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a b s t r a c t

This paper proposes a new and reliable segmentation approach based on a fusion framework for combin-
ing multiple region-based segmentation maps (with any number of regions) to provide a final improved
(i.e., accurate and consistent) segmentation result. The core of this new combination model is based on a
consensus (cost) function derived from the recent information Theory based variation of information cri-
terion, proposed by Meila, and allowing to quantify the amount of information that is lost or gained in
changing from one clustering to another. In this case, the resulting consensus energy-based segmentation
fusion model can be efficiently optimized by exploiting an iterative steepest local energy descent strategy
combined with a connectivity constraint. This new framework of segmentation combination, relying on
the fusion of inaccurate, quickly and roughly calculated, spatial clustering results, emerges as an appeal-
ing alternative to the use of complex segmentation models existing nowadays. Experiments on the Berke-
ley Segmentation Dataset show that the proposed fusion framework compares favorably to previous
techniques in terms of reliability scores.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Segmenting an image is a useful and important pretreatment
whose purpose is to represent the image content into different
sub-parts or regions of coherent properties (also called segments
or superpixels) with homogeneous characteristics (and correspond-
ing to distinct regions of the image foreground or background).
This pixel-level process simplifies and summarizes the image
content in order to make it simpler to analyze and useful for the
development of any high-level vision tasks [1].

Most of the region-based segmentation methods exploit first a
texture feature extraction step whose goal is to represent each
meaningful individual texture class with statistical (or fractal, mor-
phological, structural, geometrical, etc.) image features and a sub-
sequent clustering technique. In this context, decades of effort in
image partitioning have shown that further enhancements (on
the result) could be obtained either by exploiting more complex
features and/or more advanced clustering techniques attempting
to group (with different criteria or strategies) spatially homoge-
neous regions with coherent properties. These methods include
segmentation algorithms exploiting directly clustering schemes
[2–5] (with fuzzy sets [6] and/or after a first de-texturing step
[5,7,8]), mode seeking algorithms [9–11], watershed transforma-

tion [12] or region growing techniques [13], compression-based
methods [14,12], statistical [15–21], Bayesian [22] or graph-based
representations [23–25], variational frameworks [26–28], deform-
able surfaces [29] and spectral clustering [30] to name a few. In
general, these enhancements have led to complex and time-
consuming procedures and, for minimization-based segmentation
schemes, to highly nonlinear and large-scale optimization
problems.

To provide an alternative to these computationally costly and
complex segmentation models, a possible and effective approach
consists in combining (or seamlessly fusing) multiple low-cost
and rough image segmentation results of the same scene associ-
ated with simpler segmentation model1 to provide a final improved
segmentation. In this strategy, instead of searching for the best seg-
mentation algorithm (along with its optimal internal parameters)
which is hardly possible for the set of all natural images, it is more
interesting to find the most appropriate fusion model of segmenta-
tions. This strategy has initially been introduced in [31,32] with
the restriction that all input segmentation results (to be combined)
should contain the same number of regions and then a little later
without this restriction, with any number of regions, in [2,33].

The key idea behind this fusion approach is that there exists no
universal segmentation algorithm and/or selected features which
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1 Other strategies include different algorithms, with possibly different values of
their intrinsic parameters (or seeds for stochastic algorithms) and/or different feature
modalities for a given input scene possibly converted into different color spaces or
spatially transformed (e.g., scale, skew, etc.) or by other means.
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could successfully segment all images (and/or it is not easy to
know the optimal algorithm or set of features for one particular
image). On the other hand, it is logical to think that a gain could
be expected from combining the strengths and features of several
segmenters or multiple segmentation maps which, individually,
might produce some poor segments (i.e., poor segmentation result
for some sub-parts of the image) but for which there also often ex-
ist good segments. A clever merging of these segmentation results,
with poor segments considered as noise (and good segments as
reliable information), could produce a superior consensus segmen-
tation than any of the individual input segmentations. This remark
applies to all imagery problems dealing with label fields such as
motion detection, 3D segmentation, 3D reconstruction, and depth
field estimation.

