid (but
simple) relaxation scheme combining a global and determin-
istic gradient-based procedure with a local stochastic search,
which ultimately allows us to refine the estimation previously
given by the deterministic relaxation technique.

The remainder of this paper is organized as follows.
Section II describes the texture feature extraction step.
Sections III and IV present respectively the MDS-based reduc-
tion model and our multiresolution optimization framework,
finally, Section V presents a set of experimental results and
comparisons with existing segmentation techniques.

II. TEXTURE FEATURE EXTRACTION STEP

In order to validate our segmentation model, we use the
following as texture features (to characterize each textured
region) and to be represented in a lower dimensional space.

1) First, the set of values of the local color non-normalized
histogram and estimated around the pixel to be classified
for an input image expressed in the LAB color space.
In our application, this local histogram is equally re-
quantized with qc equidistant binnings for each of the

A and B color channels, and (qc−1) equidistant binnings
for the L channel (in order to be somewhat invariant to
shadows effects) in a final Nb = (qc − 1) × q2

c bin
descriptor, computed on an overlapping squared fixed-
size (Nw) neighborhood centered around the pixel to be
classified.

2) Second, the set of respectively vertical, horizontal, right
diagonal, and left diagonal different equidistant values
of the non-normalized local histogram of the gradient
magnitude (i.e., the absolute value of the first-order
difference) computed on the luminance component of
each pixel contained in an overlapping squared fixed-
size (Nw) neighborhood centered around the pixel to be
classified. In our application, we use the four sets of Ng

bin values in the interval [0 : Gmax] of this four (i.e.,
vertical, horizontal, right diagonal, and left diagonal)
gradient magnitude histogram.

This simple texture feature extraction step thus yields a
[Nb + 4 Ng ] = [(qc − 1)q2

c + 4 Ng ]-dimensional feature vector
(for each pixel) whose dimension will be nonlinearly reduced
by our multiresolution MDS model (in our application qc = 4,
Ng = 10, and Nw = 7). In this simpler model, a texton (i.e.,
the repetitive character or element of a textured image, also
called a texture primitive) is thus characterized here by the val-
ues of two types of local histograms: first, the color histogram
[29] and, second, the gradient magnitude histogram in the four
directions (see Algorithm 1 for implementation details).

III. PROPOSED REDUCTION MODEL

Since we have two different types of texture features (i.e.,
color and gradient) to characterize a textured region, and since
there is no reason why these two texture clues are interrelated,
we separately reduce the dimensionality of the color and the
gradient magnitude feature vectors. This strategy allows the
MDS algorithm to more easily find a nonlinear manifold (or
equivalently, to considerably simplify the optimization proce-
dure). Moreover, since the color features seem more important
than the gradient magnitude clues [17] to characterize a texture
region, we also use twice as much weight (compared to the
gradient feature vectors) by searching for them in a nonlinear
manifold with two times more dimensions. Finally, we con-
struct a low-dimensional representation with three dimensions;
this allows us to visualize this low-dimensional representation
as a three-channel (e.g., RGB) image. In this context, we have
therefore a space with a dimensionality of 2 available for the
color vector and a space with a dimensionality of 1 for the
gradient magnitude vector.

Let us define the notation that will be used throughout this
paper. We consider the set of texture features of an input color
image (with N pixels) as a cube I(s, k) or a 3-D array, where
s indicates the spatial location s = (row, column) = (i, j) and
fs(k) = I(s, .) ∈ RD is the texture feature vector, indexed
by k, at location s. D is the dimensionality of the original
texture feature vectors (i.e., the high-dimensional space) and
d = 3, the dimensionality of the target low-dimensional
representation. In this context, the MDS approach, which
refers to the optimization of these N texture feature vectors
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Algorithm 1 Estimation of the Bin Descriptor for Each Pixel s

N
w
 Size of the local window

q
c
 Bin number of the color histogram (A&B channels)

q
c−1

 Bin number of the color histogram (Lchan.)

G
max

 Maximal value of the gradient histogram

N
g
 Number of bin values for each of the four

 (hor., vert., right and left diag.) gradient
 histograms
s Pixel spatial location s = (row, col) = (i, j)
N

s
 Set of pixel locations s within the N

w
 × N

w
 neighborhood region centered at s
h[] Bin descriptor : array of D = ((q

c
−1) · q2

c
 + 4 N

g
)

 integers (h[0], h[1], ···, h[D−1]) initialized to 0
�.�  Integer part of.
q
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 Bin number of the gradient histogram
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·A

s

256
�+�  
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�
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Edge histogram
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s
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s
 do
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−L
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c
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s
[k] + 1

• h
s 
[k]← h

s
[k] + 1

• h
s 
[k]← h

s
[k] + 1

∈ RD in our target space whose dimensionality is d = 3, using
a separate optimization between the color (2-D) and gradient
features (1-D) in such a way that their distance relationships in
the target space faithfully reflect those of the original texture
feature vectors, consists of finding û = (R̂ Ĝ)t a 2-D vector
of mappings and v̂ = (B̂)t a 1-D vector solution of the two
(independent and) objective stress functions to be minimized

⎧
⎪⎨

⎪⎩

û = arg minu
∑

s,ts�=t

(
ws,t β

[0:Nb [
s,t − (us − ut)

2
)2

v̂ = arg minv
∑

s,ts�=t

(
ws,t β

]Nb :D]
s,t − (vs − vt)

