
A Precision-Recall Criterion Based Consensus Model For

Fusing Multiple Segmentations

Charles Hélou and Max Mignotte ∗

Abstract

This paper presents a general framework for seamlessly combining multiple low cost and
inaccurate estimated segmentation maps (with an arbitrary number of regions) of the same
scene to achieve a final improved segmentation. The proposed fusion model is derived from
the well-known precision-recall criterion, specially dedicated to the specific clustering prob-
lem of any spatially indexed data and which is also efficient and widely used in the vision
community for evaluating both a region-based segmentation and the quality of contours pro-
duced by this segmentation map compared to one or multiple ground-truth segmentations
of the same image. The proposed combination framework is here specifically designed to be
robust with respect to outlier segmentations (that appear to be inconsistent with the remain-
der of the segmentation ensemble) and includes an explicit internal regularization factor
reflecting the inherent ill-posed nature of the segmentation problem. We propose also a
hierarchical and efficient way to optimize the consensus energy function related to this fu-
sion model that exploits a simple and deterministic iterative relaxation strategy combining
the different segments or individual regions belonging to the segmentation ensemble in the
final solution. The experimental results on the Berkeley database with manual ground truth
segmentations show the effectiveness of our combination model.

Index Terms: cluster ensemble algorithm, combination of multiple segmentations, F-
measure, precision-recall, segmentation ensemble.

1: Introduction

Image segmentation is a low-level vision task which is often the preliminary step in
the development of many high-level image understanding algorithms and computer vision
systems such as reconstruction problems [1] or 3D object localization/recognition [2, 3].

A plethora of region-based segmentation methods have been proposed so far to solve
the difficult unsupervised segmentation problem of textured natural images. Most of these
methods exploit first a texture feature extraction step (whose goal is to characterize each
meaningful textured region to be segmented) followed by a clustering technique, attempt-
ing to group (with different criteria or strategies) spatially coherent regions sharing similar
attributes. Years of research in segmentation have thus focused on finding more sophisti-
cated image features and/or more elaborate clustering techniques and significant improve-
ments in the final segmentation results have been achieved, generally at the cost of an
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increase in model complexity and/or in computational complexity. These methods in-
clude segmentation models exploiting directly clustering schemes [4, 5, 6, 7] using Gaussian
mixture modeling, fuzzy clustering approach [8, 9] or fuzzy sets [10] or after a possibly
de-texturing approach [7, 11, 12]), mean-shift or more generally mode seeking based pro-
cedures [13, 14, 15], watershed or [16] region growing strategies [17], lossy coding and
compression models [18, 16], wavelet transform [19], MRF [20, 21, 22, 23, 24, 25, 26],
Bayesian [27] texton-based approach [28] or graph-based models [29, 30, 31], variational or
level set methods [32, 33, 34, 28, 35], deformable surfaces [36], active contour model [37]
(with graph partitioning based approach [38]) or curve-based techniques, iterative unsuper-
vised thresholding technique [39, 40], genetic algorithm [41], self-organizing map, manifold
learning technique, topology, symbolic object based approach [42] and spectral clustering
[43] to name a few.

A recent and effective alternative to these segmentation approaches consists in combining
several quickly and coarsely estimated segmentation maps of the same scene associated with
simpler segmentation model1 to achieve a final improved segmentation. In this strategy,
instead of looking for the best segmentation algorithm (along with its optimal internal
parameters) which is hardly possible considering the different types of existing images, one
prefers to look for the best fusion model of segmentations, or more precisely for the most
efficient criterion for fusing multiple segmentations.

Combining multiple segmentations can be viewed as a special case of the so called cluster
ensemble problem, i.e., the concept of combining multiple data clusterings for the improve-
ment of the final clustering result, initially explored in the machine learning field [44, 45, 46].
Indeed, a distinctive aspect of image data is its spatial ordering and image segmentation
is a process of clustering spatially indexed data. Consequently the grouping of pixels into
clusters must take into account not only the similarity in the feature space but also the re-
quirement of their spatial coherence. This distinction allows to define the notion of spatial
boundaries between different regions which does not exist in a simple clustering process.
This characteristic, inherent to the spatially indexed data of any images, allows to define
a very efficient criterion of good segmentation called the global F-measure [47] which will
be used as criterion of our fusion model. It is worth mentioning that this ensemble seg-
mentation problem can also be viewed as a special type of denoising problem in which each
segmentation (to be fused) is in fact a noisy solution or observation and the final objective
is to find a denoised segmentation solution which would be a consensus or a compromise (in
terms of level of details, contour accuracy, etc.) exhibited by each input segmentations. In
some sense, the final fused segmentation is the average of all the individual segmentations
to be combined according a defined criterion.