Formally, the approach of fusing few classifiers to achieve better
classification performance (better than a single classifier) is called,
in statistical learning theory, a mixture of experts or classifier
ensembles [34,35]. In this context, Dietterich [35] has given a sim-
ple and clear explanation, from representational, computational
and statistical points of view, of why the ensembles or predictions
of multiple classifiers can improve results. Motivated by these
promising results, cluster ensembles that combine multiple data
clusterings (instead of multiple classifiers) have then started to
gain an increasing interest [36,37] in machine learning (see [38]
for a good review of these methods).

The remainder of the document is divided into the following
sections: First, relevant literature on fusion models of segmenta-
tions is reviewed and discussed in Section 2. Section 3 presents
the proposed fusion framework and the minimization technique
of the proposed consensus cost function. Section 4 presents the
generation of the segmentation ensemble to be fused by the
proposed model. Finally, Section 5 shows a variety of experimen-
tation and comparisons with other leading segmentation
algorithms.

2. Related work

The problem of combining multiple segmentations can be
viewed as a cluster ensemble problem even if, these two problems
are mainly different in two points. Indeed, it is worth noting that,
in a fusion model of natural image segmentation maps, there are
well defined classes (the texture class ‘‘tree’’ or ‘‘sky’’ are different
and well defined even if the image is noisy). In addition, in the case
of the combination of weak image segmentations, the important
characteristics of a (textured) natural image, e.g., the inherent con-
nection and the spatial dependencies between spatial neighboring
objects (i.e., pixels) can also be exploited.

Despite of decades of intensive research to find a universal seg-
mentation algorithm (and/or selected features) that can success-
fully segment all images, few works have been proposed on how
to efficiently combine multiple segmentations. Nevertheless, it is
important to cite the fusion model proposed in [2] which merges
the individual input segmentations in the within-cluster variance
(or intra-class inertia) sense (for the set of local label histogram
values given by each input segmentations) since, the final segmen-
tation result is optimized by applying a K-means algorithm based
fusion scheme. This fusion of segmentation maps can also be
achieved in the probabilistic Rand index [39] (PRI) sense, either
with an algebraic optimization method [40] or with a random
walking approach (and combined with a mutual information based
estimator for estimating the optimal number of seed regions) [33]
or finally in the penalized Rand index sense including a global con-
straint on the fusion model (restricting the size and the number of
the regions) with a Markovian approach and an analytical optimi-
zation method [41]. Let us also cite the fusion model proposed in

[37] in the evidence accumulation sense and using a hierarchical
agglomerative clustering model.

The fusion model, presented in this paper, is different and is in
fact, an energy-based model derived from the recently introduced
Variation of Information (VoI) metric [42,43]. The proposed result-
ing consensus energy-based fusion model of segmentation can be
efficiently optimized by exploiting an iterative steepest local en-
ergy descent strategy combined with a connectivity constraint.
This fusion of possibly inaccurate, quickly and roughly estimated
segmentation results may appear as an attractive and efficient
alternative to the use of complex, expensive computational algo-
rithms existing in the segmentation field.

This latter assumption comes from our own effort and past
experience in searching the best unsupervised segmentation mod-
el (without fusion) of natural images [18–20,5,7,8]. To this end, it is
important to understand that this objective is frequently conflict-
ing between the increase in the segmentation model complexity
(i.e., its ability to model efficiently different textures or complex
interactions with a great number of tunable parameters in the
model) and the optimization complexity required to find the solu-
tion of the model. It is worth mentioning that fusion models may
be also faced with this kind of conflicting choices. A simple and less
relevant fusion model is often easy to optimize (such as the model
previously proposed, in the inertia sense, in [2]) and conversely, a
more reliable and complex fusion model is often more critical to
optimize (such as the one, in the PRI sense, proposed by the author
in [41]).

3. Proposed fusion framework

3.1. The variation of information

The variation of information (VoI) metric [42,43] is a recent
information Theory based measure for comparing two segmenta-
tions (partitions) or clusterings, of the same data set. This metric
quantifies the information shared between two partitions by mea-
suring, more precisely, the amount of information that is lost or
gained in changing from one clustering to another. Equivalently
(and conceptually), it also represents roughly the amount of ran-
domness in one segmentation which cannot be explained by the
other [42]. The VoI is a true metric on the space of clusterings
which is positive, symmetric and obeys the triangle inequality [43].

This VoI metric can also be exploited as a clustering metric that
measures the similarity between a possible clustering solution and
the underlying ground truth. It was also exploited in the segmen-
tation (or spatial clustering) field [4,14,41], for objectively evaluat-
ing the efficiency of different automatic segmentation algorithms.