2
)2 (1)

where β [k0−k1]
s,t denotes the squared distance between the pair

of feature vectors fs(k) and ft(k) at pixels locations s and t
and k ∈ [k0 − k1]. The summation

∑
s,ts�=t

is over all pairs of
sites (i.e., for all sites s and for all pairs of sites including s)

Fig. 1. Top row: Original Berkeley images (n0 198054 and n0 196073
and n0 25098) and detextured related images i.e., low 3-D representation
(as a color image) of the local color value distribution of the texture regions
with. Second row: our multiresolution MDS algorithm (with respectively,
from left to right, RMSRDE = 0.901, 0.919, and 0.916). Third row: PCA
technique. Fourth row: FastMap algorithm (with respectively, from left to
right, RMSRDE = 0.957, 0.870, and 0.951).

existing in the image and we recall that Nb = (qc −1)q2
c . ws,t

is a factor equal to 0.5 for sites t belonging to the first neigh-
borhood of s. This allows us to easily include in this dimension
reduction step a prior favoring homogeneity between neighbor-
ing sites. In our application, the three mapping results (R̂ Ĝ B̂)
can be seen as a (noisy) detextured color image (see Fig. 1).

An important ingredient of the MDS algorithm is the choice
of the distance measure which will be used in the above-
stated optimization problem. In our context, one benefit of
the MDS method over the other nonlinear dimensionality
reduction models is its ability to be very flexible in the
choice of this distance measure. By comparison, LLE and its
variants (LE, HLLE) involve writing each data point as a linear
combination of its neighbors and, in the Euclidean case, this
step is simply a least-squares problem, but a computationally
costly problem for other distance measures. Moreover, there
exists nonlinear dimension reduction strategies in which this
distance measure is fixed once and for all because it is intrin-
sically part of the nonlinear reduction model (e.g., CDA and
ISOMAP). Our application (a better choice than the Euclidean
distance, since we use histogram values as texture features)
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includes a histogram-based similarity measure derived from
the Bhattacharyya similarity coefficient. Given one normalized
histogram h�

s (k) at pixel location s and another h�
t (k) at

location t, the squared Bhattacharyya distance between these
two histograms is defined as

βI
s,t = DB

[
h�

s , h�
t
] = 1 −

∑

k∈I

√

h�
s (k) h�

t (k) (2)

in which the resulting squared distance ranges from 0 to 1. It
is also worth mentioning that each one of the three objective
functions to be minimized [see (1)] involves nonlinear non-
convex objective functions, thus requiring high computations.
Moreover, it is also worth noting that each function to be opti-
mized can be viewed as a Gibbs energy field related to a non-
stationary (and nonlocal) MRF model defined on a complete
graph with long-range pairwise interactions, i.e., binary cliques
<s, t > (or pairwise of pixels). In this context, a stochastic
optimization procedure such as a simulated annealing (SA)
algorithm [1] has the capability of avoiding local minima but,
on the other hand, is computationally too expensive. Another
approach is to use a classical gradient descent algorithm or a
deterministic variant of the SA procedure, namely the iterative
conditional modes introduced by Besag [54]. This method,
which is simply a gradient descent alternating the directions,
i.e., that selects a variable while keeping all other variables
fixed, is deterministic and simple. Nevertheless, it requires a
good initialization (close to the optimal solution). Otherwise,
it will converge toward a (very) bad local minimum. Keep in
mind that each of the objective functions of our dimensionality
reduction model is of the form

∑
s,ts�=t

Vs,t(.) with nonconvex
and nonmetric or semimetric potential functions Vs,t(.) (since
in our case us = ut �⇔ Vs,t(us, ut) = 0). Consequently, (1)
does not belong to the class of energy functions that can be
minimized via graph cut techniques such as the expansion-
move and the swap-move algorithms. This is especially true
because Vs,t clearly does not satisfy the (necessary) condition
of regularity [55, Sec. 4], which has more relaxed applicability
conditions than required to get a graph representability for the
energy minimization by graph cuts. Optimization algorithms
such as loopy belief propagation (LBP) [56] or its variant,
the so-called tree-reweighted message passing algorithm [57],
are more general and can be applied to any type of potential
function. However, in our case these optimization techniques
would be very slow and expensive in terms of memory
requirement. In these optimization strategies, each node sends
a (different) message (in fact an integer value) to each of
its neighbors and receives a message from each neighbor (at
each iteration). For our MRF model defined on a complete
graph, there would be O(N2) messages (to compute and store)
per iteration (with N , the number of pixels of an image).
Moreover, as standard way of computing the messages is to
explicitly minimize over us for each choice of ut [56], it would
take O(k2) time to compute each message with k = 256,
i.e., the number of existing discrete color channel values. The
standard implementation of these message-passing algorithms,
on our (complete) graph, would thus require a prohibitive
computational complexity of order O(N2k2T ) with T ≈ N1/2

(the number of iterations of the LBP needs to grow like N1/2

Optimization

InterpolationInterpolation

Level p = 4

Level p = 0

Fig. 2. Interpolation and “coarse-to-fine” optimization strategy.

