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Abstract—This paper describes a computer vision system based
on a depth camera (Microsoft KinectTM) and a conventional
treadmill for a fast and reliable visual detection and analysis
of the patient’s body parts that have an irregular movement
pattern, in terms of periodicity, during walking. In this work, we
thus assume that the gait of a healthy subject exhibits anywhere
in the human body, during the walking cycles, a depth signal
(depending on time and collected by a KinectTM sensor) with
a periodic pattern without noise. Herein, the presence of noise
and its importance can be used either as a good indicator of
possible pathology in an early (and fast) diagnostic tool or to
provide information about the presence and extent of disease or
(orthopedic, muscular or neurological) problems in the patient.
The depth videos used show, for each one, the gait cycles of either
a healthy individual or simulating an orthopedic problem (with
the presence of a heel under the right or left foot). The proposed
system is able to estimate, from each video sequence, a saliency
color map showing the areas of strong gait irregularities, in terms
of periodicity (also called aperiodic noise energy), of each subject.
Even if the maps obtained are informative and highly discrim-
inant for a direct visual classification, even for a non-specialist,
the proposed system, based on the extraction/classification of
features from each obtained map allow us to automatically detect
maps representing healthy individuals and those representing
individuals with orthopedic problems.

Index Terms—Gait analysis, Gait classification, Aperiodic
noise, Irregular periodicity, Pathology detection, Kinect depth
sensor

I. INTRODUCTION

THE interest in human motion already existed in classical

antiquity and depending on needs and tools available, its
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et de Recherche Opérationnelle (DIRO), Université de Montréal, Faculté des
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study has been progressing over the years [1]. As stated by

Rose and Gamble [2], even if human walking is seemingly

simple, it remains a complex activity (involving balance,

timing and coordination of sight and the other senses) whose

complexity is revealed if we try to make its qualitative or quan-

titative description. Every person walking has characteristics

of its own (while also sharing several common characteristics

of human gait). This is such a familiar experience that in our

life we have recognized, at least one day, a person by his walk.

This may explain why some researchers study human gait

in perspective of human identification [3]–[5] using different

techniques and materials for extracting the features used in

classification. For example, Gafurov et al. used accelerometer

as material [6], Verlekar et al. [7] et Iwashita et al. [8] used

shadow information to characterize gait, Dupuis et al. [9]

applied feature subset selection, to name but a few. However,

the study of human gait has many other areas of application:

robotics (e.g., studies on passive dynamic walking), sport

sciences [10] (e.g., modeling of athlete motion) [1], video

surveillance applications, advanced human computer interfaces

or medicine (e.g., rehabilitation technology) etc. Bauckhage et

al. [11] noticed that not only human gait analysis allows the

person identification and activity recognition, but it can also

help in detecting abnormalities in people’s health.Thus, human

gait has applications related to diseases that prevent patients

from walking normally [12], [13]. The abnormalities generated

by diseases and which may alter the natural (bio)mechanics

of walking can be classified into five categories: deformity,

muscle weakness, sensory loss, pain, and impaired motor

control [14].

Most accurate systems, for data acquisition in the study of

human movement, are systems with markers [15], [16] but

the need for systems without markers also arises [17]. Indeed,
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these marker-based systems are able to give very accurate

but also sparse (and generally not distributed equidistantly)

measures over the body. In addition, the high cost of these

high-end systems [18] inhibit their widespread usage for

routine clinical practices.

In this work, we will focus on how to design and implement

a new gait analysis system, from a depth camera placed in front

of a subject walking on a conventional treadmill, capable of

detecting these above-mentioned abnormalities and to quantify

their severity and also to localize the different damaged or

impaired body parts of the patient. We are also interested

in developing a low cost, without markers, non-invasive and

simple to set-up, easy to use and fast computer vision based

system while being accurate and reliable, for a rapid clinical

diagnosis used as a first interesting screening for a possible

(orthopedic, muscular or neurological) disease, prior to a more

thorough examination by a specialist doctor.

II. PREVIOUS WORK

Most research works on gait analysis (for possible clinical

applications) use systems with markers and multiple cameras

[19]–[21]. But other systems, less invasive and less difficult

to handle, such as insoles [20], [22], wireless shoes [23], ac-

celerometers [24]–[26] and Microsoft KinectTM depth cameras

[27] are now also increasingly being used.

In this latter case, Kinect can provide a depth image which

is useful for the development of in-home monitoring systems

that automatically detect when falls have occurred or when the

risk of falling is increasing [28], [29] or directly provide the

skeleton [30] data information for the automated estimation

of children’s (spatial and temporal) gait parameters [31] or to

extract an accurate and reliable set of gait features [32], thanks

to a regression approach (based on an ensemble of regression

trees). More generally, the full body skeleton information

provided by Kinect can also be efficiently used for human

gait [33] or posture recognition [34] or body tracking in the

context of health applications (coaching or physical exercise

of the elderly population) [35], to name a few [36].

As proposed herein, the research works introduced in [37]

and in [38] also use, for data acquisition, a treadmill and

a Microsoft Kinect TM depth camera. These studies support

the hypothesis that a symmetrical gait is generally expected

in the case of healthy people. For example, in [37] a depth

energy image (DEI) which is, in fact, the pixel-wise mean of

all images in the input depth image sequence (over a gait cycle,

or a longer period), is first estimated. Then, an abnormal gait

is detected from a normal one because a symmetric healthy

walk use to generate a DEI exhibiting a symmetric silhouette,

in terms of mean depth (energy) and conversely. This two-

class detection is then achieved through the measurement of

asymmetry indexes, from the DEI. Although, this feasibility

study gives good results, it was only tested on 6 subjects.