Let St ¼ fCt
1;C

t
2; . . . ; Ct

Rtg and Sg ¼ fCg
1;C

g
2; . . . ;Cg

Rgg be respec-
tively the segmentation test result and the ideal segmentation
(or ‘‘ground truth’’). Let also Rt and Rg, denote respectively, the
cluster number (or number of regions2) in St and in Sg. The VoI
between St and Sg is defined as:

VoIðSt; SgÞ ¼ HðStÞ þ HðSgÞ � 2 � IðSt; SgÞ ð1Þ

where HðStÞ and HðSgÞ represent respectively the classical entropy
associated with the segmentation St and Sg and IðSt; SgÞ the mutual
information between these two partitions. Let n be the number of
pixels within the image, nt

i the number of pixels in the ith cluster
of the segmentation St;ng

j the number of pixels in the jth cluster
of the segmentation Sg and finally nij the number of pixels which
are together in the ith cluster (or region) of the segmentation St

and in the jth cluster of the segmentation Sg. The entropy is always

2 A region is a group of connected pixels sharing a common class label and a class, a
set of pixels possessing similar textural characteristics.
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positive (it is null only when there is no uncertainty, namely when
there is only one cluster) and is defined as:

HðStÞ ¼ �
XRt

i¼1

PðiÞ log PðiÞ ¼ �
XRt

i¼1

nt
i

n
log

nt
i

n

HðSgÞ ¼ �
XRg

j¼1

PðjÞ log PðjÞ ¼ �
XRg

j¼1

ng
j

n
log

ng
j

n

ð2Þ

with PðiÞ ¼ nt
i=n being the probability that a pixel belongs to cluster

St (respectively PðjÞ ¼ nj=n being the probability that a pixel belongs
to cluster Sg) in the case where i and j represent two discrete ran-
dom variables taking respectively Rt and Rg values and uniquely
associated to the partition St and Sg. Let now Pði; jÞ ¼ nij=n repre-
sents the probability that a pixel belongs to Ct

i and to Cg
j , the mutual

information Ið�Þ between the partitions St and Sg is equal to the mu-
tual information between the random variables i and j and is ex-
pressed in the following way:

IðSt; SgÞ ¼
XRt

i

XRg

j

Pði; jÞ log
Pði; jÞ

PðiÞPðjÞ ð3Þ

The VoI is a true metric across the lattice of possible clusterings
(taking a value of 0 when two clusterings are identical and positive
otherwise) and is bounded by log n. However, if St and Sg have at
most Rmax clusters (i.e., regions), it is bounded by 2 log Rmax [43].

This VoI metric was also lately exploited in image partitioning
[4,41] as an objective measure for the evaluation of a machine
segmentation compared to a set of ground truth segmentations.
This set of ground truth segmentations captures, in fact, the
inherent variability of each possible (perceptually consistent)
interpretation of an input image, segmented at different detail
levels by each human segmenter [44,41,45]. Statistically speaking,
this variability also reflects the ill-posed nature of the segmenta-
tion problem for which, additional constraints need to be
imposed in order to provide the desired result, such as the num-
ber of classes or regions, a priori chosen by the user. In this case,
and as proposed in [4], this concern can be easily addressed by
computing the mean VoI metric as a simple and empirical way
to take this diversity into account in the set of ground truths.
More precisely, let fSg

kgk6L be a finite ensemble of L manually or
ground truth segmented images (of the same scene):
fSg

kgk6L ¼ fS
g
1; S

g
2; . . . ; Sg

Lg. Let St be the spatial clustering result to
be evaluated by comparison with the manually labeled set
fSg

kgk6L, the mean VoI metric is simply defined by:

VoI St; Sg
k

� �
k6L

� �
¼ 1

L

XL

k¼1
VoI St; Sg

k

� �
ð4Þ

As a consequence, the mean VoI distance function will give a low
value to a segmentation result St that is all the more in accordance
with the set of the segmentation maps obtained from human ex-
perts (i.e., a segmentation map resulting in a consensus or a com-
promise, in terms of contour accuracy or detail level displayed by
each ground-truth segmentation).