Despite of decades of intensive research to find a universal region-based segmentation al-
gorithm (and/or selected features) that can successfully segment all images, up to now, few
works have been proposed on how to efficiently combine multiple (region-based) segmenta-
tions or label fields of the same scene. However, we can cite the fusion model proposed in [4]
which merges the individual input segmentations in the within-cluster variance (or inertia)
sense (for the set of local label histogram values given by each input segmentations) since,
the final segmentation result is optimized by applying a K-means algorithm based fusion

1These initial segmentations to be fused can be given either by different (and ideally complementary)
algorithms or by the same algorithm with different values of the internal parameters or seeds (for stochastic
methods), or by using different features and applied to an input image possibly expressed in different color
spaces or transformations (e.g., scale, skew, etc.) or by other means.



scheme. In the same vein, we can also cite the fusion scheme proposed in [48] which uses the
same strategy but for the set of local soft labels (computed with a multilevel thresholding
scheme) and for which the fusion procedure is thus achieved in the (somewhat) sense of the
weighted within-cluster inertia. This fusion of (region-based) segmentation maps can also
be achieved in the probabilistic Rand index [49] (PRI) sense, with a consensus function
encoding the set of constraints, in terms of pairs of pixel labels (identical or not), provided
by each of the segmentations to be combined. This PRI criterion can be optimized either
with an algebraic optimization method [50] or with a random walking approach [51] (and
combined with a mutual information based estimator for estimating the optimal number
of regions in the final segmentation result), or with an Expectation Maximization (EM)
algorithm [52] (combined with integer linear programming and applied on superpixels, pre-
liminary obtained by an over-segmentation) or finally in the penalized PRI sense including
a global constraint on the fusion process [53] (restricting the number and the size of the
regions) with a Markovian approach and an analytical optimization method. Let us also
cite the fusion model proposed in [45] in the evidence accumulation sense (and using a
hierarchical agglomerative clustering model) and the one proposed in [54] in the variation
of information sense (and using an energy-based model optimized by exploiting an iterative
steepest local energy descent strategy combined with a connectivity constraint).

The fusion model, proposed in this paper is an hierarchical energy-based model with a
consensus (fusion) function derived from the well-known harmonic mean of precision-recall
measure (or global F-measure) [47] widespread used for evaluating a soft (or possibly proba-
bilistic) boundary map or the quality of contours produced by a region-based segmentation
map (comparatively to a ground-truth segmentation obtained from an expert). In this new
framework, we will see that the proposed resulting consensus energy-based fusion model
of segmentation can be efficiently optimized by simply applying a deterministic relaxation
scheme on each region (or superpixel) given by each individual segmentations to be com-
bined. In addition, we will see how this model can be efficiently designed to be robust with
respect to outlier segmentations.

The remainder of this paper is organized as follows : Section 2 describes the combination
model and the optimization strategy used to minimize the consensus energy function related
to this model. Section 3 describes the generation of the segmentation ensemble to be fused
by our model. Finally, section 4 presents a set of experimental results and comparisons
with existing segmentation techniques on the Berkeley natural image database (including,
for quantitative evaluations, ground truth segmentations obtained from human subjects).

2: Proposed Fusion Model

2.1: The F Measure

The global F measure (or harmonic mean of precision-recall measure) [47] provides a
performance score, evaluating the agreement between region boundaries of a machine seg-
mentation and its ground-truth segmentation2. This latter measure is, in fact, deduced
from the well-known precision/recall values that characterize, in the image segmentation
case, respectively the fraction of detections that are true boundaries and the fraction of



true boundaries detected.
Qualitatively, the precision measure (P) is defined as the fraction of detections that are

true boundaries; this measure is low when there is significant over-segmentation, or when a
large number of boundary pixels have poor localization. The Recall (R) measure gives the
fraction of the true boundaries detected; a low recall value is typically the result of under-
segmentation and indicates failure to capture the salient image structure. Thus, precision
quantifies the amount of noise in the output of a detector, while recall quantifies the amount
of ground-truth detected. In statistical terms, precision and recall are respectively related to
the percentage of false positives (or false alarms) and miss detection rate. The performance
of a boundary detector providing a binary output is represented by a point in the precision-
recall plane. If the output is a soft (or possibly probabilistic) boundary representation, a
parametric Precision-Recall curve expresses the compromise between absence of noise and
fidelity to ground truth as the main parameter of the boundary detector varies.