Using the same important concept of gait symmetry in healthy

subjects, walking abnormalities are also detected in [38]. In

this work, a spatial and temporal registration procedure allows

to divide each gait cycle in two sub-cycles (left and right

steps) and the comparison between these two sub-cycles, at

lower limbs, in term of depth difference, allows to efficiently

detect an abnormal gait from a normal one and to also

quantify the degree of asymmetry of the lower body. Let

us also mention the system proposed in [39], which is not

used for classification (between healthy or unhealthy gait) but

that allows to estimate an interesting color map providing a

quick overview (in terms of perceptual color difference) of

asymmetries existing in the gait cycle of a subject.

In the same spirit, but with a single triaxial accelerometer

(providing simultaneous measurements in three orthogonal

directions), Moe-Nilssen and Helbostad [40] have estimated

human gait parameters like cadence, step length, and measures

of gait regularity and symmetry from subjects at free walking

speeds.

Contrary to the aforementioned works, our model is not

based on asymmetry detection (between left and right lower

limbs) as an indicator of possible pathology but rather on the

amount of noise altering an ideal periodic depth movement of

each part of the human body during walking. In our model,

we thus assume that the gait of a healthy subject exhibits,

anywhere in the human body, during the walking cycles, a

depth signal (depending on time and collected a KinectTM

sensor) with a periodic pattern without noise. The proposed

system is able to estimate, from each video sequence, a color

map visualizing the areas of strong gait irregularities, in terms

of periodicity, on the patient’s body silhouette. In order to get

a reliable estimation of this aperiodic noise energy map we

have decided to estimate it, in two fully complementary ways,

namely in the temporal and in the frequency domains. This

strategy allows us to get two different estimations leading to

different estimation errors which can then be efficiently com-

bine in order to improve the classification result in a (comple-

mentary) fusion way, in terms of information interaction [41].

This map is clearly informative and highly discriminant for a

direct visual classification, even for a non-specialist. Herein,

the location and degree of noise (representing the degree of

gait irregularities) can be used as a good indicator of possible

pathology or to provide information about the presence and

extent of medical problems. An automatic system, based on

the extraction/classification of features from each obtained
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Fig. 1. From lexicographic order; setup and pre-processing steps with
respectively the subject walking on a conventional treadmill (Life Fitness
F3), the original depth view recorded from KinectTM and the segmented
image (after background and treadmill removal). Example of two depth signals
(exhibiting a periodic pattern) for a gait cycle of an human subject.

map is also proposed and allow us to automatically detect

maps representing healthy individuals and those representing

individuals with orthopedic problems.

III. PROPOSED MODEL

The human gait movement is a remarkable example of col-

laborative interactions between the articular, musculoskeletal

and neurological systems working perfectly (and synchron-

ically) together. When everything is working correctly, the

healthy loco-motor system produces a smooth, energy effi-

cient, stable gait, exhibiting, at any point of the body, during

walking cycles, a (nice) periodic walking pattern without

noise. That is why, gait irregularities in terms of periodicity

may be a good indicator (and sometimes the first clinical

manifestation) of various health problems. In our application,

the degree of gait irregularities in terms of periodicity will be

also referred, in the following, as being the concept of degree

of aperiodicity and quantified by the aperiodic noise energy

since this concept is very close to the one existing and used

in speech processing1.

For this purpose, our system first propose to estimate a

saliency color map, providing both an overview of aperiodic

noise energy or irregularity energy, in terms of periodicity, ex-

isting in the gait cycle of a patient and also capable of showing

the areas of strongest gait irregularities. In our application,

this map is estimated from the sequence of depth images

captured by a Microsoft KinectTM-style (depth) sensor placed

in front of the patient walking on a conventional treadmill.

After a habituation period of about 2 minutes, the walking

speed of each subject appeared to become constant and their

gait movement is then collected by the KinectTM.

The Kinect sensor outputs 30 depth maps per second (30
frames per second), with a resolution of 640 per 480 pixels.

Each pixel of the depth image cube (or video sequence) is

also a 1D depth signal, evolving through time which, in fact,

exhibits a periodic walking pattern, without noise, (see Fig. 1)

for a stable, energy efficient, healthy gait.

Each video sequence ( of approximately 5 minutes) shows

the gait cycles of a healthy person or the one simulating an

orthopedic or muscle disease (presence of a troublesome heel

under the right or left foot). More precisely, for the experi-

ments, 17 (healthy) subjects (young male adults, 26.7 ± 3.8
years old, 179.1 ± 11.5 cm height and 75.5 ± 13.6 kg with

no reported gait issues) were asked to walk normally on a

treadmill (Life Fitness F3) with or without simulated length

leg discrepancy (LLD). Every patient had to walk normally

(group A), then with a 5 cm sole, impairing the normal walk,

under the left foot (group B), then with the sole under the right

foot (group C), for a total of 17×3 = 51 video sequences to be

classified. The scene took place in a non-cluttered room where

the treadmill is always in the same position relatively to the

Kinect TM camera. In this way, a silhouette extraction strategy

(background and treadmill removal) can be easily defined as

proposed in [39].

To this end, in order to get a reliable estimation of this 2D

spatial map of irregularities in periodicity, we have decided

to estimate it in two different ways. The first one is fully

(and only) estimated in the temporal domain whereas the

second estimation of this map is only performed in the

frequency domain. This strategy allows us to get two different

1In speech or acoustic signal processing, aperiodic noise is produced by
high-frequency (acoustic) energy which is distributed fairly randomly across
the upper part of the spectrum. It is distinct from periodic energy, which is
associated from acoustic signals such as clearly defined formants of the kind
we see in vowels and other sonorants [42]. In other words, the deviations
from periodicity of the signal introduce additional components on inharmonic
frequencies. The energy on inharmonic frequencies (sometimes normalized
by the total energy) provides a good estimation measure of noise aperiodicity
[43].
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estimations, regarding to the aforementioned map of irregu-

larities in periodicity, with respect to two different criteria

leading to different estimation errors. In our application, we

will see later that these two different estimations could be

efficiently combine in order to improve the classification result

in a (complementary) fusion way, in terms of information

interaction [41].