[56] to allow for information from one part of the image
to propagate everywhere else). In addition to this, LBP is
not guaranteed to find a global minimum, but only a strong
local minimum [58]. Moreover, LBP is also not guaranteed
to converge since it may go into an infinite loop switching
between two labelings [58]. Note also that we cannot consider
a dynamic programming approach [59] since this optimization
method is restricted essentially to energy functions in 1-D
settings.

An alternative approach consists of a multiresolution opti-
mization strategy. In this coarse-to-fine strategy, rather than
considering the minimization problem on the full and origi-
nal configuration space, the original optimization problem is
decomposed into a sequence of approximated optimization
problems of reduced complexity. This drastically reduces
computational effort and provides an accelerated convergence
toward an improved estimate (experimentally, estimation re-
sults are nearly comparable to those obtained by stochastic
optimization procedures as noted, for example, in [60] and
[61] and in the experimental results of this paper below).

IV. MULTIRESOLUTION OPTIMIZATION STRATEGY

A. Principle

In order to decrease the computational load of our coarse-
to-fine optimization procedure, we only use two levels of res-
olution in our multiresolution optimization strategy: namely,
the full resolution p = 0 and a coarser (image) solution at
resolution level p = 4, i.e., resulting from the downsampling
of the input image and the (low-dimensional embedding
image) solution û↓0 ≡ û by 2(p=4) = 16 in each direction
(if we consider the first mapping û to be estimated). At these
two levels of resolution, we also consider that each image
is assumed to be toroidal, i.e., periodically repeated. At the
lower resolution level, we consider that each node (or pixel)
is connected with all other pixels located within a square
neighborhood window of fixed size Ns = 15 pixels centered
around the pixel. This allows us to consider nearly a complete
graph for a Berkeley image of size 320 × 240 such as an
image belonging to the Berkeley database (once downsampled
by a factor 24). At the finest resolution level, we consider
the same square neighborhood window. After convergence
our optimization scheme at coarser level, the result obtained
is interpolated and then used as initialization for the full
resolution level (see Fig. 2).

B. Interpolation

For the interpolation at the full resolution level, we have
used an interpolation method which efficiently takes into
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Algorithm 2  Local Exploration with Metropolis

E  Energy function to be minimized
T

l
  Temperature at Iteration step l

a  Cooling schedule parameter
r  Radius of exploration, real ε]0, 1]
T

0
 Initial Temperature

T
f
 Final Temperature

LS
max

 Maximal number of iterations

1. Initialization
a ←(      )

T
f

T
0

1
LS

max

2. Local Exploration

while l < LS
max 

do

for each pixel with value x
s
 at site s do

• Compute �Energy � E(y
s
) − E(x

s
) with

y
s
 ε[x

s
 − 255r : x

s
 + 255r] and y

s
 (pixel value)

ε [0 : 255]

• If (�Energy < 0) Replace x
s
 by y

s

• Else Replace x
s
 by  y

s
 with

probability � exp(−�Energy
T

l

3. l ← l + 1 and T
l
 ← T

0
 al

(

account three characteristics:

1) the non-reduced (complete) data for each pixel s, i.e.,
I(s, .);

2) the inherent spatial dependencies between neighboring
texture feature vectors (i.e., modeling the fact that for
a given texture feature vector belonging to a particular
region or class, its surrounding pixels likely belong to
the same class);

3) the weighted average formula of the nonlocal means
filtering strategy used in [62] which is very robust to
noise.

More precisely, in our duplication method, each value of
a mapping to be interpolated, at site s and at full resolution
level p = 0 of û, is computed as a weighted average of all
the values in the neighborhood of s at level resolution p = 4
by the following average formula:

û↓0
s =

∑

t∈Ns

w(s, t) û↓4
s (3)

where Ns designates a square fixed-size (NI ) neighborhood
centered around the pixel s. In this interpolation formula, the
weights {w(s, t)}t depend on the similarity (according to the
Euclidean distance) between the texture feature vector I(s, .)
and I(t, .)

w(s, t) = 1

Z(s)
exp

{

−‖I(s, .) − I(t, .)‖2
2

h

}

(4)

where Z(s) is the normalizing constant ensuring
∑

t w(s, t) =
1.The parameter h acts as a degree of filtering, it controls the
decay of the weights as a function of the Euclidean distance.
In our application, we use h = 0.1 and NI = 5.
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Fig. 3. Multiresolution optimization strategy on a natural image from the
Berkeley database (n0 134052). From left to right, the (three-band) color
image at coarser resolution level (initialization at random), and nonlinear
dimensionality reduction result obtained after convergence of the conjugate
gradient [represented as a (three-band) color image], duplication and result of
our hybrid algorithm at the finest level of the pyramid, i.e., at full resolution.
Bottom: evolution of the stress energy function for the two steps of the
multiresolution hybrid optimization scheme (for the color features).

C. Optimization at Coarser and Finest Resolution Levels

1) Since an analytical expression of the derivative of the
objective function to be optimized can be easily found,
we first use a conjugate gradient descent procedure with
derivative

∇E(u) = 4
∑

s,ts�=t

[us − ut]
(
β

[k0−k1]
s,t − [us − ut]2

)
. (5)

For the search of the optimal mapping at the coarser
level, our optimization procedure is initialized at ran-
dom. For the gradient descent, the step size is fixed to γ
and adaptively decreased by a factor of 2 if the energy
to be minimized increases between two iterations. We
stop the optimization procedure if a fixed number of
iterations is reached.