Image segmentation is not a well-defined task, since the level to which an image is
subdivided is determined by the application at hand. In this context, the precision and
recall measures are particularly meaningful since it is reasonable to characterize the higher
level processing in terms of how much true signal is required to succeed (recall), and how
much noise or false alarms can be tolerated (precision). A particular application can define
a relative cost α between these two quantities, which focuses attention at a specific point
on the precision-recall curve [47]. The F measure, defined as,

Fα =
PR

α R + (1− α)P
(1)

captures this trade off as the weighted harmonic mean of the precision and recall measures.
The best F measure, for a given α (i.e., reflecting the optimal compromise between how
much true signal is required and how much false alarm can be tolerated), thus allows to find
the best segmentation method required (as a pre-processing step) in the development of a
given high-level computer vision system3. In our fusion model of multiple segmentations
(of the same scene), we will see that α can efficiently act as a regularization term for the final
fused segmentation result, favoring oversegmentation for values close to zero and merging
for values close to one (this will be explicit in Section 2.2). In addition, when a ground-truth
segmentation is available, α is, by default, set to 0.5 (i.e., F = 2PR/(P + R)) in order to
objectively evaluate the agreement between region boundaries of a machine segmentation
and its ground-truth segmentation.

This F measure based performance score was also recently used in image segmentation
[47] as a quantitative measure to compare automatic segmentation of an image to a set
of ground truth segmentations. This family of ground truth segmentations is, in fact, the
multiple acceptable ground truth segmentations associated with each natural image and
reflects the inherent variability of possible interpretations between each human observer

2Historically, the F-measure has its origin in the text mining literature for the purpose of document
clustering. In this specific context, this measure is used to quantify the accuracy of a clustering solution,
i.e., how close a clustering solution, given by a search engine (in response to a user’s query), is compared to
a human-defined categorization [55].

3In this case, the maximal F measure, for a given application (i.e., for a given α) on a precision-recall curve
is generally used as a summary statistic for the performance of the detector on a set of images. The notation
F@(recall, precision) represents the value of the highest F performance measure (of a binary classifier)
existing on its precision-recall (or ROC) curve at coordinates (@), the measure of its recall performance (on
x axis) and its precision performance (on y axis).



of an image. This variability between observers, recently highlighted by the Berkeley seg-
mentation dataset [56] is due to the fact that each human chooses to segment an image at
different levels of detail. This variability is also due image segmentation being an ill-posed
problem, which exhibits multiple solutions for the different possible values of the number
of regions or segments not known a priori.

Hence, in the absence of a unique ground-truth segmentation, this F measure based
quality measure has to quantify the agreement of an automatic segmentation (i.e., given by
an algorithm) with the variation in a set of available manual segmentations representing,
in fact, a very small sample of the set of all possible perceptually consistent interpretations
of an image [57]. The authors [56] address this concern by computing the mean F measure
as a means of accounting for this variation in the ground truth set. More formally, let us
consider a set of L manually segmented (ground truth) images {Sg

k}k≤L = {Sg
1 , Sg

2 , . . . , Sg
L}

corresponding to an image. Let St be the segmentation to be compared with the manually
labeled set, the mean F-measure is simply defined by:

Fα(St, {Sg
k}k≤L) =

1

L

L
∑

k=1

Fα (St, Sg
k) (2)

As a result, the Fα-measure will give a high score to a machine segmentation St which is
consistent (in this criterion sense) with most of the segmentation results given by human
experts.

2.2: Consensus Energy-Based Fusion Model

Let us consider now that we have at our disposal, a set of L segmentations {Sk}k≤L =
{S1, S2, . . . , SL} (associated with a same scene) to be fused in order to obtain a final im-
proved segmentation result relatively to each member of {Sk}k≤L. In this context, the pre-
viously defined mean F measure on {Sk}k≤L can be straightforwardly used as the consensus
or cost function in this energy-based fusion model and in this framework, the consensus
segmentation is simply obtained by the solution of the following optimization problem:

ŜF α
= arg max

S∈Sn

Fα(S, {Sk}k≤L) (3)

with Sn the set of all possible segmentations using n pixels. In this way, this fusion model
is a generative model of correct segmentation, which can also be considered as a likelihood
of Ŝ, in the maximum Fα sense or equivalently in the Maximum Likelihood (ML) sense
for this Fα criterion, for the given segmentation ensemble {Sk}k≤L (considered as a set
of observations). Let us note that this optimization approach is also called the median
partition [46] with respect to both the mean F measure criterion (used in this application)
and the segmentation ensemble {Sk}k≤L.

In our application, in order to increase the robustness of our estimator ŜF α
relatively

to the outliers, i.e., relatively to the possible segmentation maps belonging to {Sk}k≤L far
away (according to our F measure-based criterion) from the averaged or fused segmentation
result, (i.e., statistically speaking, relatively to an observation or subset of observations
which appears to be inconsistent with the remainder of the segmentation ensemble), we
have decided to weight the importance (or equivalently the confidence) of each segmentation
of {Sk}k≤L by a coefficient wk proportional to its mean F measure Fα=0.5 (Sk, {Sk}k≤L).



