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Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with
it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper,
we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with
application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating,
within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained
by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI).
This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a
preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested
on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The
experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration
approach using a Metz filter.
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1. Introduction

In the image restoration framework, the regularization term
is crucial to incorporate knowledge concerning a priori
acceptable solutions and to constrain the solution of this
ill-posed inverse problem. In this paper, we are concerned
with image restoration issues using information from a
different modality (intermodality) for this fusion-based
regularization term. More precisely, we herein propose an
original extension of the NAS-RIF restoration technique
allowing the NAS-RIF inverse filtering to be constrained
from an intermodality registration, that is, a registration
between anatomical and the functional medical images to be
restored (from the anatomical structure of the same patient).
In our application, anatomical information is extracted from
a high-resolution anatomical procedure such as magnetic
resonance imaging (MRI) or computed tomography (CT)
and this high spatial resolution modality is exploited to
improve the contrast of functional SPECT images.

The contrast and signal-to-noise ratio displayed by brain
single photon emission computed tomography (SPECT)
images is rather limited, when compared with that from
anatomical techniques (MRI, CT scanning). This fact limits
the potential use of brain SPECT images. For instance, it is
not easy to differentiate low tracer uptake due to a functional
deficit, where brain tissue still is anatomically intact, from
low uptake generated by focal atrophy, where tissue is lost
and replaced by cerebrospinal fluid (CSF) [1].

Up to now, several methods have been proposed to
improve directly or indirectly the spatial resolution of SPECT
images. These methods can be split into two major classes:
those using restoration techniques during the reconstruction
process from projections, and those where the restoration
is performed on the already reconstructed images. In this
paper, we are describing a posttomographic reconstruction
process, an approach which has the advantage of being
essentially independent from the physical features of the
scanner.
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In this category, we can cite [2] where Rajabi et al.
compared four widely used filters (i.e., Hanning, Butter-
worth, Metz and Wiener) for myocardial 99mTc-sestamibi
SPECT perfusion studies. In [3] a nonnegativity and support
constraints recursive inverse filtering (NAS-RIF) algorithm
proposed by Kundur and Hatzinakos [4], was extended to
the 3D SPECT imaging restoration context. The NAS-RIF
blind deconvolution technique is relevant to any situations in
which a finite object of interest is imaged against a uniformly
grey (or noisy) background [4]. This method can thus be
efficiently exploited in brain SPECT imaging since the true
undistorted rCBF map of a human brain consists of a finite
support imaged against a noisy background (the background
depending of both the Poisson noise phenomenon inherent
to imaging with radioactive elements and to other, nonPois-
son sources of background in the images such as electronic
noise from the scanner). The only information required for
this deconvolution procedure is the nonnegativity of the true
image and the support of the object to be restored. In [3],
this support was accurately determined by an unsupervised
3D Markovian segmentation technique applied to the SPECT
volume.

Using the same strategy, but this time during the
reconstruction process, we can cite Bayesian tomographic
reconstruction methods [5, 6] which use structural informa-
tion on the presence and location of important anatomical
“landmarks” (such as local discontinuities or extended
homogeneous regions as seen for instance on an MR
anatomical image) to control noise without smoothing
edges. These models usually express that, within a detected
and segmented “uniform” anatomical region, neighboring
pixels in the functional image should have similar grey level
values (local homogeneity) or follow a Gaussian distribution
with a unique mean value (global homogeneity) [7, 8].

In this paper, we propose to extend the method presented
in [3] by introducing into the NAS-RIF algorithm a new
spatially-adaptive regularization term for SPECT image
deconvolution. This regularization term allows to efficiently
include anatomical information extracted from a high-
resolution anatomical MRI image [9] while stabilizing the
solution of the NAS-RIF inverse filter by preventing noise
amplification and ringing artifacts. In our application, this
structural anatomy-based regularization term exploits the
result of an unsupervised Markovian segmentation obtained
after a preliminary registration step between the MRI and
SPECT volumes from the same patient. The proposed
regularization term is quadratic and the NAS-RIF procedure
thus involves recursive filtering of the degraded image to
minimize a newly convex objective cost function with a
conjugate gradient method. Our restoration method was
tested on 30 pairs of brain MRI and SPECT images from
different patients and on Hoffman and Jaszczak SPECT
Phantoms and compared with a standard supervised decon-
volution/restoration approach using a classical Metz filter.