2) In order to refine the estimation given by the above-
mentioned deterministic optimization method at coarser
level or to refine the estimation at full resolution (after
the interpolation [see Section IV-B]), we use the previ-
ous optimization result as the initialization of a stochas-
tic local search. To this end, we use a local exploration
around the current solution using the Metropolis criteria
[63] and a low radius of exploration (see Algorithm 2).

Details of our multiresolution optimization strategy with two
levels of resolution is given in Algorithm 3.

V. EXPERIMENTAL RESULTS

A. Image Segmentation

The above-presented nonlinear dimension reduction step
can be viewed as a detexturing approach which converts
the original texture image into a noisy image with regions
with uniform colors in a low-dimensional space. This detex-
turing approach simplifies greatly our segmentation problem
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Algorithm 3 Multiresolution Minimization

I(s, k) Input texture image
I↓p  I(s, k)downsampled by a factor of 2p

{βs, t}
↓p Set of distances between I(s, .) and

 I(t, .) obtained from I↓p

u↓p mapping (R or G or B) to be estimated at 
 resolution level p (u↓0 ≡ u)
[b

1 
−

 
b

2
] Interval of the texture feature index

p � 4 Upper level of the pyramidal structure

1.Initialization Step

• I↓p  ← Downsampled I(s, k) by a 2p factor

• {βs, t}
↓p ← Compute the set of distances from I↓p

•{βs, t}
↓0 ← Compute {βs, t} from I↓0 � I

2. Upper level

• u↓p ← Random

• u↓p ← HYBRID OPTIMIZATION (u↓p, {βs, t
[b

1
−b

2
]}↓p)

• àu ← Interpolation (û↓p )

3. Finer level
• û ← METROPOLIS SEARCH (û, {βs, t

[b
1
−b

2
]})

(see Figs. 1 and 3). In order to demonstrate this, we can first
compare our detexturing approach with the PCA [64] method,1

which is also the most classical linear dimensionality reduction
techniques also known as Karhunen–Loeve transformation.

As in our model, we have also used a 2-D mapping for
the color-based features and a 1-D mapping for the gradient
based features. Fig. 1 shows the low 3-D representation (as a
color image) of the local texture regions with the MDS and the
PCA techniques (the FastMap-based results will be discussed
in Section V-E). We can easily see that the PCA-based
detexturing approach converts the different textural regions of
the original image with: 1) less uniform (or more noisy) colors
(e.g., the snake image or the girl’s face); 2) with less dissimilar
colors (e.g., the hair and the sweater of the girl); and/or 3) uses
sometimes wrongly similar colors for two different textured
regions (e.g., the green peppers and the background region
composed of white cabbages and salads). In our opinion, our
MDS-based detexturing method gives better detextured images
compared to the PCA technique (and thus more effective
detextured images for the subsequent use of a clustering
algorithm (see Section V-C and Table I) for two main reasons.
The first one is, of course, due to the nonlinearity of our
dimensionality reduction technique. The second one is also
certainly due to the nonlinear Bhattacharyya distance which is
inherent to our dimensionality reduction model, whereas the
PCA technique is inherently related to the linear Euclidean dis-
tance (since PCA yields linear transformation with minimum
mean square error (or variance) which is defined in terms of
second powers just like the Euclidean distance metric [65]).

1Due to the size of the covariance matrix, we use the same multiresolution
technique, i.e., the estimation of the covariance matrix on the 16 times smaller
image (corresponding to the fourth upper level of a multiresolution pyramidal
structure) and our interpolation scheme described in Section IV-B.

TABLE I

AVERAGE PERFORMANCE, IN TERM OF PROBABILITY RAND INDEX (PRI)

MEASURE, OF OUR ALGORITHM FOR SEVERAL VALUES OF TTS

INTERNAL PARAMETERS ON THE BERKELEY IMAGE DATABASE [66]

ALGORITHMS PRI [67]

HUMANS (in [19]) 0.875

MD2SK−means
[K = 11|ξ = 0.4] 0.784

MD2SMean−Shift
[σs = 27|σr = 55|ξ = 0.4] 0.786

FASTMAPK−means
[K = 8|ξ = 0.18] 0.755

PCAK−means
[K = 6|ξ = 0.17] 0.730

-2010- PRIF [29] 0.801

-2008- CTex [18] 0.800

-2009- MIS [13] 0.798

-2008- FCR [17] 0.788

-2004- FH [8] (in [19]) 0.784

-2009- HMC [3] 0.783
-2009- Consensus [30] 0.781

-2009- A-IFS HRI [21] 0.771

-2001- JSEG [26] (in [18]) 0.770

-2007- CTM [19] 0.762

-2008- St-SVGMM [22] 0.759

-2003- Mean-Shift [4] (in [19]) 0.755

-2008- NTP [9] 0.752

-2010- iHMRF [4] 0.752

-2006- GBMS [16] (in [6]) 0.734

-2000- NCuts [7] (in [19]) 0.722

-2010- JND [24] 0.719

-2010- DCM [6] 0.708

-2009- [25] 0.703

In addition, we can now use this MDS-based detextured
image as input image of a segmentation algorithm. In our
experiments, we have tested the following.