A. Estimation of the Aperiodic Noise Energy in the Temporal

Domain

The first step consists in estimating the period Tc of the

gait cycle (for each subject) and this can be easily achieved by

using the estimation method in the temporal domain described

by Cutler and Davis [44]. In this technique, a similarity matrix,

comparing all frames of the video sequence, in pairs, is first

computed (see Fig. 2). More precisely, let F k and F l be two

frames of the video of size H × W . The similarity value

between F k and F l, is given by:

SFk,F l =

H∑

i=1

W∑

j=1

|F k
i,j − F l

i,j | (1)

and from this squared symmetric similarity matrix S of size

Ni×Ni (with Ni the number of images in the sequence used

in the estimation of Tc), its auto-correlation matrix2 A(dx, dy)
(see Fig. 2) allows us to highlight the peak values that will

enable to estimate the gait period Tc:

A(dx, dy) =

∑
(Sx,y − S̄)(Sx+dx,y+dy

− S̄d)
√
∑

(Sx,y − S̄)2
∑

(Sx+dx,y+dy
− S̄d)2

(2)

where the different summations are over all pixel locations

(x, y) in the image. S̄ and S̄d are respectively the mean of the

similarity matrix and the mean of the shifted similarity matrix.

dx and dy represents respectively the shift relative to the height

and width axis. In Fig. 2.(b), the peaks regularly spaced (in a

planar lattice) by Tc pixels (in length or width), spatially show

the strong temporal correlations existing between image frame

at time k and frame at time k + Tc in the video sequence. In

addition, the regularity of these peaks both demonstrates that

the video contains a periodic motion with a period equal to

Tc, in terms of number of image frames (or Tc∆, in terms

of time, with ∆ denoting the time between each frame) and

that the video remains stationary over the time (i.e., the period

Tc of the gait cycle do not sensitively change during the time

study). As the autocorrelation matrix is robust to noise and

stationary over the time, the period Tc of the gait cycle is

2The auto-correlation 2D function is itself periodic with the same period as
the similarity matrix (or the video sequence) but has the advantage of being
much more robust to noise.

(a) (b)

Fig. 2. (a) Images of the similarity matrix S and (b) its auto-correlation
function A(dx, dy) for the 512 frames of the video and for the S05B
patient (B: with a heel under the left foot).

simply estimated by the average distance existing between two

peaks. This can be done by any procedure returning the local

maxima (peaks) of an input signal (e.g., a local peak is a data

sample that is larger than its two neighboring samples). From

the previously estimated gait period Tc, the following step

consists of the computation of the noiseless periodic pattern

for each depth signal, related to each pixel of the subject

silhouette.

1. This step(see step 1. of algorithm 1) is based, in fact,

on the simple averaging, in the time domain, of multiple and

(non-overlapping) consecutive segments of the depth signal of

length Tc. In this context, it is well known that appropriate

averaging can increase the Signal to Noise Ratio (SNR),

especially for Gaussian noise processes. In the later case,

averaging N samples will reduce the mean root mean square

(rms) current noise by a factor of
√
N , or the mean noise

power by a factor of 1/N [45]. Thus, to this end, we subdivide

the depth signal sdepth (of length T ) into successive signals

of length Tc and estimate an average pattern spatt which is

therefore less noisy.

2. The final step(see step 2. of algorithm 1) consists in

computing, for each pixel of the subject silhouette, the differ-

ence between the original (noised) depth signal and its related

noiseless periodic pattern (modulo Tc). This difference signal

represents the (aperiodic) noise signal n(t) of each depth

signal, which is then squared integrated over T ≫ Tc (T is the

length of the depth signal), in order to compute the (temporal)

energy of this aperiodic noise in the temporal domain. To this

end, we use the classical numerical integration formula [46]:

ns

depth
︸ ︷︷ ︸

Aperiodic Noise Energy

=

T∑

t=0

∣
∣
∣ sdepth(t)− spatt(t mod Tc)
︸ ︷︷ ︸

n(t)

∣
∣
∣

2

(3)
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Estimation of the aperiodic noise energy

in the temporal domain

sdepth Depth signal for each pixel in the subject silhouette

(size: depth) (Input)

Tc Depth signal period (Input)

ns
depth

Aperiodic noise energy of the depth signal

(Output)

spatt Noiseless periodic pattern (size: Tc)

cpatt Vector containing the number of times that a point

of the periodic pattern occurred in the depth signal

(size: Tc)

Initialization:

⊲ for each i∈ [0, . . . , Tc[ do
spatt[i]←0.0 and cpatt[i]←0

end

1. Compute the noiseless periodic pattern

⊲ for each i∈ [0, . . . , depth[ do
spatt[i mod Tc]←spatt[i mod Tc] + sdepth[i]

cpatt[i mod Tc]←cpatt[i mod Tc] + 1
end

⊲ for each i∈ [0, . . . , Tc[ do
spatt[i]←spatt[i]/cpatt[i]

end

2. Compute the aperiodic noise energy

ns
depth
←0

⊲ for each i∈ [0, . . . , depth[ do

ns
depth

+ =
(
sdepth[i]− spatt[i mod Tc]

)2

end

Algorithm 1: Estimation of the aperiodic noise energy, in the

temporal domain, for each pixel s in the subject silhouette

where spatt is the noiseless periodic pattern (of length Tc)

estimated in the previous (first) step. The above-mentioned

two steps of the estimation of the aperiodic noise energy (in

the temporal domain), for each pixel of the subject silhouette,

are shown, in pseudo code form, in Algorithm 1.