This paper is organized as follows. Section 2 briefly
describes the proposed 3D anatomical constraint version of
the NAS-RIF deconvolution technique. Section 3 describes
the registration and segmentation algorithms. Section 4
presents the validation protocol of the new restoration

method. We then show some of our experimental results
on phantom and real brain SPECT volumes and validate
the proposed model in Section 5. Finally, we conclude in
Section 7.

2. 3D Anatomical Constraint
NAS-RIF Algorithm

2.1. 3D Extended Version of the NAS-RIF. In our application,
and as proposed in [3], we assume that 3D SPECT images
are degraded according to the following, widely-used linear
model:

g
(
x, y, z

) = f
(
x, y, z

)∗ h(x, y, z
)

+ n
(
x, y, z

)
, (1)

in which g(x, y, z), f (x, y, z), and h(x, y, z), respectively,
denote the degraded 3D image, the true image and the
point spread function (PSF). n(x, y, z) represents the additive
noise and ∗ designates the 3D discrete linear convolution
operator. The 3D blind deconvolution problem consists then
in determining f (x, y, z) and h(x, y, z) (or its inverse) given
the blurred observation g(x, y, z).

In the 3D extended version of the NAS-RIF deconvo-
lution strategy, the output of the FIR filter u(x, y, z) of
dimensionNxu×Nyu×Nzu gives an estimate of the true image

f̂ (x, y, z). Each resulting estimation is passed through a non-
linear filter which uses a nonexpansive mapping to project
the estimated 3D image into the space representing the
known characteristics of the true image (expressing in fact
that the image is assumed to be nonnegative with a known

support). The difference between this projected image f̂NL

and f̂ , e(x, y, z), is used as the error signal to update the vari-
able filter u(x, y, z). In the 3D context, the cost function used
in the deconvolution procedure of the 3D image is defined as
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where f̂ (x, y, z) = g(x, y, z) ∗ u(x, y, z), and sgn( f ) = −1
if f < 0 and sgn( f ) = 1 if f ≥ 0. D is the set of all pixels of
g(x, y, z) inside the region of support, and D is the set of all
pixels outside the region of support.

The first term, J1(u), is used to penalize negative voxels in
the support in order to keep the image estimate nonnegative.
The second term J2(u) penalizes voxels located outside the
support with values which deviate significantly from the
background average LB. When the background of the true
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Figure 1: Transaxial slices of the phantoms. (a) Hoffman phantom MRI. (b) Hoffman phantom SPECT. (c) Cylindrical phantom MRI. (d)
Cylindrical phantom SPECT with hot spheres. (e) Cylindrical phantom MRI. (f) Cylindrical phantom SPECT with cold spheres.
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Figure 2: Three-dimensional extension of the NAS-RIF deconvolu-
tion algorithm with incorporation of anatomical constraints.

image is black, that is, LB = 0, the third term, J3(u), is used to
avoid a trivial all-zero minimum solution (γ being a positive
constant).

The authors have shown in [10] that the above equation
is convex in the 2D case with respect to u. This property
remains true in the 3D case so that convergence of the
algorithm to the global minimum is ensured using the
conjugate gradient minimization routine [10].

2.2. Anatomical Constraint 3D NAS-RIF. The major short-
coming of the NAS-RIF technique is its noise amplification
at low SNR [4]. This is due to the high-pass property of the

inverse filter u(x, y, z) which amplifies high-frequency noise.
As a result, the solution at convergence may not be the best
estimate of the original object in the presence of noise. In
order to solve this problem, a solution has been suggested
by Kundur and Hatzinakos [4], which consists in halting
the iterative restoration process through visual inspection.
In practice, this requires a strong supervision and, even in
this case, it is not so easy to determine which is the optimal
iteration for termination (different parts of the image may
converge at different rates), making this method unreliable.