1) A simple K -means clustering procedure. To this end, we
have used as input multidimensional feature descriptor
the set of values estimated on an overlapping squared
fixed-size (Nkm = 5) neighborhood centered around
each pixel (of our detextured image) to be classified and
a number of classes (K = 11) learned on a training
image database (see Section V-C). A final merging
step is added to each segmentation map, which simply
consists of fusing each small region (i.e., regions whose
size is below 300 pixels) with the region sharing its
longest boundary.

2) A mean-shift [14] procedure whose internal parameters
are learned with our grid-search-based learning method
(see Section V-C).

In order to further help the K -means clustering process or
the mean-shift procedure to succeed in finding an accurate
partition, a simple hard constraint taking into account the edge
of our detextured image and/or enforcing the spatial conti-
nuity of each (likely) region is imposed during the iterative
K -means labeling process. To this end, we have to compute
an edge gradient magnitude map from our detextured image.
The most likely regions in this edge map (see Fig. 4) are
easily estimated by identifying the sets of connected pixels
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Fig. 4. From top to bottom and left to right: Edge gradient magnitude
map of the detextured image presented in Fig. 3 and the sets of connected
pixels (i.e., regions) whose edge potential is respectively below ξ = 0.3 and
ξ = 0.4. These regions are represented by colored regions. The white region
corresponds to the sets of pixels whose edge potential is above the threshold
(and thus corresponds to inhomogeneous regions).

whose edge potential is below a given (and low) threshold
ξ , thus defining a map of likely homogeneous regions (in
which only small gradient magnitudes has been detected).
The hard constraint enforcing the spatial continuity of each
of the K -means cluster is then simply performed by assigning
the majority class label in each (pre-estimated) homogeneous
textural region, for each iteration of the K -means algorithm
(or at the end of the mean-shift procedure). This spatially
constrained K -means is ensured after convergence of the
classical K -means clustering. Implicitly, this procedure allows
the consideration of nonspherical clusters in the K -means
clustering scheme since the distribution of each textural feature
is no longer spherical after the spatial constraint.

B. Sensitivity to Internal Parameters

The two internal parameters of our segmentation algorithm
are thus K , i.e., the number of classes of K -means, and
our regularization parameter ξ (see the previous section). The
other parameter belongs to the feature extraction step and the
MDS-based dimensionality reduction technique. In this regard,
concerning the MDS technique.

1) It is worth mentioning that our algorithm is relatively
insensitive to high values of the step size γ because
of our adaptive decreasing schedule which adaptively
adjusts and reduces this value in the conjugate gradient
procedure if this parameter is mistakenly set too high.

2) T f is easily findable in our case, since a good final
temperature for a Metropolis-like minimization proce-
dure has to ensure that, at the end of the stochastic
search, very few sites change their luminance values
between two complete image sweeps. In our algorithm,
this parameter has been easily found after a few trials.

3) Finally, two internal parameters are sensitive and crucial
for our MDS algorithm: namely, the radius of explo-
ration r and in a least measure, the starting temperature
T0 of the local stochastic search. The first parameter
was set in order to locally explore a solution whose
luminance values are close to the solution given by
the gradient minimization procedure (a value r = 0.04
ensures that the final solution will exhibit output lumi-
nance values centered around the gradient estimation
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Fig. 5. Distribution of the PRI performance measure over the 300 images
of the Berkeley database (for MD2SK-means[K =11|ξ=0.40]).

±0.04 ∗ 255 = ±10 luminance values for a final
luminance image whose luminance values are comprised
in [0 : 255]). T0 is set in order to ensure that, at
the beginning of the stochastic search, approximately
50% of sites change their luminance values between two
complete image sweeps.

C. Setup

In these experiments, we have tested our segmentation algo-
rithms on the Berkeley segmentation database [66] consisting
of 300 color images of size 481 × 321 divided into a training
set of 200 images and a test set of 100 images. For each
color image, a set of benchmark segmentation results, provided
by human observers (between 4 and 7), is available and
used to quantify the reliability of the proposed segmentation
algorithm. In order to ensure the integrity of the evaluation,
the internal parameters of the MDS + K -means algorithm
(K and ξ ) are tuned on the trained image set by doing a
local discrete grid-search routine, with a fixed step size, on the
parameter space and in the feasible ranges of parameter values
(namely K ∈ [3 − 15] [step-size: 1], ξ ∈ 255 × [0 − 1] [step-
size: 0.05]). The internal parameters of the MDS + mean-
shift (i.e., the two parameters controlling the resolution in
the spatial and range domains and ξ ) and the PCA + K -
means algorithms are learned by our grid-search routine in the
same way. The algorithm is then benchmarked by using the
optimal training parameters on the independent test set. The
PRI [67] result is then given for the entire image database for
comparison with the other segmenters (see Table I). In our
algorithm, all color images are normalized to have the longest
side equal to 320 pixels. The segmentation results are then
supersampled in order to obtain segmentation images with
the original resolution (481 × 321) before the estimation
of the performance metric. We have compared our segmen-
tation algorithms called MD2S (for MDS-based segmenta-
tion), namely, MD2SK-means[K=11|ξ=0.4] and MD2Smean-shift[σs=27|σr=55|ξ=0.4]
against several unsupervised algorithms. For each of these
algorithms, the internal parameters are set to optimal values
and/or correspond to the internal values suggested by the
authors. The comparison is based on the PRI2 performance

2We have used the MATLAB code proposed by A. Y. Yang in order to
estimate the PRI performance measure presented in the following section.
This code is available online at http://www.eecs.berkeley.edu/∼yang/software/
lossy_segmentation/.
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Fig. 6. Example of segmentations obtained by our algorithm MD2SK-means[K =11|ξ=0.40] on several images of the Berkeley image database (see also
Table I for quantitative performance measures and http://www.iro.umontreal.ca/∼mignotte/ResearchMaterial/md2s.html for the segmentation results on the
entire database).

measure, which seems to be also highly correlated with
human hand-segmentations [19] (a score equal to PRI = 0.78,
for example, simply means that, on average, 78% of pairs
of pixel labels are correctly classified in the segmentation
results).