3.2. Energy-based fusion model

Let now fSkgk6L be a finite ensemble of L segmentations,
fSkgk6L ¼ fS1; S2; . . . ; SLg (related to a same image), to be reconciled
and combined with the aim of achieving a final improved (accurate
and consistent) segmentation solution, better than the segmenta-
tion result of each member of fSkgk6L. As indicated in Section 3.1,
the mean VoI metric can be used directly as the consensus or cost
function in this energy-based fusion model. In this framework, the

consensus segmentation is simply obtained from the solution of
the following optimization problem:

bSVoI ¼ arg min
S2Sn

VoI ðS; fSkgk6LÞ ð5Þ

with Sn the set of all possible segmentations using n pixels. In this
way, this fusion model is a generative model of likely (segmenta-
tion) solutions, which is able to give an estimate of bS, in the mini-
mum VoI error sense. Let us note that this optimization approach
is also called the median partition [38] with respect to both the
mean VoI criterion (used in this application) and the segmentation
ensemble fSkgk6L.

Let us note that the reason why minimizing Eq. (5) would result
in a lower VoI value with respect to the (family) of ground-truth
segmentations, stems directly from the theory of consensus or
aggregation of clusterings (see Section 1). This theory explains all
the interest of combining different and complementary data clus-
terings for a particular dataset. As already said in the Introduction
Section, this consensus strategy can also efficiently be viewed and
understood as a (special type of) denoising problem in which each
segmentation (to be fused) is in fact a noisy segmentation solution
(or a noisy observation), given by a clustering algorithm sensitive
to the initial settings (i.e., number of classes, feature descriptors,
color-space used, etc.). In estimation theory, an estimator based
on the average (or the weighted average) operation generally
yields to an optimal denoised solution (when the noise is uncorre-
lated). In the consensus theory, an interesting denoised segmenta-
tion solution would also be the average (or a consensus or
compromise) of all the individual segmentations to be combined,
according a defined criterion [38]. Concretely speaking, the noise
affecting each segmentation solution (to be removed) would corre-
spond to poor segments (i.e., poor segmentation result for some
sub-parts of the input image in the segmentation ensemble) and
the information (to be kept) would correspond to existing good
segments in the segmentation ensemble. A median partition ap-
proach allows to estimate this average segmentation solution
according a defined criterion.

Let us finally note that it is important to generate an appropri-
ate segmentation ensemble, because the final result is necessarily
conditioned by the initial clusterings to be fused. A given segmen-
tation ensemble should ideally include, a lot of complementary
information. The complementarity and the diversity are recom-
mended, since the more varied the set of initial segmentations is,
the more information for the consensus cost function is available
[38].

3.3. Fusion model for image segmentation

The minimization of Eq. (5) allows to find the best compromise
solution, which is also optimal according to the VoI criterion. This
fusion procedure of multiple label fields or segmentations thus
herein appears as a complex minimization problem for a VoI-based
consensus function exhibiting several local minima across the lat-
tice of possible clusterings Sn.

This complex consensus function can be efficiently minimized
by the stochastic (and thus computationally costly) simulated
annealing [15] algorithm which is both, insensitive to initialization
and is guaranteed to find the global minima. Another choice is an
iterative Gauss–Seidel-type relaxation scheme (also called Iterative
Conditional Modes or ICM [46]), where pixels are updated one at a
time. This iterative search technique is fast (since deterministic)
and easy to implement, but has also the drawback of requiring a
good initialization, not too far from the global minima (corre-
sponding to the desired solution). In order to set the initialization

M. Mignotte / Information Fusion 20 (2014) 7–20 9
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of the ICM properly to obtain a good solution, the ICM procedure is
initialized with the bS½0�

VoI
such as:bS ½0�

VoI
¼ arg min

S2fSkgk6L

VoI ðS; fSkgk6LÞ ð6Þ

i.e., in initializing the ICM procedure, by the segmentation map
(among the L segmentation results to be reconciled), ensuring the
minimal consensus energy (in the mean VoI sense) of the proposed
fusion model (Eq. (5)).3

Technically, ICM is an iterative steepest local energy descent
algorithm which searches to obtain, for each pixel to be labeled,

the minimum energy label assignment. Starting with bS½0�
VoI

, i.e., a

solution not too far from the optimal solution (see Eq. (6)), ICM
chooses, at each iteration and (sequentially) for each pixel, the
label (of the final segmentation result), yielding the largest
decrease of the cost function, conditioned on the labels assigned
to its neighbors. In addition, to speed up the convergence of the
ICM procedure, the important features of a natural image,
especially the notion of homogeneity of the segmentation result
(i.e., the spatial dependencies between spatial neighboring labels)
and also the fact that a region, or cluster, in this application,
necessarily form a set or group of connected pixels can also be
efficiently exploited.