In this work, we propose an alternative regularization
approach for the NAS-RIF algorithm which can also be
viewed as a way to incorporate anatomical information
extracted from a (high-resolution) anatomical MRI (or CT)
image into the SPECT data. The proposed regularization
term also allows stabilization of the inverse solution by
preventing noise amplification, does not require supervision
(parameters tuning or stopping criterion) and is capable
of introducing better constraints on the solution of our
restoration problem. This strategy consists in applying, over
predetected and segmented anatomical regions, a piecewise
smoothness constraint on the functional SPECT image to be
recovered. To this end, our regularization term exploits the
result of a preliminary registration step between the MRI and
SPECT images as well as the result of a segmentation of the
MRI image into anatomical classes.

In our model, the new cost function related to the
deconvolution of the 3D image is now defined as

J(u) = J1(u) + J2(u) + γ J3(u) + δ J4(u) (4)

with:

J4(u) =
3∑

i=1

∑

(x,y,z)∈ri

(
f̂
(
x, y, z

)− ri
)2

, (5)
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where the first summation is made on the three main
“anatomical” types (tissues) found in the brain, that is,
white matter (rWM), grey matter (rGM), and cerebro-spinal
fluid (rCSF) and ri designates the mean, in grey levels, of
the ith region and δ is a weighting factor between this
anatomical constraint and the hard constraints of the NAS-
RIF procedure. In this context, D = rWM ∪ rGM ∪ rCSF and

ri = (1/Nri)
∑

(x,y,z)∈ri f̂ (x, y, z) where Nri is the number of
voxels in the region ri.

J4(u) is proportional to the sum of variance within
each anatomical region (for each transversal slice) of the
SPECT image. This term expresses that, within a detected
and segmented anatomical region, pixels in the functional
image in general tend to have similar grey level values. This
regularization term is edge-preserving since it allows to apply
a smoothness constraint, while preserving (anatomical)
discontinuities.

Furthermore, the introduction of this regularization
term J4 does not affect the convexity of the NAS-RIF cost
function, and therefore a unique solution to the problem is
still guaranteed. Figure 2 shows the structure of this scheme.
A coregistered SPECT and (high-resolution) MRI datasets
“along with the result of a segmentation of the MRI volume
into anatomical classes” are used as input for the cost
function.

The first derivative of the cost function in (4) is shown in
(7). The gradient vector of J with respect to u is:
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A gradient-based iterative restoration algorithm or its
conjugate version can be efficiently applied to minimize this
convex cost function. Besides, since the proposed criterion
is quadratic, many other optimization methods can be
used.

The initial inverse FIR filter required by the NAS-RIF
algorithm is the Kronecker delta function [10]; the size of
this inverse filter is set to 3 × 3 × 3 pixels. Furthermore, we
have used γ = 0 because the background of SPECT images
is not completely “black” [4].

Finally, the convergence criterion of the proposed algo-
rithm is the stability of the cost function to be minimized,
that is,

J
(
u[l+1]

)
− J
(
u[l]
)

J(u[l])
≤ ε, (8)

where ε is a threshold, typically set in our application to
10−3, with the upper-script denoting the iteration number.
Figure 3 shows the evolution of the cost function value along
the iterations of the gradient descent process for the image
restoration presented in Figure 8.

In order to define our anatomically based regularization
term J4, we exploit the result of a 3D registration step
between the MRI and SPECT input volumes (from the same
patient) [11, 12] and then an unsupervised Markovian seg-
mentation of the (registered) MRI 3D image into anatomical
classes [9] (See Section 3.2).

3. Registration and Segmentation

In order to define our anatomically based regularization term
J4, we exploit the result of a 3D registration step between
the MRI and SPECT input volumes (from the same patient)
and then an unsupervised Markovian segmentation of the
(registered) MRI 3D image into anatomical classes.