D. Results and Discussion

Table I shows the obtained PRI results for the different
algorithms. Fig. 5 shows the distribution of the PRI measure
over the 300 images of the Berkeley image database. To
be impartial and for comparison, we illustrate the results of
our simplest segmentation algorithm MD2SK-means[K=11 | ξ=0.4] by
showing the same segmented images (see Figs. 6 and 7) as
those shown in [29], in which the best existing segmentation

algorithm, in the PRI score sense, (see Table I) is described.
The results for the entire database are available online at http:
www.iro.umontreal.ca/∼mignotte/ResearchMaterial/md2s.

It may be noted that our segmentation procedures give com-
petitive PRI results among the state-of-the-art segmentation
methods recently proposed in the literature even with a final
simple clustering scheme based on a K -means algorithm and
a simple texture feature extraction step based on the values
of the local requantized color and gradient distributions. This
nonlinear dimension reduction pretreatment also allows to
significantly improve the mean-shift segmentation results by
increasing its PRI score from 0.755 to 0.786 (see Table I).
This is mainly because there is a real interest to learn a
nonlinear low-dimensional representation of the texture feature
set for the segmentation problem. The same clustering scheme
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Fig. 7. Example of segmentations obtained by our algorithm MD2SK-means[K =11|ξ=0.40] on several images of the Berkeley image database (see also
Table I for quantitative performance measures and http://www.iro.umontreal.ca/∼mignotte/ResearchMaterial/md2s.html for the segmentation results on the
entire database).

(K -means) without dimensionality reduction yields a signifi-
cantly lower PRI score of around PRI = 0.72 and PRI = 0.73
with a classical PCA-based reduction method (in this case, the
PCA does not provide more textural information but seems
to just simplify a bit the clustering problem). Some textured
images are very hard to segment because of the camouflaging
property of the texture of some animals, but become easy
to segment after our nonlinear dimensionality reduction step.
This leads us to think that this type of camouflage texture
data lies on an embedded nonlinear manifold within the higher
dimensional space, which then makes the clustering or opti-
mization algorithms subsequently used in segmentation less
efficient. However, by comparison to [29], the segmentation
results obtained are a bit oversegmented. Consequently, our
segmentation procedure should provide better results if a final

grouping at region level (including or not an a priori on the
number and/or the shape of these segmented regions) would
be used as post-treatment.

Let us also mention that these oversegmented images in-
duce some false contours (see Figs. 6 and 7). In order
to quantify this problem and to measure the contour ac-
curacy of our segmentation algorithm, we have computed
the boundary displacement error (BDE) distance measure
(the lower the distance, the better) proposed by [68] on the
entire Berkeley database. The BDE measures the average
displacement error of boundary pixels between two segmented
images. Particularly, it defines the error of one boundary
pixel as the distance between the pixel and the closest pixel
in the other boundary image. For our algorithm, we obtain
BDE = 10.3 for MD2SK-means[K=11|ξ=0.4] and BDE = 9.8 for
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MD2Smean-shift[σs=27|σr=55|ξ=0.4] compared to 9.9 for algorithm CTM
[19] and 10.0 for algorithm FH (result available in [19]),
which, in terms of contour accuracy is nearly comparable,
but, as mentioned earlier, this boundary-based performance
measure could be greatly improved in our case by adding a
final merging step in the segmentation procedure.

E. Comparison with FastMap

We have also compared our multiresolution MDS strategy
with another recent scalable MDS technique, namely the
FastMap algorithm [46] (see also Section I). It is worth
pointing out that it was reported in [51] that the FastMap
algorithm is as efficient as the best existing scalable MDS,
the so-called Landmark MDS, in term of accuracy and speed
comparisons, for very low embedding dimensions (i.e., d ≤ 2),
which is the case in our image segmentation application.
The quality of the FastMap and our multiresolution MDS is
measured in four different ways: 1) first by visual inspection
of the low 3-D (detextured) representation (as a color image)
of the input image [see Fig. 3]; 2) as in [51], by comparing
the root mean square (RMS) relative distance error (RDE)
introduced by the embedding; 3) by comparing the PRI-based
segmentation score obtained by a K -means clustering on each
of the two detextured images on the Berkeley database (after
our learning step); and 4) by the CPU time. To this end, we
have thus modified the FastMap algorithm (and the C source
code, available online from the author’s site [46]) so that it
runs with our (non-Euclidean) Bhattacharyya distance [see (2)]
along with the heuristic proposed in [47] for non-Euclidean
distance metric (which prevents projections with nonpositive
distance values at each iteration of the FastMap procedure).
On the other hand, our spatial regularizing prior ws,t (equal
to 0.5 for sites t belonging to the first neighborhood of s
[see (2)]) could not be included in the FastMap algorithm since
the algorithm does not exploit the lattice structure of an image
data. Fig. 1 shows the detextured image given by the FastMap
algorithm. Contrary to our approach, we can easily see that
the FastMap-based detexturing approach converts the different
textural regions of the original image with less uniform colors
(e.g., the girl’s face or sweater) and seems to wrongly use,
in the third image, similar colors for two different textured
region (e.g., the red peppers and the foreground region of this
image). On the other hand, the FastMap is 10 times faster of
our multiresolution MDS (5 versus 50 s).