Each estimated noise energy value, related to each pixel of

the subject silhouette, represents thus, in our application, the

amount of gait irregularities, in terms of periodicity, of each

depth signal, or equivalently (since the treadmill and the depth

camera remains fixed during the gait), of each body part of

the subject during his gait cycle. This map is also capable

(a) (b) (c)

Fig. 3. Periodicity irregularity maps for S05 subject (map obtained in the
temporal domain). From left to right: (a) Without a heel (b) Heel under left
foot (c) Heel under right foot.

of showing the areas of strongest gait irregularities. In our

application, this map is visualized in pseudo-color using the

thermal scale (from dark blue-cold to red for white spot) in

order to make some details more visible (see Fig. 3 and 4).

B. Estimation of the Aperiodic Noise Energy in the Frequency

Domain

In order to estimate, in the frequency domain, the noiseless

periodic pattern of the depth signal (related to each pixel) we

rely on the Parseval’s theorem which specifies that the signal

energy is preserved by the Fourier transform across the time

and frequency domains [46]. So, let n(t) be the aperiodic

noise signal in the temporal domain and X(ν), its discrete

Fourier transform (DFT). Parseval’s equality allows us to write

that the aperiodic noise energy expressed, in the time and

frequency domain, is equal, i.e.; ns

depth
=

∑T

t=0 |n(t)|2 =

(1/T ) ·
∑T

ν=0 |X(ν)|2 = nf

depth
, where |X(ν)|2 is called the

power spectrum or the power spectral density (PSD) of the

aperiodic noise signal. Moreover, in the frequency domain,

the energy of the aperiodic noise signal (nf

depth
) is simply

the summation of the difference between the PSD of the

(noisy) depth signal sdepth(t) and |Xpatt(ν)|2, the PSD of the

noiseless periodic pattern spatt(t) according to the following

formula:

nf

depth
︸ ︷︷ ︸

Aperiodic Noise Energy

=

T∑

ν=0

∣
∣
∣|X(ν)|2 − |Xpatt(ν)|2

∣
∣
∣ (4)

Thus, in order to efficiently estimate |Xpatt(ν)|2, we rely on

the estimation of the mean periodogram introduced by Welch

[47]. This improved estimator3 of the power spectrum density

(PSD) consists of dividing the temporal signal of depth into
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(a) (b) (c)

Fig. 4. Periodicity irregularity maps for S05 subject (map obtained in the
frequency domain). From left to right: (a) Without a heel (b) Heel under left
foot (c) Heel under right foot.

(possibly) overlapping segments xb. Each segment is weighted

by a smooth (e.g., Hamming or Hanning) window4 and is

then processed by a DFT in order to obtain the modified

periodogram |Xb(ν)|2. The averaging of these modified peri-

odograms allows us to estimate the Welch’s PSD estimate [47]

|XW (ν)|2. This averaging (of modified periodograms) tends to

decrease the variance of the PSD estimate relative to a single

periodogram estimate of the entire data record. By this fact,

the variance is reduced by a factor of L over the periodogram,

L being the number of blocks used in the averaging. In our

application, we use an overlapping of 50% for segments of

length Ts weighted by an Hanning window (and for a length

of an entire data record T = 512). In addition, we found

that the classification rate is also improving as the length Ts

decreases until the value Ts = 16 (see Fig. 5). This gives us a

total number of L = 63 block segments (used in the averaging)

leading to a PSD estimate with a variance reduced by L = 63
compared to single periodogram estimation.

The integration of the difference (see Eq. (4)) between the

Welch’s mean periodogram |XW (ν)|2 (of length Ts = 16)

and the periodogram of each |Xb(ν)|2 allows us to give an

estimation, in the frequency domain, of the irregularities in

terms of periodicity or the degree of aperiodicity (the so-called

aperiodic noise energy) existing in each depth signal.

C. Automatic Classification of the Subjects

The two maps of aperiodic noise energy, estimated in the

frequency and temporal domain, contain the same information

3In the sense that this estimator is able to give an estimation which is very
robust to noise and thus a quasi-noiseless estimation.

4The windowing suppress the discontinuity, and the resulting spurious
high frequencies in the frequency analysis, by “tapering” the recorded signal
smoothly to zero at the start and end of the recording period.

Fig. 5. Curve representing the correct classification rate as a function of Ts,
the block size.

but are degraded with different estimation errors. More pre-

cisely, these estimation errors are mainly due, in the temporal

domain, to the estimation of the period Tc (of the gait cycle)

from the autocorrelation of the similarity matrix and mainly

due, in the frequency domain, both to the choice of the window

(or apodization) function which slightly modified the spectrum

(causing leakage5) and the window size Ts < T which reduced

the frequency resolution of the spectrum and consequently,

bias the amplitudes and shape of the spectrum.

At this stage the estimated maps are highly discriminant

for a direct visual classification by the clinician (which can

also easily localize the problematic or aperiodic noise parts

of the patient’s body), or even for a non-specialist (Figures 3

and 4 show that for a subject without a heel, the irregularities

of periodicity are identically distributed on either side of the

axis of symmetry of the silhouette while for subjects with

heel, the irregularities of periodicity are larger for the member

with heel). Nevertheless, in order to propose a fully automated

gait analysis system, we have also developed a classification

scheme based on the extraction of the following features

obtained from each obtained map. We classified the maps into

two classes, namely healthy individuals and those representing

individuals with orthopedic problems (with the left or right

foot) and three classes (subject without heel under foot, with

heel under left foot, with heel under the right foot).