3.1. Registration. The 3D registration method used in our
application is based on mutual information (MI) and is
fully described in [12]. The MI registration criterion C(θ)
between the input MRI and SPECT volumes describes the
amount of information in the joint histogram of the images;
hence its maximization results in the best match of intensity
correspondences between the images for registration. The
optimal set of registration parameters θoptimal is then found
by maximizing C(θ), where the vector θ is simply estimated
by the Powell’s method [13]. The images are smoothed
slightly in order to make the cost function C(θ) as smooth as
possible to give faster convergence and less chance of finding
bad local minima (related to a wrong registration). The code
used to register the MR image to the SPECT image is mainly
inspired from the software package Statistical Parametric
Mapping (SPM)[14]. (See Figure 7).

3.2. Segmentation of the MRI Volume. To this end, we
consider two random fields (X ,G), where G = {Gs, s ∈ S}
represents the field of observations located on the 3D lattice
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Figure 3: Evolution of the cost function J along the iterations of the
gradient descent process for an image restoration.
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Figure 4: ISNR as a function of the parameter FWHM for the
Hoffman phantom SPECT.

S of sites s (voxels) and X = {Xs, s ∈ S} the label field
(related to the class labels Xs of a segmented 3D image). Each
aforementioned label is associated to a specific brain “tissue”
category or region on the 3D image. CSF and extra-cerebral
tissues are combined in a single class, corresponding to
tissue without (significant) tracer uptake. Although skin and
other structures outside the brain actually have a nonzero
tracer presence (they have blood flow), we assume this to be
negligible here. The CSF area designates regions within the
brain and immediately around it that are actually devoid of
activity (intracerebal ventricles and peri-cerebral cysterns).
The white matter and grey matter (brightest region) are asso-
ciated with lower and higher levels of blood flow, respectively,
[15]. Each Gs takes its value in {0, . . . , 255} (256 grey levels),
and each Xs in {e1 = “CSF”, e2 = “whitematter”, e3 =
“greymatter”}. The distribution of (X ,G) is defined, firstly,
by a prior distribution PX(x), assumed to be Markovian

and secondly, by the site-wise conditional data likelihoods
PGs/Xs(gs/xs) whose shape and parameter vector Φ(xs) depend
on the concerned class label xs (gs designates the grey level
intensity associated to the site s).

Estimation Step. In order to determine Φ = (Φ(e1),Φ(e2),
Φ(e3)), we use the Iterative Conditional Estimation (ICE)
algorithm [16] and three different Gaussian laws for the
likelihood.

Segmentation Step. Based on the estimates given by the ICE
procedure, we can compute an unsupervised 3D Markovian
segmentation of the MR volume. In this framework, the
Markovian segmentation can be viewed as a statistical
labeling problem according to a global Bayesian formulation
in which the posterior energy has to be maximized [17]:

U
(
x, g
) =

∑

s∈S
− lnPGs|Xs(gs | xs)

︸ ︷︷ ︸
U1(x,g)

+
∑

〈s,t〉
βst (1− δ(xs, xt))

︸ ︷︷ ︸
U2(x)

(9)

where U1 expresses the adequacy between observations and
labels, and U2 represents the energy of the a priori Pott
model (which tends to favor homogeneous regions with no
privileged orientation). βst (= 1 here) is a weight parameters.
We use the deterministic Iterated Conditional Modes (ICM)
algorithm [17] to minimize this global energy function. For
initialization of this algorithm, we use the segmentation map
obtained by a Maximum Likelihood (ML) segmentation. The
support D is then determined simply by the set of pixels
belonging to CSF, white and grey matter classes. (See Figures
5 and 6).

4. Validation

4.1. SPECT Data Acquisition and Reconstruction. The SPECT
images were acquired with a triple-head gamma cam-
era (Picker Prism, Cleveland, OH, USA) equipped with
low-energy, high-resolution parallel-holes collimators. The
SPECT projections were acquired over 360◦. 90 projections
of 50 seconds each were obtained. The radioisotope was
99mTc-ECD (Ethylene Cysteinate Dimer).