To this end, let the pixel at site s of bS½p�
VoI

(at iteration p) assumed
to (initially) belong to region or cluster m. A new label is assigned
to this pixel (e.g., the xth label) if three conditions are fulfilled:

1. x 6 R where R is the number of regions in bS½p�
VoI

.
2. This pixel (at site s) is connected with the x-th cluster or region

in bS½p�
VoI

.
3. There is a decrease of the energy function VoIð:Þ (Eq. (5)), when

the pixel at site s (belonging to the m-th label or region) is
assigned to the xth label (see Fig. 1).

In this case, the local decrease in the energy function VoIð:Þ
when the above-mentioned two first conditions are fulfilled and
for a new label assignment at site s, from label m to label x,
can be written as follows (directly derived from Eqs. 4, 1, 2
and 3):

DVoI bS ½p�
VoI
; Skf gk6L

� �
s:m!x

¼ L � �nm

n
log

nm

n

� �
�nx

n
log

nx

n

� �n
þðnm�1Þ

n
log

nm�1
n

� 	
þðnxþ1Þ

n
log

nxþ1
n

� 	

�2 �

XL

l¼1

nm;Ll
s

n
log

nmLl
s

n
� n
nm
� n
nLl

s

 !(

þ
nxLl

s

n
log

nxLl
s

n
� n
nx
� n
nLl

s

 !

�
ðnmLl

s
�1Þ

n
log

ðnmLl
s
�1Þ

n
� n
ðnm�1Þ �

n
nLl

s

 !

�
ðnxLl

s
þ1Þ

n
log

ðnxLl
s
þ1Þ

n
� n
ðnxþ1Þ �

n
nLl

s

 !)
ð7Þ

where Ll
s denotes the label at site s of the l-th segmentations (l 6 L)

of the segmentation ensemble Skf gk6L and it is important to recall
that nmLl

s
designates the number of pixels which are together in

the mth cluster (or region) of the segmentation S and in the Ll
sth

cluster of the segmentation Sl 2 Skf gk6L. Finally, the overall VoI-
Based Fusion Model (VOIBFM) algorithm with the iterative steepest
local energy descent strategy ensuring the connectivity constraint
above-expressed and the minimum energy label assignment is out-
lined in pseudo-code in Algorithm 1.

It is worth mentioning that, for the same final result, the global
VoI distance (Eq. (4)) could be calculated instead of its local
expression derived in Eq. (7), for each pixel of the consensus

Fig. 1. At iteration p, the pixel at site s initially belongs to the mth region (or
segment) and is 4-connected with the xth region. If there is a (positive) decrease in
VoI energy when the new label x is assigned to this pixel; i.e., if

DVoI bS½p�
VoI
; fSkgk6L

� �
s:m!x

> 0, then the label m is replaced by the label x at site s.

3 Another reliable strategy consists of initializing the ICM with the first NI optimal
input segmentations (in the mean VoI sense) and to finally retain, after convergence
of the ICM procedure, the segmentation result ensuring the lowest mean VoI energy.
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Fig. 2. Examples of segmentation ensemble and fusion result (algorithm VOIBFM). From lexicographic order. Three first rows of the image; K-means classification results (21
out of 60 K-means segmentations with different colors used to reflect different regions) for the segmentation model described in Section 4. Natural image (number n0134052)
from the BSDS300 and final fusion result. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Examples of complexity values on some images of the BSDS300. From left to right, complexity value ¼ 0:235;0:364;0:515;0:661;0:803 setting the number of classes
(K) of the K-means clustering algorithm respectively to 2, 3, 4, 5 and 6 in the K-means segmentation model.

Fig. 4. First row and from left to right; a natural image from the BSDS300 (n0229036) and the resulting fusion map estimated from its set of 7 input hand-labeled ground-
truth segmentations [44] with their number of regions and their consensus energy (the two first outliers related to the two first maximal VoI energy are indicated in bold).