In this context, our final fusion model, generative of averaged segmentation, in the mean F
measure sense, is expressed by:

ŜFα
= arg max

S∈Sn

{

1

L

L
∑

k=1

wk Fα(S, {Sk}k≤L)

}

= arg max
S∈Sn

{

Fα(S, {wk}k≤L, {Sk}k≤L)
}

with, wk =
1

Z
exp

(

Fα=0.5(Sk, {Sk}k≤L)

τ

)

(4)

in which Z is a normalizing constant ensuring
∑

k wk = L, and τ is a parameter controlling
the decay of the weights (e.g., for high values of τ , wk ≈ 1, ∀k and for small values of τ ,
a large subset of the weights is close to 0, thus removing the outliers which appears to be
inconsistent with the remainder of the segmentation ensemble).

Algorithm 1
F measure-Based Fusion Model

{Sk}k≤L Set of L segmentations to be fused
{wk}k≤L Set of weights
{bk} Set of superpixels ∈ {Sk}k≤L

E Set of region labels ∈ {Sk}k≤L

α Compromise parameter of the Fmeas.
Tmax Maximal number of iterations (=12)

1. Initialization

• Ŝ
[0]

F α

= argmaxS∈{Sk}k≤L
Fα (S, {Sk}k≤L)

• Compute Fα

(

S, {wk}k≤L, {Sk}k≤L

)

on Ŝ
[0]

Fα

2. Steepest Local Energy Ascent

while p < Tmax do

for each bk superpixel ∈ {Sk}k≤L do

• Draw a new label x according to the
uniform distribution in the set E

• Let Ŝ
[p],new

F α

the new segmentation map
including bk with the region label x

• Compute F
new

α

(

S, {wk}, {Sk}k≤L

)

on Ŝ
[p],new

F α

if F
new

α > Fα then

◮ Fα = F
new

α

◮ Ŝ
[p]

F α

= Ŝ
[p],new

F α

p←p + 1



Figure 1. Examples of segmentation ensemble and our fusion r esult (algorithm
FMBFM). From top to bottom; three first rows; K-means clustering results for the
segmentation model described in Section 3. Input natural im age from the Berkeley
image database and final segmentation map resulting of our fu sion model.

2.3: Fusion Model Optimization

Our fusion model of several label fields, in the Fα criterion sense, thus ends up as an
optimization problem of a complex non-convex cost function with several local extrema
across the lattice of possible clusterings Sn.

The difficulty (and more precisely the non-convexity) of this optimization problem, lies
in the fact that many different region-based segmentation images can give the same optimal
binary boundary representation (i.e., the one optimizing our criterion or ensuring the maxi-
mal mean F measure). Indeed, it is important to recall that the estimation of the F measure
(see Eq. (1)) exploits a squared window search (or a window search with a ball shape) of
a few pixels (e.g., 3 pixels) in order to estimate both the percentage of false positives (or
false alarms) and the miss detection rate between the binary boundary representation of
the machine segmentation and the ground-truth segmentation. This window search based
procedure is essential in order to take into account the fact that each contour of the ground
truth segmentations are not perfect and are hand drawn with a certain degree of accuracy.
Due to this level of accuracy of a few pixels (2 or 3 pixel size), it is important to under-
stand that each segmentation map whose binary boundary representation are within this
aforementioned accuracy would be considered as similar. In this context, the boundary
representation of the optimal region-based segmentation (solution of our fusion model) and
the degenerate solution given by the boundary representation of this latter boundary repre-
sentation (exhibiting a segmentation solution without spatial homogeneity, with one-pixel
wide region corresponding to the contours) will give the optimal and maximum F measure.

In order to find a reliable estimation of ŜFα
that efficiently maximizes this complex en-

ergy function and that leads to a region-based segmentation solution (and not a degenerate



solution without spatial homogeneity), we must constrain the solution space in order to
avoid region-based segmentation solutions with possibly one-pixel wide regions. In this
context, the strategy used in [54], exploiting the local expression of the decrease (or in-
crease) in the consensus function for each pixel update of this consensus segmentation to
be estimated (thus avoiding the prohibitive calculus of the global consensus measure for the
entire segmentation map thanks to a relaxation scheme based on a pixel-wise optimization
strategy) is useless for our consensus measure based on the Fα criterion. In order to avoid a
prohibitive computational complexity, requiring the calculus of the global consensus crite-
rion for the entire segmentation map, we have decided to apply an optimization procedure
based on the set of superpixels5 existing in {Sk}k≤L, i.e., the set of regions or segments
given by each individual segmentations to be fused. This strategy has a second important
advantage. Indeed, it is logical to think that we could efficiently and spatially combine
the strengths of multiple segmentation maps which, individually, might produce some poor
segments or regions (i.e., poor segmentation result for some sub-parts of the image) but for
which there also often exist good segments (in other sub-parts of the image). The set of su-
perpixels existing in {Sk}k≤L are likely to contain the different right segments or individual
regions of the optimal segmentation solution.