1) Feature Extraction Step: These features are divided into

two major categories. The first group estimates the degree of

difference of the aperiodicity noise energy level (or degree

of irregularity, in terms of periodicity) between the left and

the right leg for each individual and for a height at a given

vertical position (see algorithm 4). In fact, it is expected that

there is a larger concentration of aperiodic noise energy on the

5Different types of windows will have different leakage-properties.
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(a) (b) (c)

Fig. 6. Curves obtained by the estimation of the aperiodic noise energy achieved in the temporal domain (as a function of the pixel number) representing
the two vectors of the horizontal summations of the aperiodic noise energy for different values of height (from top to bottom) of the left and the right leg,
for S05 subject: (a) Without heel (b) Heel under left foot (c) Heel under right foot.

side with the (simulated orthopedic) problem comparatively to

the other side. In order to exploit this discriminant property,

the horizontal summations of the aperiodic energy values, for

different values of height, from top to bottom of the left and the

right leg, are stored in two different vectors for each individual.

This interesting feature vector is shown by the curves

that display the aforementioned vectors for a subject with or

without simulated length leg discrepancy (see Fig. 6). The

figure shows that for subjects without heel under the foot,

the curves are almost identical, but the difference is very

remarkable for subjects with heel. This suggests that this

difference of aperiodic noise energy (for the left and the right

leg) provides an interesting and a discriminant feature vector

for classification.

The second group of features is related to the deformation

or the shape of the silhouette generated by the walking action

in the video sequence (and thus is not directly related to the

aforementioned concept of aperiodic noise energy). Indeed,

the presence of problems or pain in lower limbs (or in the

body in general) may disrupt the body’s alignment and posture.

More precisely, for a healthy gait, the right arm swings

in the same direction as the left leg, and conversely with

a certain symmetry, in terms of arm and leg swings and

approximating, in fact, a (regular and periodical) symmetrical

pendular movement.

In order to now model the potential disruption related to a

possible asymmetry between the left arm and right leg and

vice-versa, we consider the following operations:

1) From the silhouette (given by the set of non-zero values

of the) aperiodic noise energy map I (see Fig. 7.(a)), we

estimate the silhouette asymmetry AS(I), by a simple

logical “exclusive or” operation between the left and

right part (and conversely) of the binary silhouette

(around the preliminary estimated longitudinal axis xsym)

(see Algorithm 2 and Fig. 7.(c)).

2) We divide the silhouette (see Fig. 7.(a)) into two parts

(the lower limbs [between 3
5H and H with H the image

height] and the upper part of the body above the lower

limbs [between 0 and 3
5H with H the image height]).

Each part is then further divided into two sub-parts (the

left and the right parts of the longitudinal axis) for a

total of four parts (P1, P2, P3 and P4) (see Fig. 7.(b)).

On these four parts, we compute SURFA1 and SURFA2,

the number of pixels (or surface areas) located, above

the lower limbs, respectively, to the left and to the

right of xsym on AS(I). We also compute SURFA3 and

SURFA4, the number of pixels located, for the lower

limbs, respectively, to the left and to the right of xsym

on AS(I) (see Fig. 7.(c)). Concretely, the parameters

SURFAi represent (in terms of number of pixels), the

asymmetry degree (or magnitude) of the facial silhouette

between the right and left parts of the body during

consecutive gait cycles.

3) We now compute SIL1 and SIL2, the two parameters

estimated, in the following way:

SIL1 = 2× (SURFA1 + SURFA4) (5)

SIL2 = 2× (SURFA2 + SURFA3) (6)

Concretely speaking, the parameters SIL1,2 represent,

the degree or magnitude of asymmetry swing between

the left arm and the right leg and vice-versa during gait.
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(a) (b) (c)

Fig. 7. Estimation of AS(I), the (asymmetry) deformation of the silhouette
of the aperiodic energy map I (subject S17A). From left to right. (a) The
silhouette (defined by the set of non-zero values of aperiodic noise energy
I) on either side of the preliminary estimated longitudinal axis xsym (see
Algorithm 2). (b) The silhouette divided into four parts: P1, P2, P3 and
P4. (c) Estimation of the silhouette asymmetry AS(I), between the left and
right part of the silhouette (given by a simple logical “exclusive or” operation
between the left and right part of the binary silhouette and then symmetrized
around the longitudinal axis xsym).

4) In addition, we estimate the following two features:

Feat2 =
(SIL1 − SIL2)

SIL1
if (SIL1>SIL2) (7)

or: Feat2 =
(SIL2 − SIL1)

SIL2
if (SIL2>SIL1) (8)

Finally, Feat2 quantify the maximum amplitude, in terms

of number of pixels, of irregularity, or asymmetry ex-

isting in the left arm swing and right leg movement

(or conversely) during consecutive gait cycles (or the

asymmetric arm and leg swings motion). We multiply

the feature value Feat2 by 1000 in order to equal weight

its importance relatively to the first feature vector related

to the asymmetry of the aperiodic noise energy (see

algorithm 4).

In all, the dimensionality size of the feature vector, used as

input for classification, for the temporal and frequency domain

separately, is 261 (i.e., 260 features for the first group of fea-

ture, corresponding to the curve (of length 260) of difference

between the left and the right’s periodicity irregularity of the

lower limb (see Fig. 6) plus 1 feature, the 261st, belonging

to the second group (see Section III-C.1, and corresponding

to the deformation of the silhouette (see Eq. (7) or Eq. (8)).

When the feature vector, in temporal and in frequency domain,

is placed side by side; the vector size is 522. After using PCA,

the dimensionality size is reduced to 51.

IV. EXPERIMENTAL RESULTS

In our application, the depth of the video cube, to be

processed is T = 512, which corresponds to a gait video

sequence of about 17 seconds (for a Kinect capturing 30
frames per second).