M. Mignotte / Information Fusion 20 (2014) 7–20 11
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segmentation, and then, used the same classification strategy con-
sisting of choosing the label leading to the minimum global VoI
distance, but this latter strategy would be done at a prohibitive
computational cost, increased (approximately) by two orders of
magnitude compared to the pixel-wise local optimization strategy
using Eq. (7).

4. Segmentation ensemble generation

The initial segmentations, that this fusion framework searches
to combine, are herein obtained by a K-means [47] clustering
method, with 10 different color spaces (see [41] for a justification
of these color spaces, references and more details) and 6 different
feature modalities, for a total of 60 input segmentation results to
be merged (see Fig. 2).

This generation process allows us to ensure the diversity re-
quired to obtain a good (i.e., reliable) segmentation ensemble on
which the final result will be conditioned. It is worth mentioning
that the more varied the set of segmentations is, the more informa-
tion for the consensus function (on which the fusion model is
based) is available [41,38]. Conversely, it is logic to think that a
combination of similar segmentation solutions could not give an
improved segmentation that outperforms the individual ensemble
members.

Besides, the class number of the K-means (K) within this frame-
work, is adaptively estimated, for each input image of the BSDS300,
by using a distance quantifying its complexity and variability in
terms of its total number of distinct and differentiable texture clas-
ses within the image. This metric, introduced in [48] ranges in ½0;1�
(with a value of 1 for an input image with a large number of tex-
ture patterns) (see Fig. 3). More precisely,

K ¼ 1þ ceil Kmax � complexity valueð Þ ð8Þ

where ceilðxÞ denotes a ceiling function which rounds x up to the
closest integer value and Kmax ¼ 7 herein somewhat represents an
estimation of the maximum number of distinct texture classes pres-
ent in a highly-textured input scene. We recall that the complexity
value of an image is simply (as defined in [48]) the measure of the
mean absolute deviation (with the L1 norm) of the (coarsely quan-
tized) color histogram of each overlapping squared (fixed-size
7� 7) neighborhood contained within the image.

5. Experimental results

5.1. Initial tests

First, as in [41], the proposed fusion model has been tested on a
segmentation ensemble of hand-segmented images associated to a
Berkeley image. To keep this experiment interesting and instruc-
tive, the same Berkeley image proposed in [41] has been consid-
ered, i.e., a natural image showing wide variation across the set
of hand-segmented images. The result (see Fig. 4) displays a con-
sensus segmentation in term of level of details (or mean number
of segments) compared to the ground-truth set, while being differ-
ent to the resulting fusion map given by the fusion model proposed
in [41], in the penalized probabilistic Rand index sense. It is also
worth pointing out that the VoI energy given by the considered
combination framework could be afterward exploited to estimate
the similarity and consistency of each ground-truth human seg-
mentation comparatively to the other ground-truth segmenta-
tions. This VoI energy could thus be useful to identify possible
outliers (i.e., segmentations that appear to be inconsistent with
the remainder of the segmentation ensemble, according to a

Fig. 5. Example of fusion convergence result on six different initializations for the
Berkeley image (n0134052). Left: initialization and Right: result at convergence of
the proposed VOIBFM model. From top to bottom, the two input segmentations
which have the best and the 5th (i.e., minimum VoI energy) VoI score (50 iterations
for the gradient descent), the input segmentation which has the L=2 ¼ 30th best VoI
score and the input segmentation which has the worst VoI score (50 iterations) and
two blind (or non informative) initializations (150 iterations).

12 M. Mignotte / Information Fusion 20 (2014) 7–20
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defined criterion), in order either to remove them or to use this
measure of confidence as a confidence prior, to assign higher fusion
weight to certain input segmentations.

Now, for the tests, the proposed fusion method has been exper-
imented, based on a segmentation ensemble Skf gk6L with L ¼ 60
(see Section 4 and Fig. 2 for an example of segmentation ensem-
ble). For the estimation of the number of classes K of this clustering
procedure, it is important to recall that Eq. (8) (relying on the esti-
mation of the complexity measure associated with each image) is
herein used.