For the optimization procedure, we have chosen the simple Iterative Conditional Modes
(ICM) introduced by Besag [60] i.e., a Gauss-Seidel relaxation, where superpixels (in our
hierarchical approach) are updated one at a time. This iterative search technique is de-
terministic and simple, but has the disadvantage of requiring a proper initialization of the
segmentation map close to the optimal solution. Otherwise it will converge towards a bad
local minima associated with our complex energy function. In order to solve this problem,

we can take, as initialization (first iteration), the segmentation map Ŝ
[0]

Fα

such as:

Ŝ
[0]

Fα

= arg max
S∈{Sk}k≤L

Fα (S, {Sk}k≤L) (5)

i.e., in choosing for the first iteration of the ICM procedure, amongst the L segmentation
to be fused, the one ensuring the maximal consensus energy (in the mean F measure
sense) of our fusion model (Eq. (4))5. In our case, where our optimization problem
is a maximization problem, ICM is an iterative steepest local energy ascent algorithm
which searches to obtain, for each (super)-pixel to be labeled, the maximum energy label

assignment. Starting with Ŝ
[0]

Fα

, i.e., a solution not too far from the optimal solution (see

Eq. (5)), ICM chooses, at each iteration and (sequentially) for each (super)-pixel, the
label (of the final segmentation result), yielding the largest increase of the energy function,
conditioned on the labels assigned to its neighbors.

It is also worth mentioning that algorithmically, the computation of the largest increase of
the energy function F

new

α (see Algorithm 1) may be efficiently and quickly answered, in C++
by exploiting the bitset class (which is is very similar to a regular array, but optimizing for

4Let us note that the use of superpixels in an energy-based fusion procedure has been initially proposed
in [58] with a different goal, namely the one of blending a spatial segmentation (region map) and a quickly
estimated and to-be-refined application field (e.g., motion estimation/segmentation field, occlusion map,
etc.) and in [59] for restoration application.

5Another reliable strategy consist of initializing the ICM with the first NI optimal input segmentations (in
the mean F measure sense) and to finally retain, after convergence of the ICM procedure, the segmentation
result ensuring the highest mean Fα measure. This procedure allows to improve very slightly the reliability
of our fusion model but at a prohibitive computational cost.



space allocation, each element occupies only one bit) and appropriate Boolean operations
(such as the logical AND bit-wise operator in order to estimate the precision and the recall
values, between two binary contours-based segmentation maps, required to compute the
F-measure F

new

α ). Similar bit-wise operator and bit-set operations are also available in
Matlab.

Finally, the overall F measure-Based Fusion Model (FMBFM) algorithm with the itera-
tive steepest local energy ascent strategy and the maximal energy label assignment of each
superpixel belonging to {Sk}k≤L is outlined in pseudo-code in Algorithm 1.

3: Segmentation Ensemble Generation

The initial segmentation maps, which will be fused by our fusion framework are simply
given, in our application, by a K-means [61] clustering technique, with respectively; different
features, several values of K and expressed in 12 different color spaces, namely; RGB, HSV,
YIQ, XYZ, LAB, LUV, i123, h123, YCbCr, TSL, HSL, P1P2 (see [53] for a justification of
these color spaces and for references), i.e.:

1. As the number of classes K of the K-means algorithm, we use for each image, a
metric measuring the complexity, in terms of the number of different texture types, of
a natural color image. This metric, introduced in [62] is herein defined as the measure
of the absolute deviation (L1 norm) of the set of normalized histograms obtained for
each overlapping squared fixed-size (Nw) neighborhood contained within the input
image. This measure ranges in [0, 1] and an image with several different texture types
will result in value of complexity close to 1. In our application,

K = 1 + ceil(Kmax× complexity value) (6)

where ceil(x) is a function that round x up to the nearest integer and Kmax is an
upper-bound of the number of classes for a very complex natural image. In our
application, we use three different values of Kmax, namely Kmax

1 = 8, Kmax
2 = Kmax

1 +1
and Kmax

3 = Kmax
1 /2.