First, concerning the estimation of the aperiodic noise

energy in the temporal domain, we can notice on the similarity

matrix (see Fig. 2) a dark line on the diagonal, that emphasizes

the fact that each frame of the video is similar to itself, and

also a periodic pattern identical in the vertical and horizontal

direction, showing that the human gait exhibits a clear periodic

motion [44]. The auto-correlation function of the similarity

matrix (see Fig. 2) is itself periodic with the same period

Tc as the similarity matrix (or the video sequence) but has

the important advantage of being much more robust to noise

since each value of the auto-correlation function results from

the integration over all values of the similarity matrix. The

period Tc of the gait cycle is, of course, slightly different for

each subject, but remains about 36± 4. 6

Consequently, the estimation of the noiseless periodic pat-

tern of each depth signal (related to each pixel of the subject

silhouette and required in the estimation of the aperiodic noise

energy map in the temporal domain, see Section III-A), is

based on the averaging of T/Tc ≈ 14.22 depth signals which

thus leads to a periodic pattern altered by a mean noise

power approximately reduced by a factor around 15 (or a

periodic pattern with less than 100/14.22 ≈ 7% of aperiodic

(irregularity) energy.

Second, concerning the estimation of the aperiodic noise

energy in the frequency domain, we recall that we use an

overlapping of 50% for segments of length Ts = 16, weighted

by an Hanning window, for a total of L = 63 block segments,

used in the averaging, and leading to a PSD estimate with a

variance reduced by L = 63 compared to single periodogram

estimation.

The examples shown in Fig. 6, 8 and 9 confirm that the

difference of aperiodicity curves, along with the parameter

quantifying the asymmetric arm and leg swings motion, pro-

vide complementary and relevant features for our classification

problem. More precisely, the curve for the right leg and the

curve for the left leg tends to coincide for subjects without

heel whereas the curve tends to move away from one another

for subjects with a heel. In Fig. 8, the curve of the difference

of the curves in Fig. 6, tends to touch the x-axis for subjects

with heel while for subjects without their heel, the curves are

less close to the x-axis. In Fig. 9, the deformation, evidenced

636±4 means that 99% of the gait period estimations, obtained on the set of
17 subjects, are, in terms of number of frames, within the confidence interval
[32, ..., 40] among the subjects (i.e., the shortest gait period is 32 frames
and the longest is 40 frames). In terms of seconds, by remembering that
the kinect outputs 30 frames per second, it defines the following confidence
interval: [≈ 1.06 seconds, ...,≈ 1.34 seconds].
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Fig. 8. Curves obtained by the estimation of the aperiodic noise energy
achieved in the temporal domain (as a function of the pixel number)
representing the absolute value of the difference of the two vectors of the
horizontal summations (i.e., summation over the columns) of the aperiodic
noise energy for different values (from top to bottom) of height, of the left
and right leg, of the subject S05, for the three considered cases, namely;
S05A: subject without the heel; S05B : subject with the heel under the left
foot; S05C : subject S05 with the heel under the right foot.

(a) (b) (c)

Fig. 9. Silhouette deformation maps for the S06 subject. From left to right;
(a) without heel (b) heel under the left foot (c) heel under the right foot.

by the white pixels, is larger for subjects with heel and smaller

for subjects without a heel.

The automatic classification of the subjects walking on the

treadmill is studied through Gaussian Naive Bayes (GNB),

k-Nearest Neighbors (KNN), Logistic Regression (LR), Sup-

port Vector Machine (SVM) and Stochastic Gradient Descent

(SGDC) classifiers from the Python’s scikit-learn library [48].

The 51 examples are randomly ordered and we use the cross-

validation (leave one cross-validation) technique because we

have relatively small data set (51 examples). The kernel for

SVM with the best rates for two classes is the radial basis

function (rbf kernel). For the ternary (i.e., three classes)

classification problem, it is the cubic polynomial kernel that

gave the best rates.

The classification results into two or three classes are

respectively shown in Table I and Table II both for individual

state-of-the-art classification model used in the literature and

exploiting the features extracted from either our aperiodic en-

ergy map obtained in the temporal domain or in the frequency

domain and also for a simple multiple classifier system whose

decisions are then combined through the combination of the

estimates obtained from each individual base classifier with

the simple majority voting decision rule. The experiments

have been tried and tested with or without pre-processing

by Principal Component Analysis (PCA) and with or without

scaling (the PCA and the scaler are from scikit-learn library

[48]).

In addition, we show the classification results into two or

three classes with a different fusion strategy (between the fea-

ture vector extracted from the aperiodic energy map estimated

in the frequency and temporal domains) and consisting simply

in concatenating the two feature vectors into a single feature

vector (see Table III).

We can also notice that the performance of classifiers to the

aperiodic energy maps obtained in the temporal or frequency

domains are also somewhat different which in fact makes

a multiple classifier based strategy a reliable classification

algorithm for our two class classification problem. It also

shows that these two maps are complementary and can be

effectively combined.

Finally, the results show that the two-class classification

problem (”normal” or ”abnormal” gait) gives excellent results,

especially with a multiple classifier system and the first fusion

strategy (see Table I). On the other hand, the three-class

classification problem is more complex and the results are

disappointing (whatever the fusion strategy used). This can

be explained by the fact that the physical behavior of each

individual, in terms of response to the presence of a heel

(placed below the right or left foot) may be very different

across individuals (some of them answer to the problem by a

greater oscillation of one arm (or the two arms), or a greater

(or smaller or different) stride length, etc.