4.2. MRI Data Acquisition. MRI images were acquired on a
Siemens Magnetom Avanto 1.5T scanner using a 3D-FISP
with a radial trajectory in k-space. It used a nonselective
excitation. The scanning parameters were TR = 9.2 ms, TE
= 2.2 ms with N slices of 512 × 512 voxels with voxel
dimensions of 0.5×0.5×1.0 mm3, andN ∈ [130, 150]. These
3D MRI images were further processed to isolate the brain
from other tissues, using the brain extraction tool (BET)
[18] of the MRIcro software by adjusting BET’s fractional
intensity threshold.
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Figure 5: Examples of human brain MRI cross-sectional images. (a), (b), (c): Original MRI cross-sectional human brain images. (d), (e),
(f): Unsupervised three-dimensional Markovian segmentations.

Table 1: The global contrast CG and the mottle M (expressed in %) and the improvement signal-to-noise ratio ISNR (expressed in dB)
obtained from, respectively, the restored image with and without J4(u), the Metz filter, and the degraded images that are the original phantom
SPECT.

Phantoms Restored images Degraded images

with J4(u) Metz filter without J4(u)

CG M ISNR CG M ISNR CG M ISNR CG M

Hoffman 30.4 25.2 0.720 23.0 20.1 0.420 19.2 17.8 0.298 18.2 17, 4

Cold spheres 28.2 36.4 0.680 20.7 32.3 0.398 19.5 26.5 0.240 17.0 26.0

Hot spheres 27.8 38.7 0.669 20.1 33.1 0.385 19.0 27.4 0.226 16.3 26.4

Table 2: Local contrast CL (expressed in %) with and without correct anatomic information obtained from the restored image with J4(u).

Cold Spherei 1 2 3 4 5 6

CL (with partially incorrect anatomic information) 22.7 20.0 17.3 14.6 10.6 5.6

CL (with correct anatomic information) 23.3 19.5 15.9 14.8 9.4 6.9

Table 3: The local contrast CL (expressed in %) with correct anatomic information obtained from, respectively, the restored image with and
without J4(u), the Metz filter, and the degraded image that are the original phantom SPECT.

Restored images Degraded

Cold spherei with J4(u) Metz filter without J4(u) image

CL CL CL CL

1 23.3 17.2 16.1 14.4

2 19.5 16.7 14.9 12.1

3 15.9 12.3 11.2 9.3

4 14.8 10.4 9.0 7.8

5 9.4 7.1 6.0 4.1

6 6.9 4.6 3.1 2.1
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(a) (b)

Figure 6: Example of segmentation for phantom. (a) Original MRI.
(b) Segmented MRI.

4.3. Validation Protocol on Phantoms. Two imaging phan-
toms were considered in order to validate the accuracy of our
SPECT images restoration method

(i) For SPECT imaging, the Hoffman 3D Brain Phantom
[19] was scanned while containing 148 MBq of
activity. The phantom was positioned so that the
orientation of the slices within the phantom would
match as much as possible those from the MRI
image. Phantom SPECT data included a set of 61
slices of 128 × 128 voxels with voxel dimension of
1.85 × 1.85 × 1.85 mm3. The MRI Phantom data
contained 209 slices of 256 × 256 voxels with 1 mm
isotropic voxels. Figure 1 shows transversal slices of
the Hoffman phantom.

(ii) The other phantom contains 6 spheres of differ-
ent sizes (diameters #1: 9.5 mm, #2: 12.7 mm, #3:
15.9 mm, #4: 19.1 mm, #5: 25.4 mm, #6: 31.0 mm).
In one condition, the spheres were filled with a
radioactive solution and the rest of the cylinder
(background) with a less concentrated solution of the
same radioisotope, giving an activity concentration
ratio (spheres/background) of approximately 2.7 : 1;
in another condition, the cylinder was filled with a
low-activity solution and the spheres were filled with
nonradioactive water. Phantom SPECT data included
a set of 93 slices of 128 × 128 voxels with voxel
dimensions of 1.85× 1.85× 1.85 mm3. The Phantom
MRI data contained 224 slices of 256 × 256 voxels
with 1 mm isotropic voxels. Figure 1 shows transaxial
slices of the phantom (Deluxe ECT) [20].