2. As input multidimensional feature descriptor, we used the set of values of the re-
quantized color histogram, with equidistant binning, estimated around the pixel to
be classified. In our application, this local histogram is equally re-quantized, for each
of the three color channels, in a Nb = q3

b bin descriptor, computed on an overlapping
squared fixed-size (Nw = 7) neighborhood centered around the pixel to be segmented
with two different values of qb, namely qb = 5 and qb = 4.

For a total of 12 × (3 + 2) = 60 input segmentations to be fused. This generation process
allows us to ensure the diversity required to obtain a good (i.e., reliable) segmentation
ensemble on which the final result will be conditioned. It is worth mentioning that the
more varied the set of segmentations is, the more information for the consensus function
(on which the fusion model is based) is available [53, 46] (conversely, it is logic to think that
a combination of similar segmentation solutions could not give an improved segmentation
that outperforms the individual ensemble members).



Figure 2. Example of fusion convergence result on four diffe rent initializations for
the Berkeley image (n 0 134052). Left: initialization and right: result at the conver-
gence of our FMBFM model ( 12 iterations). From top to bottom, the original image,
the input segmentations (from the segmentation ensemble {Sk}k≤L) which have the
best and the L/2 = 30-th best F α score and the input segmentation which have the
worst Fα score and one blind (or non informative) initialization.

4: Experimental Results

4.1: Setup and Initial Tests

In all the experiments, we have considered our fusion model (see Eq. (4)) based on
a segmentation ensemble {Sk}k≤L generated as indicated in Section 3 (see Fig. 1 for
an example of segmentation ensemble generated by our K-means based procedure). In
addition, for these initial tests, we have set Kmax

1 = 8, τ = 16 and α = 0.86 (these values of
the internal parameters of our fusion model will be explained in Section 4.2).

First, we have tested the convergence of our iterative optimization procedure by taking,
as initialization of our ICM-based iterative steepest local energy ascent algorithm, respec-
tively, the input segmentations (of our segmentation ensemble {Sk}k≤L) which have the
best (i.e., maximal) Fα score, the L/2 = 30-th best score, the worst (i.e. minimal) Fα

score and one blind (or non informative) initialization by considering an image spatially
divided by K = 5 horizontal rectangles with K different labels (see Fig. 2 and 3). We
can notice that our strategy, consisting in relaxing the set of superpixels belonging to the
segmentation ensemble, remains robust to the initialization. We can also notice than our



Figure 3. From lexicographic order, evolution of the result ing segmentation map
along the iterations of the relaxation process for 1-] the in itial segmentation which
have the best F α score and 2-] for one non informative initialization.

Figure 4. Example of segmentation solutions obtained for di fferent values of α, from
top to bottom and left to right, α = {0.5, 0.7, 0.8, 0.86, 0.9, 0.99}.

strategy, consisting in choosing for the first iteration of the ICM procedure, the segmen-
tation (amongst the L segmentation to be fused) closest to the optimal solution of the
consensus energy function of our fusion model (Eq. (4)), allows to improve somewhat the
final segmentation result.

Second, we have tested the role of the parameter α (see Eq. (4) and Algorithm 1.)
on the obtained segmentation solutions. Fig. 4 shows clearly that α efficiently acts as a
regularization parameter of our fusion model favoring oversegmentation (for value close to
0) and merging (for value close to 1).

4.2: Performance Measures & Comparison With State-Of-The-Art Methods

In these experiments, we have tested our fusion model as segmentation algorithm on the
Berkeley segmentation database (BSD300) [56] for which the color images are normalized to
have the longest side equal to 320 pixels. The segmentation results are then supersampled
in order to obtain segmentation images with the original resolution (481 × 321) before the
estimation of the performance metrics.

In order to validate our segmentation model, several performance metrics will be es-



timated (for the entire image database) for an objective comparison with the other seg-
menters. These performance measures include the PRI [63] score which is highly correlated
with human hand-segmentations [6] and widely used in the region-based segmentation field.
This PRI score quantifies the percentage of pairs of pixel labels correctly classified in the
segmentation results and a score equal to PRI=0.80 means that, on average, 80% of pairs
of pixel labels are correctly classified in the segmentation results on the BSD300.

In order to ensure the integrity of the evaluation, the internal parameters of our seg-
mentation algorithm, namely Kmax

1 required for the segmentation ensemble generation (see
Section 3) and α (and to a lesser measure, the parameter τ) for the fusion model (see Eq.
(4)) are tuned on the train image set by doing a local discrete grid search routine, with
a fixed step-size, on the parameter space and in the feasible ranges of parameter values
(namely Kmax

1 ∈ [5− 10] [step-size = 1], α ∈ [0.5− 1] [step-size = 0.02] and τ ∈ [0.125− 16]
[step-size = a power of 2.0]. We have found that Kmax

1 = 8, α = 0.86 and τ = 166 is
a good set of internal parameters leading to a very good PRI score of 0.80 (see Table 1).
Consequently, a good strategy (in the case of a fusion model based on the F measure crite-
rion) consists in proposing several over-segmentations in the segmentation ensemble and a
high value of regularization for α, thus favoring a final segmentation result with contours
predominantly found in this set of segmentations.