Let us now compare the accuracy in terms of the RMS-RDE
introduced by the embedding. As in [51], for the FastMap
whose the stress or cost functions is

∑
s,t(d̂s,t − ds,t)

2, this
RMS-RDE is defined by

RMSRDE =
√
√
√
√ 1

N(N − 1)

∑

s,t

([
ρ d̂s,t

ds,t

]

− 1

)2

(6)

with

ρ =
∑

s,t d̂s,t/ds,t
∑

s,t d̂2
s,t/d2

s,t

(7)

with ds,t and d̂s,t , respectively, the true (unembedded) and the
estimated (in the embedded space) distance, and ρ a scaling

factor.
∑

s,t integrates to the N(N − 1) pairs of sites existing
in the image. For our multiresolution MDS, whose the cost
functions is

∑
s,t (d̂

2
s,t − ws,t ds,t)

2, we have also used the
RMS-RDE on this (slightly different) cost function

RMSRDE =
√
√
√
√ 1

N(N − 1)

∑

s,t

([
ρ d̂2

s,t

(ws,t ds,t)

]

− 1

)2

(8)

with

ρ =
∑

s,t d̂2
s,t/(ws,t ds,t)

∑
s,t d̂4

s,t/(ws,t ds,t)2
. (9)

Since we have, for each detextured image, two embeddings
[see (1)] and twice as much weight for the color-cue-based
mapping compared to the gradient-feature-based mapping, we
have weighted accordingly the two RMSRDE measures. We
have computed the average RMSRDE on the whole Berkeley
image database (with a subsampling factor of 10 pixels in
length and width) and obtained RMSRDE = 0.9441 for the
FastMap and RMSRDE = 0.9244 for our multiresolution MDS,
which is slightly better in the case of the multiresolution MDS.
Nevertheless, it remains difficult to quantify the difference
in performance of these two scalable MDS techniques only
on the values of the RMS-RDE metrics for two reasons. The
first is due to the fact that we have two slightly different cost
functions, the second is that the error can be very different in
nature. More precisely, identical error in the RMS-RDE metric
sense may affect differently the segmentation procedure. In our
multiresolution MDS scheme, the presence of the regularizing
factor ws,t and the contextual interpolation scheme constrain
the mapping, i.e., the detextured image, to be homogeneous
which, in our case, greatly simplifies the subsequent seg-
mentation procedure. Our regularizing factor thus incorporates
knowledge concerning the types of detextured images (a priori
defined as interesting solutions) but may introduce errors in the
resulting low-dimensional mapping, errors which are reflected
in the RMS-RDE metrics (but which can surely help the
segmentation procedure). For that reason, we have to learn the
internal parameters of the FastMap + K -means segmentation
strategy by our grid search technique and finally compare
the resulting PRI score. In this case, we obtain a lower PRI
score around PRI = 0.755 with the FastMap + K -means
segmentation algorithm (see Table I). In our opinion, there
are possibly several explanations for this (whose order of
importance remains quite difficult to determine).

1) This may be because our non-Euclidean Bhattacharyya
distance (used between each sample pair) creates for
the FastMap (and also for all MDS methods based on
eigendecomposition) a non-Euclidean distance matrix
and thus a Gramian matrix which is no more positive
semidefinite (PSD) and consequently with possible nega-
tive eigenvalues, thus disturbing the convergence and ac-
curacy of the FastMap algorithm [51] (this is even more
important because the distance used in our case is non-
linear). As explained in [69], this is somewhat equivalent
to considering a noise corrupted version of the Gramian
matrix. It is also worth out that, with non-Euclidean
distance matrix, eigendecomposition-based MDS is not
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equivalent to directly optimizing over distance matrices
[69]. These latter methods somewhat circumvent this by
using the heuristic of replacing all negative eigenvalues
with a null value, which is equivalent to approximating
the original distance matrix (in the sense of Frobenius
norm) and finally finding an embedding solution [69],
[70]. Another strategy that makes the Gramian matrix to
be PSD is the recent constant-adding method adopted in
[71], which consists in finding an appropriate constant
to be added to all dissimilarity distances (apart from
the self-dissimilarities) such that the distance kernel
matrix is guaranteed to be PSD. This constant can be
estimated by the largest eigenvalue of a matrix built
from the input distance matrix. Since this constant-
adding strategy requires preliminary computation of the
distance matrix associated with all pairs of points, it is
worth noting that this method cannot be applied, in any
obvious way, to (scalable) Landmark MDS or FastMap
algorithms.