Simple visual examination is an easy method for evalu-
ation of the restorative power of a technique, but it is obvi-
ously an insufficient approach. A better evaluation approach
consists in computing a performance measure based on the
improvement in signal-to-noise ratio (ISNR), expressed in
decibels (dB), using both the degraded phantom, the ground
truth (or the original undegraded image given by the MRI

image), and the restored phantom images. The ISNR is
defined by [21],

ISNR = 10 log10

⎛

⎝

∥
∥
∥Iori − Ideg

∥
∥
∥

2

‖Iori − Ires‖2

⎞

⎠, (10)

where Ideg is a given degraded phantom image, Iori is the
corresponding original (ground truth) phantom image and
Ires is the restored phantom image. ‖ · ‖2 is a symbol for
quadratic norm. Obviously, this metric can only be used
with knowledge of the original object; in our case this came
from the MRI phantom and knowledge of the radioac-
tivity concentration within each subcompartment of the
phantom.

In addition, restored images were also evaluated by the
specific evaluation criteria proposed in [22, 23], based on the
estimation of the four following measures:

(i) the global contrast [22] of the image, defined byCG =
(1−mWM/mGM), wheremWM andmGM are the means
of the pixel value in the white and grey matter areas
respectively.

(ii) the local contrast of the image [23], defined by CL =
(Ri − Bj)/Bj , where Ri represents the mean grey level
value inside the ith sphere and Bj represents the mean
grey level value outside the ith sphere (in a circle
centered around the sphere and whose radius D is
half the distance from one sphere center to the next
in the image.)

(iii) the image mottle MWM in the white matter region
[22], defined by MWM = σWM/mWM, where σWM is
the standard deviation of pixel values in this area.

(iv) the image mottle MGM in the grey matter region
[22], defined by MGM = σGM/mGM, where σGM is the
standard deviation of pixel values in this area.

These two metrics MWM and MGM allow us to measure
the amplification of noise and/or to measure the presence of
undesirable artifacts that could be created by the restoration
procedure in a uniform region of the SPECT volume. Due
to the different number of pixels belonging to each brain
anatomical tissue category, we considered the total mottle
measure given by M = ρWMMWM + ρGMMGM, with ρWM

and ρGM designating the proportion of pixel belonging
to the white and gray matter area respectively. A reliable
SPECT image restoration method is one that enhances image
contrast with little increase in the mottle. Inversely, for
a given maximal mottle measure, we can measure if the
contrast enhancement is significant [22].

4.4. Comparison with a Supervised Metz Restoration Filter.
We have compared our blind and unsupervised deconvolu-
tion approach to a classical deconvolution technique using a
Metz filter [24]. The Metz filter is a supervised deconvolution
(restoration) procedure which assumes knowledge of the
point spread function (PSF) of the imaging system. The
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Figure 7: Examples of registration of the MR volume to the SPECT volume (using registration method described in Section 3.1). (a), (b),
(c): Axial, sagittal, and coronal view of a SPECT volume. (d), (e), (f): Axial, sagittal, and coronal view of a registered MR volume.

filter is a combination of an inverse filter and a low pass
filter. This filter allows deconvolution of SPECT images while
attenuating very high frequencies (i.e., noise which could be
induced by inverse filtering) [24]. Please remember that the
Metz filter has two parameters to be adjusted, the full width
at half maximum (FWHM) related to the filter size and p
(which is the order of the filter).

5. Experimental Results

Restoration of clinical data was performed on pairs of MRI
and SPECT images from 30 epileptic patients. Each SPECT
data set contained N slices of 128 × 128 voxels with voxel
dimensions of 1.85 × 1.85 × 1.85 mm3, and N ∈ [69, 103].
MRI data sets contained M slices of 512 × 512 voxels with
voxel dimensions of 0.5×0.5×1.0 mm3 andM ∈ [130, 150].
In this section, a few examples from that group are
presented.