V. CONCLUSION

In this work, we have presented a new gait analysis system

based on features extracted from the estimation of an aperiodic

noise energy map which aims at showing the areas of strong

irregularities of the gait, in terms of periodicity, of each subject
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TABLE I
CLASSIFICATION RATES OF 51 PERIODICITY IRREGULARITY MAPS OF 17 SUBJECTS INTO TWO CLASSES (NORMAL OR NOT) (LOOCV: LEAVE ONE OUT

CROSS-VALIDATION, LR: LOGISTIC REGRESSION, SVM: SUPPORT VECTOR MACHINE, KNN: K-NEAREST NEIGHBORS, GNB: GAUSSIAN NAIVE

BAYES, SGDC: STOCHASTIC GRADIENT DESCENT CLASSIFIER.
PCA: PRINCIPAL COMPONENT ANALYSIS)

TEMPORAL DOMAIN

LOOCV with: Accuracy: Precision: Sensitivity Specificity: F1 Score:

(Recall):

KNN with scaling 90.20% 96.77% 88.23% 94.12% 0.9231
SVM (kernel:RBF) with scaling 88.23% 91.18% 91.18% 82.35% 0.9118
GNB with PCA preprocessing 84.31% 84.21% 94.12% 64.70% 0.8889
LR with scaling 82.35% 87.88% 85.29% 76.47% 0.8657

FREQUENCY DOMAIN

LOOCV with: Accuracy: Precision: Sensitivity Specificity: F1 Score:

(Recall):

SVM(kernel:polynomial) with

PCA preprocessing 86.27% 90.91% 88.23% 82.35% 0.8955
SVM (kernel:RBF) with scaling 84.31% 80.95% 100.0% 52.94% 0.8947
GNB with PCA preprocessing 82.35% 87.88% 85.29% 76.47% 0.8657

MAJORITY VOTING

LOOCV with: Accuracy: Precision: Sensitivity Specificity: F1 Score:

(Recall):

KNN (spatial), SVM(kernel:RBF)

(spatial), SVM(kernel:RBF)
(spectral) with scaling 94.12% 94.29% 97.06% 88.23% 0.9565
SVM (kernel:linear)(spatial),

KNN(spectral),

LR(spectral) with scaling 90.20% 93.94% 91.18% 88.23% 0.9254
KNN (spatial), KNN(spectral),

GNB (spatial), GNB(spectral),
SVM(kernel:polynomial)(spectral)

with PCA preprocessing 88.23% 93.75% 88.23% 88.23% 0.9091

TABLE II
CLASSIFICATION RATES OF 51 PERIODICITY IRREGULARITY MAPS OF 17 SUBJECTS INTO THREE CLASSES (A: WITHOUT HEEL UNDER FOOT, B: WITH

HEEL UNDER LEFT FOOT, C: WITH HEEL UNDER RIGHT FOOT) WITH THE SAME CLASSIFIERS AND DATA PROCESSING LIKE ABOVE CLASSIFICATION.
LINSVM MENTIONED HERE IS A SVM WITH LINEAR KERNEL BUT IMPLEMENTED IN A DIFFERENT WAY THAN THE OTHER SVM (LINEAR).

TEMPORAL DOMAIN

LOOCV with: Accuracy: Precision: Sensitivity Specificity: F1 Score:

(Recall):

SVM (linSVM) with scaling 68.62% 69% 68.67% 68.62% 0.6867
LR with PCA preprocessing 64.70% 65% 64.67% 64.70% 0.64
SVM (kernel:polynomial)

without preprocessing 60.78% 61% 60.67% 60.78% 0.6033

FREQUENCY DOMAIN

LOOCV with: Accuracy: Precision: Sensitivity Specificity: F1 Score:

(Recall):

SVM(kernel:linear) with

PCA preprocessing 66.66% 66.33% 66.66% 66.66% 0.6633
LR with PCA preprocessing 64.70% 66.67% 64.67% 64.70% 0.64
SGDC with PCA preprocessing 60.78% 61% 61.33% 60.78% 0.58
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TABLE III
CLASSIFICATION RATES FROM FEATURES EXTRACTED FROM THE PERIODICITY IRREGULARITY MAPS IN FREQUENCY AND TEMPORAL DOMAIN AND

PLACED SIDE BY SIDE (51 EXAMPLES FOR 17 SUBJECTS).
LOOCV: LEAVE ONE OUT CROSS-VALIDATION, LR: LOGISTIC REGRESSION, SVM: SUPPORT VECTOR MACHINE, KNN: K-NEAREST NEIGHBORS,
GNB: GAUSSIAN NAIVE BAYES AND SGDC: STOCHASTIC GRADIENT DESCENT CLASSIFIER, PCA: PRINCIPAL COMPONENT ANALYSIS; LINSVM

MENTIONED HERE IS A SVM WITH LINEAR KERNEL BUT BUT IMPLEMENTED IN A DIFFERENT WAY THAN THE OTHER SVM (KERNEL: LINEAR).

TWO CLASSES

LOOCV with: Accuracy: Precision: Sensitivity Specificity: F1 Score:

(Recall):

KNN with or without

preprocessing 88.23% 93.75% 88.23% 88.23% 0.9091
GNB with PCA processing 88.23% 88.89% 94.12% 76.47% 0.9143
SVM (kernel:linear) with

PCA processing 84.31% 90.63% 85.29% 82.35% 0.8788
LR with scaling 84.31% 93.33% 82.35% 88.23% 0.875

THREE CLASSES

LOOCV with: Accuracy: Precision: Sensitivity Specificity: F1 Score:

(Recall):

LR with PCA preprocessing 68.62% 69.33% 68.66% 68.62% 0.68
KNN with scaling 66.66% 65.33% 66.66% 66.66% 0.6433
SVM(linSVM) with scaling 66.66% 66% 66.66% 66.66% 0.6566
SVM (kernel:linear) with scaling 64.70% 64.33% 64.66% 64.70% 0.6466

walking on a treadmill, and also allows to quantify the degree

of asymmetrical (opposite arm and leg) movement patterns.