For comparison, we now illustrate the results of our segmentation algorithm by showing
the same segmented images (see Figures 7 and 8) as those shown in the fusion model
proposed in [53, 54] and in the segmentation algorithms proposed in [12, 11]. The results
for the entire database will be available on the website of the author. It may be noted that
our segmentation procedure gives a very competitive PRI score among the state-of-the-
art segmentation methods recently proposed in the literature. Fig. 5 shows respectively
the distribution of the PRI measure and the number and size of regions obtained by our
FMBFM algorithm over the BSD300.
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Figure 5. From left to right, distribution of the -1- PRI meas ure -2- number and -3-
size of regions over the 300 segmented images of the Berkeley image database.

We have also compared our segmentation method with the VoI metric [68], the GCE[56]
and the BDE [69] (see Table 2) (for which a lower distance is better), showing that our
method gives competitive results for some other metrics based on different criteria and
compared to state-of-the arts.

We have also tested the performance of our fusion method as segmentation method,

6In this case, all weights wk are, roughly, equally important and consequently, all the 60 input segmen-
tations are thus assumed to be equally important. It is nevertheless worth mentioning, that it probably
would not be the case if the segmentation ensemble was generated by different segmentation algorithms
with different efficiency.



Table 1. Average performance, in term of PRI measure, of seve ral (region-based)
segmentation algorithms on the BSD300, ranked according to their PRI score and
considering only the (published) segmentation methods wit h a PRI score above
0.75

ALGORITHMS PRI [63]

HUMANS (in [6]) 0.87

FMBFM 0.80

-2014- VOIBFM [54] 0.81

-2012- MDSCCT [12] 0.81

-2011- gPb-owt-ucm [64] 0.81

-2012- AMUS [52] 0.80

-2010- PRIF [53] 0.80

-2008- CTex [5] 0.80

-2009- MIS [36] 0.80

-2011- SCKM [7] 0.80

-2008- FCR [4] 0.79

-2012- SFSBM [62] 0.79

-2004- FH [30] (in [6]) 0.78

-2011- MD2S [11] 0.78

-2009- HMC [25] 0.78

-2009- Consensus [50] 0.78

-2009- Total Var. [33] 0.78

-2009- A-IFS HRI [10] 0.77

-2001- JSEG [17] (in [5]) 0.77

-2011- KM [34] 0.76

-2007- CTM [6, 18] 0.76

-2006- Av. Diss. [32] (in [64]) 0.76

-2011- SCL [65] 0.76

-2005- Mscuts [43] (in [33]) 0.76

-2003- Mean-Shift [13] (in [6]) 0.75

-2008- NTP [31] 0.75

-2010- iHMRF [26] 0.75

-2005- NCuts [43] (in [64]) 0.75

-2006- SWA [66] (in [64]) 0.75



Table 2. Average performance of several algorithms for diff erent performance mea-
sures (lower is better) on the BSD300

ALGORITHMS VoI GCE BDE

HUMANS 1.10 0.08 4.99

FMBFM 2.01 0.20 8.49

VOIBFM [54] 1.88 0.20 9.30

MDSCCT [12] 2.00 0.20 7.95

PRIF [53] 1.97 0.21 8.45

SCKM [7] 2.11 0.23 10.09

MD2S [11] 2.36 0.23 10.37

FCR [4] 2.30 0.21 8.99

CTM [6, 18] 2.02 0.19 9.90

Mean-Shift [13] (in [6]) 2.48 0.26 9.70

NCuts [29] (in [6]) 2.93 0.22 9.60

FH [30] (in [6]) 2.66 0.19 9.95

AMUS [52] 1.68 0.17 -

Table 3. Average performance, in term of F measure, of severa l segmentation (into
contours) algorithms and contour detectors (in parenthese s) on the BSD300

ALGORITHMS F Measure[56]