Isolation of the brain (in MRI) from other tissues was
made off-line prior to the registration and restoration steps.
BET’s fractional intensity threshold was fixed at 0.50. This
value was chosen empirically after a series of test runs which
were visually evaluated.

Figure 4 shows the variation in ISNR of the processed
phantom images with respect to the observations for a
range of FWHM parameter and for the best value of p.
By examining the ISNR for different values of FWHM, we

noticed that the optimal restoration value was for FWHM =
9.85 mm, p = 40 corresponding to ISNR= 0.42 dB.

Average contrast and total mottle were first quantified on
a set of (human brain) degraded and restored SPECT images
(with and without our anatomical-based regularization term
J4(u)) and compared to the Metz filter. Our proposed
algorithm with J4(u) resulted in an increase of global contrast
by 1.87 and of mottle by an acceptable factor of 1.17. The
Metz filter increased global contrast by 1.52 and mottle by a
factor of 1.08.

For SPECT phantoms, the results are shown in Table 1
and give similar results. For all the tested experiments, we
used γ = 0 because the background of SPECT images is
not completely “black” [4] and we chose 25 for the weighting
factor δ for J4. This value was chosen empirically after a set
of experiments by varying δ in the interval [10, 100].

SPECT images of the cold spheres phantoms were
also restored using partially incorrect anatomic infor-
mation (i.e., cylindrical phantom MRI with 5 different
sphere sizes instead of 6; one sphere was removed in
the MRI segmented image). Table 2 shows that the local
contrast measured on this restored SPECT image (with our
anatomical-based regularization term J4(u)) remained simi-
lar to the local contrast obtained with correct anatomic infor-
mation.

Local contrast was quantified on individual spheres of
SPECT degraded and restored images (with and without our
anatomical-based regularization term J4(u)) and compared
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Figure 8: Examples of deconvolutions for the Hoffman phantom. (a), (b) and (c): Original SPECT cross-sectional images. (d), (e) and (f):
deconvolution result with Metz filter. (g), (h) and (i): deconvolution result with our method.

to those obtained with the Metz filter. Table 3 shows that
our algorithm with J4(u) resulted in a average value of the
increase in local contrast of 2.07. The Metz filter increased,
in average, the local contrast by only 1.53.

Figures 8 and 9 show, respectively, examples of the
Hoffman phantom and brain SPECT volumes obtained with
our restoration method. The reconstructed whole brain
volume converged to a very good estimate of the solution
without a priori information about the PSF and allowed to
noticeably improve the contrast of the original, unrestored
SPECT volume. This restoration should allow more efficient
detection of small, localized singularities associated with
different types of lesions (tumors, epileptogenic foci, etc.)
that often are not clearly visible in the original blurred
image.

The Metz filter has two parameters to be adjusted,
FWHM and order p. We have used the values of 4.5, 5, 5.5,
6, 6.5, 7, 8, 9, 10 and 11 mm for FWHM and 10, 20, 30,
40 and 50 for order p, a total of 50 combinations of both
parameters. All the above values were tested and only the best

one (in terms of ISNR) was selected for comparison with our
algorithm.

This study was IRB (institutional review board)
approved. In addition, the 30 pairs of brain MRI and SPECT
acquisitions from different subjects have been anonymised
using Jim’s DICOM anonymiser tool. (This tool allows the
removal from image files of information that may jeopardise
patient’s or physician’s privacy.)

6. Discussion

Our restoration procedure was not highly sensitive to the
BET’s fractional intensity threshold value when this was
visually set by an experimented user (e.g., the value of
contrast was stationary when the threshold went from 0.45 to
0.55). Therefore, this parameter was set to 0.50 for all thirty
pairs of MRI images and seemed to be optimal in all tested
cases.