This 2D spatial map is estimated in two complementary ways,

namely in the temporal and in the frequency domains in

order to get an estimation of the useful information with two

different noises and to subsequently provide complementary

decisions from different individual classifier which will then

be combined. This map also allows for the clinician to visually

and quickly localize and quantify the gait abnormalities and

for the rehabilitation of patients, to the evolution of these

abnormalities over the time. With further analysis across other

population including real patients, we also hope this system

could be useful or a good indicator to quickly detect a possible

disease, or for a rapid but reliable diagnosis, prior to a

more thorough examination by a specialist doctor. The system

proposed in this paper is also inexpensive, marker-less, non-

invasive, easy to set up and requiring a small room. These

characteristics qualify it for the daily activities in a clinic.

This system also makes an automatic classification of healthy

patients and those who are unhealthy with good classification

rates.
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Estimation of the longitudinal axis estimation

I Aperiodic noise map (size: height×width) (Input)

xsym Longitudinal axis estimation (Output)

r Size of the search interval

GI Gradient magnitude map of I
Vct Vector of floats of size height
xsym Column coord. estimation of the longitudinal axis

Initialization : GI← gradient magnitude map of I

1. Longitudinal Axis Estimation

⊲ for each i∈ [0, . . . , height[ do

grdMx← 0
⊲ for each j ∈ [(width/2) − r, . . . , (width/2) + r[

do

⊲ for each m∈ [0, . . . ,width/2[ do

grd←GI [i][j −m] +GI [i][j +m]

if (grd>grdMx) { pos←j grdMx←grd }
end

end

Vct[i]←pos
end

xsym←median value of the vector elements Vct[]

Algorithm 2: Estimation of the longitudinal axis estimation

Estimation of depth signal noise in frequency domain

using the averaged Welch’s periodogram

sdepth Depth signal in temp. domain (sz: depth) (Input)

b dim Block dimension (Input)

nf
depth Aperiodic noise energy of sdepth (Output)

Xawp Averaged Welch’s periodogram (sz: b dim)

NdepthNoise vector in freq. domain (sz: depth)

n b Number of blocks

hw Hanning window (sz: b dim)

xb Sub-block of sdepth in temp. domain (sz: b dim)

Nt Temporary vector (sz: depth)

Initialization : n b← 0 k ← 0
for each i∈ [0, . . . , b dim[ do

hw[i]← 0.54− 0.46 cos(2π i
b dim

) Xawp[i]← 0
end

1. Averaged Welch’s periodogram estimation

⊲ for each j = 0 to (depth - b dim) with j+= b dim
do

n b← n b+ 1
⊲ for each i∈ [0, . . . , b dim[ do

xb[i]←sdepth[i+ j]× hw[i]
end

Xmdl ← |FFT1D(xb)|
⊲ for each i∈ [0, . . . , b dim[ do

Nt[k]←(Xmdl[i])
2

Xawp[i]←Xawp[i] + (Xmdl[i])
2 k←k + 1

end

end

⊲ for each j = b dim
2 to (depth - b dim

2 ) with j+= b dim

do
n b← n b+ 1
⊲ for each i∈ [0, . . . , b dim[ do

xb[i]←sdepth[i+ j]× hw[i]
end

Xmdl ← |FFT1D(xb)|
⊲ for each i∈ [0, . . . , b dim[ do

Xawp[i]←Xawp[i] + (Xmdl[i])
2

end

end

⊲ for each i∈ [0, . . . , b dim[ do Xawp[i]← Xawp[i]
n b

2. Depth signal noise estimation in frequency domain

⊲ for each i∈ [0, . . . , depth[ do

Ndepth[i]←(Nt[i]−Xawp[i modulo b dim])

nf

depth
←0

⊲ for each i∈ [0, . . . , depth[ do nf

depth
+ = |Ndepth[i]|

Algorithm 3: Estimation of the depth signal noise in fre-

quency domain using averaged Welch’s periodogram with a

50% overlapping between blocks of size b dim
13
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Estimation of the features

I Aperiodic noise energy map (size: height×width )

(Input)

xsym Longitudinal axis estimation (column coordinate)

(Input)

Cl, CrVector of the horizontal summation of the ape-

riodic noise energy for the left (right) area of

the longitudinal axis of the lower limbs (size:

height− h) (Output)

C Vector for the difference of Cl and Cr; and the

value of the silhouette asymmetry (size: height−

h+ 1) (Output)

h Row coord. of the beginning of the lower limbs

of I (h = 380)

AS(I) Silhouette asymmetry map of I
SURFA1,2,Number of pixels located to the left and to the

right of xsym respectively above the lower limbs

(on SA(I))
SURFA3,4,Number of pixels located to the left and to the

right of xsym respectively for lower limbs part (on

SA(I))

1. Computation of vectors Cl, Cr and C

k←0
⊲ for each i∈ [h, . . . , height[ do

ml←0
⊲ for each j∈ [0, . . . , xsym[ do ml←ml + I[i][j]
Cl[i− h]←ml

mr←0
⊲ for each j∈ [xsym, .., width[ do mr←mr + I[i][j]

Cr[i− h]←mr

C[k]←|ml −mr|
k←k + 1

end

2. Computation of the silhouette asymmetry features

xsym←Longitudinal axis estimation [I] (cf. Algorithm 2.)

AS(I) ← “exclusive or” operation around the column

coordinate xsym of the binary silhouette I

SURFA1,2,3,4 ← number of pixels located respectively

above (right and left) and on the lower limbs

SIL1←2 (SURFA1 + SURFA4)
SIL2←2 (SURFA2 + SURFA3)

if (SIL1 > SIL2) C[k]←1000 ( SIL1-SIL2)/SIL1

else C[k]←1000 (SIL2-SIL1)/SIL2

Algorithm 4: Estimation of the features
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