HUMANS (in [6]) 0.79

FMBFM 0.62

-2011- gPb-owt-ucm [64] 0.71

-2010- PRIF [53] 0.64

-2012- MDSCCT [12] 0.63

-2003- Mean-Shift [13] (in [64]) 0.63

-2000- NCuts [43] (in [64]) 0.62

-2007- CTM [6] (in [64]) 0.58

-2004- FH [30] (in [64]) 0.58

-1986- (Canny [67]) (in [64]) 0.58

-2006- SWA [66] (in [64]) 0.56

-2008- FCR [4] 0.56

K-means (with features proposed in Sect. 3) 0.53

Quad-Tree (in [64]) 0.37
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in term of F measure (see Table 3). First, we should remember that this measure is
best appropriate for contour detection methods giving a “soft” boundary representation
since this benchmark measure also finds (from a soft edge map) the optimal threshold
value ensuring the best F measure [70] over the BSD300. In this spirit, we will let this
benchmark measure in choosing the optimal threshold on a soft contour map provided
by averaging, 6 times, the set of “hard” (i.e., binary) boundary representations of our
segmentation method with Kmax, the number of classes of the segmentation step, varying
in an interval containing an upper and lower bound of the number of classes, e.g., Kmax ∈
[Kmax : Kmax +6]. We have obtained F = 0.62@(R = 0.65, P = 0.59) for the BSD300, which
remains competitive compared to the state-of-the art existing segmentation methods and
a significant improvement, compared to F = 0.53@(R = 0.70, P = 0.42), the overall score
obtained by the segmentation result achieved by a single K-means based segmentation map
(with the features proposed in Section 3) for each image, without fusion method.

4.3: Discussion

As we can notice, our method of fusion of simple, quickly estimated segmentation results
appears to be very competitive for different kinds of performance metrics and thus appears
as an interesting alternative to complex, computationally demanding segmentation models
existing in the literature. We can also observe (see Fig. 6) that the PRI performance
measures are better when L (number of segmentation to be fused) is high. This experiment
shows the validity of our fusion procedure and shows also that our performance scores are
perfectible if the segmentation ensemble is completed by other (and different and/or ideally
complementary) segmentation maps (of the same scene).

4.4: Algorithm

The segmentation procedure takes, on average, between 70 and 90 seconds for a Core i7
Intel c©, 3.2 GHz, 6403 bogomips and non-optimized code running on Linux. More precisely,
the two steps (i.e., 1] estimations of the L = 60 weak segmentations to be fused and 2] the
minimization step of our fusion procedure) takes respectively, on average, one minute for
the segmentation ensemble generation and less than 30 seconds for the fusion step and for



a 320× 214 image. Let us add that the initial segmentations to be fused and the proposed
energy-based fusion method can be easily computed in parallel. It is straightforward for the
generation of the segmentation ensemble but also truth for our fusion model by considering a
Jacobi-type version of the Gauss-Seidel based ICM procedure [71]. The final energy-based
minimization can be efficiently implemented by using the parallel abilities of a graphic
processor unit (GPU) (embedded on most graphics hardware nowadays available on the
market) and can be greatly accelerated (up to a factor of 200) as indicated in [71].

Source code (in C++ language) of our algorithm with the set of segmented images are
publicly available at the following http address http://www.iro.umontreal.ca/∼mignotte/
ResearchMaterial/fmbfm.html in order to make possible eventual comparisons with future
segmentation algorithms or different performance measures.

5: Conclusion

In this paper, we have presented a new and efficient fusion model of segmentation based
on a consensus energy-based fusion procedure whose goal is to combine, in the precision-
recall sense, multiple (simple) segmentation maps to achieve a final improved segmentation
result. This framework of segmentation combination performs well compared to the best ex-
isting state-of-the-art segmentation methods and thus appears as an interesting alternative
to complex segmentation models existing in the literature. It remains simple to implement,
perfectible (by increasing the number of segmentation to be fused), robust to outliers and is
easily parallelizable (and thus especially well suited for the next generation massively par-
allel computers, embedded graphics or multi-core processors). In addition, the proposed
hierarchical optimization approach based on a deterministic relaxation scheme combining
the set of superpixels belonging to the segmentation ensemble is simple, efficient and also
general enough to be applied to other fusion models of label fields (in the sense of other
criteria). Furthermore, this fusion model includes an explicit internal regularization factor
reflecting the optimal compromise between how much true signal is required and how much
false alarms can be tolerated in the resulting segmentation map, thus allowing to design
the appropriate fusion model allowing to find the best segmentation map required, as a
pre-processing step in the development of a given high-level computer vision system.
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Figure 7. Example of segmentations obtained by our algorith m FMBFM on several
images of the Berkeley image database (see also Tables 1, 2 an d 3 for quantita-
tive performance measures and on the website of the author fo r the segmentation
results on the entire database).



Figure 8. Example of segmentations obtained by our algorith m FMBFM on several
images of the Berkeley image database (see also Tables 1, 2 an d 3 for quantita-
tive performance measures and on the website of the author fo r the segmentation
results on the entire database).