Notice that the degradation model used by our restora-
tion method assumes that noise is additive while in reality
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Figure 9: Restoration results. Axial view of: (a), (b) and (c): Original SPECT cross-sectional images. (d), (e) and (f): deconvolution result
with Metz filter. (g), (h) and (i): deconvolution result with our method.

it is a multiplicative Poisson process. Nevertheless, the
results with real SPECT/MRI data are visually impressive.
It seems that at the high count level used in SPECT, the
difference between (multiplicative) Poisson and (additive)
Gaussian noise does not affect significantly the efficiency of
the algorithm. However it would be meaningful to conduct
clinical studies using ROC analysis to better assess this
restoration procedure. These clinical studies will be the topic
of an another medical article.

When compared with a classical restoration approach
using a Metz filter, our method performed better, in
terms of signal-to-noise ratio. The slight increase in mottle
with J4 is a limited price to pay given the gains in
global contrast, ISNR, and local contrast measures, which
from a clinical perspective ensure better detection of focal
anomalies, a task at which SPECT is usually notoriously
poor.

The tests also showed that the restored image is con-
strained (or guided) by our prior knowledge but not wrongly
biased by this information while avoiding noise amplification
inherent to each deconvolution process.

The computational time of our technique was approxi-
matively 6.33 minutes as compared to 0.24 minutes for the
Metz filter on a 2.0 GHz PC workstation running Linux. Our
method is computationally demanding but remember that
it is an unsupervised one which does not require any PSF
parameter.

Another disadvantage of our method is the need to get
an MRI scan; however, many of the subjects submitted to
a SPECT rCBF study actually require one from a clinical
perspective. Importantly, the accuracy of the registration
procedure is crucial for the final restoration result, for-
tunately many highly accurate registration procedures are
widely available elsewhere.
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Compute the filter coefficients u(x, y, z) using a conjugate gradient optimization routine.
1. Definitions

γ A positive constant associated with J3
δ A constant associated with J4
l The iteration step
t A positive real number called the speed-gradient algorithm
u[l] Vector of filter of dimension Nxu ×Nyu ×Nzu at the lth iteration
d[l] Vector of dimension Nxu ×Nyu ×Nzu at the lth iteration
J A cost function to be minimized
∇J Gradient vector of J of dimension NxuNyuNzu × 1
〈·, ·〉 Scalar product

2. Initialization
γ = 0
δ = 25
l = 0
u[0] = (0 · · · 1 · · · 0)T

d[0] = −∇J(u[0])
Set speed-gradient algorithm t > 0

3. FIR filter parameters update
repeat

f̂ (x, y, z) = g(x, y, z)∗ u(x, y, z)
Calculate the gradient vector of J as indicated in (7)
if l = 0 then
d[l] = −∇J(u[l])

else

β[l−1] = 〈∇J(u[l])−∇J(u[l−1]),∇J(u[l])〉
〈∇J(u[l−1]),∇J(ul−1)〉

d[l] = −∇J(u[l]) + β[l−1]d[l−1]

u[l+1] = u[l] + t × d[l]

l = l + 1;
until a stopping criterion is met;

Algorithm 1: NAS-RIF Algorithm.

7. Conclusion

In this paper, we have presented a robust restoration method
using anatomical and functional information fusion with
application to SPECT images. This method improves the
quality of human brain 3D SPECT images and should
thus be helpful to physicians interpreting such studies. Our
approach takes advantage of the anatomical information
contained in the MRI study of each subject (or any
other high-resolution image such as CT). The proposed
constraint term allowed both stabilization of the inverse
solution of the NAS-RIF procedure by prevention of noise
amplification and the generation of a better constraint on
the solution of our restoration problem. In the regularization
framework, this term allowed smooth regions to be recon-
structed in the SPECT image, where such homogeneous
anatomical regions are found in the high-resolution MRI
images of the patient, after those were registered to the
subject’s SPECT volume. This method was tested on a
number of SPECT/MRI pairs, demonstrating its efficiency
and robustness. This 3D blind restoration technique is
completely data driven and automated, therefore it could
be implemented to process large numbers of 3D SPECT
studies.
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