2) This is also due to the very scalable method used in the
FastMap [46]. Indeed, the heart of the FastMap is based
on the Pythagorean theorem and a sequence of several
projections onto hyperplanes perpendicular to pivot axes
(defined by distant pairs of samples). As explained in
[65], the Pythagorean theorem is specific to Euclidean
distances and does not hold if non-Euclidean distances
are used. The use of a non-Euclidean distance in such a
method (such as the Bhattacharyya distance) may cause
the pruning property to be violated and this can severely
degrade the performance of FastMap. In order to some-
what alleviate this problem, a heuristic is proposed in
[47] (and this heuristic was included in our FastMap
algorithm code). Nevertheless, as explained in [65], it
resolves the drawback of negative projected distances
but does not correct the fundamental problem, namely
the fact that non-Euclidean distances do not satisfy the
triangle inequality and the Pythagorean theorem.

3) It may also be due to the spatial regularizing factor (ws,t)
used in our multiresolution MDS method, and which
helps to estimate a less noisy color (de-textured) image
by simply modeling the fact that spatial neighboring
samples are likely to belong to the same region (and
which then facilitates the subsequent K -means-based
segmentation procedure).

4) Is is also possible that our interpolation scheme (see
Section IV-B), which also exploits the inherent spa-
tial dependencies between neighbouring texture feature
vectors and the weighted average formula (also effi-
ciently used in competitive denoising procedures such
as the non-local means filtering strategy [62]), acts as
a regularizing factor which efficiently constrains (thus,
especially for image data) our MDS dimensionality
reduction model and the subsequent K -means clustering
procedure.

For comparison, in terms of computational complexity, the
cost of running Landmark (ISOMAP) MDS algorithm with N
points, n landmarks, and p nearest neighbors in the (target)
low-dimensional d space is O(Nnp + Nnd + n3) if the

neighborhood graph is given [48]. The cost of building the
p-nearest neighbor graph has complexity O(N2). Neverthe-
less, as indicated in [48], there are more sophisticated tech-
niques that give an expected bound of cO(1)(N p+ N log log n)
for datasets with an expansion coefficient of c. For data
sampled randomly from a d-dimensional sub-manifold (of
only Euclidean space), the expansion coefficient is c = 2d .

The computational complexity of FastMap is O(N D2),
where we recall that D is the dimensionality of the high-
dimensional representation. Indeed, in this model, the com-
putation is dominated by D deflations, i.e., concretely D pro-
jections onto hyperplanes, each operating on N data samples
and each of which takes O(D) operations [51]. It is also shown
in [51] that the CPU times between these two scalable MDS
algorithms remain comparable.

In comparison, the time complexity of our algorithm, with
two levels of resolution (i.e., the full resolution and an image
16 times smaller in length and width [see Section IV]), is
O

(
N N2

s D+(N/162)N2
s [L D

max + LS
max]+ N N2

s LS
max + N N2

I D
)

for an image with N pixels. More precisely, O(N N2
s D) is the

time complexity of the computation of the set of distances at
the full and coarser resolution levels. Ns is the size of the
square neighborhood window (Ns = 15 in our algorithm)
and D is the dimensionality of the high-dimensional rep-
resentation. O((N/162)N2

s [L D
max + max]) and O(N N2

s LS
max)

are respectively the time complexity of the hybrid and sto-
chastic optimizations at the full and coarser resolution levels,
with L D

max and LS
max representing the maximum number of

iterations of the conjugate gradient and Metropolis searches
(L D

max and LS
max < 100 in our algorithm since these iterative

optimizers can stop before the maximum number of iterations,
when convergence is reached). Finally, O(N N2

I D) is the time
complexity of our interpolation scheme, with NI denoting
the size of the squared neighborhood window used in our
interpolation scheme (NI = 5 in our algorithm). Since D, Ns ,
NI , L D

max, and LS
max, are much lower than N , our algorithm

can be implemented in a linear polynomial time as the
Landmark (except for the building of the nearest neighborhood
graph of the Landmark algorithm which should use a non-
Euclidean distance to be compared with our Bhattacharyya-
based reduction model) and the FastMap algorithms. In
terms of computing time, as previously said, the FastMap is
10 times faster than our multiresolution MDS, more precisely
5 versus 50 s for a 320 × 240 image (and the computing
time of the Landmark is comparable to the FastMap algorithm
when Euclidean distances are used [51]).

F. Algorithm

The segmentation procedure takes about 1 min (on average,
50 s for the dimensionality reduction and approximately
5 − 10 s for the clustering per image for an i7-930 Intel
CPU, 2.8 GHz, 5611 bogomips and for a nonoptimized
code running on Linux for the entire segmentation procedure.
Source code (in C++ language) of our algorithm (with the
set of segmented images) are publicly available at the follow-
ing http: www.iro.umontreal.ca/∼mignotte/ResearchMaterial/
md2s.html, in order to make possible comparisons with
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future segmentation algorithms or different performance
measures.

VI. CONCLUSION

In this paper, we have proposed a robust multiresolution
framework for reliable solution of MDS-based nonlinear and
large-scale dimensionality reduction problems. As application,
we have demonstrated the interest of this algorithm to learn
a nonlinear low-dimensional representation of the set of high-
dimensional textural features of an image. In our application,
this low-dimensional representation is a nonlinear embedding
in which the local color value distribution of the texture region
is approximated by pairwise pixels whose values is separated
by Bhattacharyya distances. This dimension reduction step,
which can be viewed as a detexturing approach that converts
the original texture image into a noisy image with regions with
uniform colors in a low-dimensional space, simplifies greatly
the segmentation problem of textured images and appears to
be an interesting alternative to complex segmentation models
existing in the literature.
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