Second, the convergence of the iterative optimization procedure
has been tested by taking, as initialization of the ICM-based itera-
tive steepest local energy descent algorithm, respectively, the two
input segmentations (of the segmentation ensemble Skf gk6L) which
have the best (i.e., minimal) VoI score, the L=2 ¼ 30th best score,
the worst (i.e. maximal) VoI score and two blind (or non informa-
tive) initializations by considering an image spatially divided by K
horizontal and vertical rectangles with K different labels (see Figs. 5
and 6). It can be seen that the consensus cost function is clearly
non-convex and complex with many local minima. It can also be
noted that the strategy, consisting in initializing the ICM procedure
by the segmentation map that is closest to the solution (i.e., with
the best VoI score) (Eq. (6)) seems a good initialization strategy
even considering the fact that the segmentation map associated
to the L=2 ¼ 30th best VoI score (or equivalently the L=2 ¼ 30th
worst VoI score) gives a final resulting segmentation map close
to the one given by the best VoI score.

5.2. Evaluation

Throughout these experiments, the proposed fusion algorithm
has been evaluated on the BSDS300 [49,44,50] in which the natural
color images were downsampled to a size whose longest side is set
to 320 pixels.

For a fair comparison, Figs. 7 and 8 present the segmentation re-
sults, provided by the proposed method, on the same subset of
images (of the BSDS300) used (and shown) in [41] (based on a
PRI-based segmentation combination model). The results for the
whole dataset are freely accessible at the author’s website (see
Section 5.4).

To compare the efficiency of the proposed model to recent lead-
ing segmentation methods, four different and complementary per-
formance measures have been computed. First, a reliable
performance metric, very efficient for measuring the agreement
between a region-based segmentation and multiple (hand-gener-
ated) ground-truths segmented from experts; namely the Probabi-
listic Rand Index4 (PRI) [51] (see Table 1). In fact, the PRI score
simply measures the percentage (on average, by considering the
set of ground truth images) of correctly classified pixel pairs. Addi-
tional comparisons have been performed with the VoI metric (see
Section 3.1) and two other performance metrics, namely; the GCE
[44] and the BDE [52] (see Table 2), demonstrating that the consid-
ered approach achieves sound results for several different and com-
plementary clustering quality measures compared to the other
previously published segmentation methods.

5.3. Comparison with existing methods and discussion

The proposed segmentation procedure gives the best PRI-based
score amongst the leading algorithms proposed in the segmenta-
tion field (PRI=0:81 means that the proposed method ensures 81
percent of correctly classified pixel pairs, on average, in the
BSDS300). Fig. 9 shows respectively the repartition of the local
PRI score and some interesting spatial statistics about the size of
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Fig. 6. Evolution of the segmentation map (0th, 1st, 2nd, 5th, 9th, 13th, 22nd 50th, 80th, 85th) iterations and evolution of the consensus energy function along the number of
iterations of the proposed VOIBFM fusion model starting from a blind (or non informative) initialization.

4 The Matlab source code, implemented by Yang (and publicly accessible on-line at
address http://www.eecs.berkeley.edu/�yang/software/lossy_segmentation/) has
been herein exploited.

M. Mignotte / Information Fusion 20 (2014) 7–20 13



Author's personal copy

Fig. 7. Example of segmentations obtained by the VOIBFM algorithm on several images of the BSDS300 (see also Tables 1 and 2 for quantitative performance measures and
the author’s website for the segmentation results on the entire database).
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segments (or regions) given by the VOIBFM algorithm over the
BSDS300.

This segmentation method based on the fusion of multiple
imperfect segmentations, produced from different features and col-
or spaces, is also the best to date in term of VoI score, compared to

the best competing segmentation methods. To a certain extent, this
is reassuring, since this performance score is also the criterion of
this fusion model. Thus, as it was initially presupposed, a reliable
fusion model, in the VoI sense, for combining multiple weak (and
low-cost) segmentations Skf gk6L gives also a good VoI score

Fig. 8. Example of segmentations obtained by the VOIBFM algorithm on several images of the BSDS300 (see also Tables 1 and 2 for quantitative performance measures and
the author’s website for the segmentation results on the entire database).
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compared to the set of ground-truths. The proposed segmentation
method has been evaluated and compared in a precision-recall
framework (with the so-called F-measure) in order to assess its
efficiency. First, it is important to note that the proposed algorithm
is inherently disadvantaged, in this framework, for two reasons.
First, it has been trained to optimize another criterion (i.e., the
PRI instead of the F-measure criterion). Second, it is also important
to remember that this precision-recall framework will inherently

favor contour-based segmentation procedures with a ‘‘soft’’
contour map as output over region-based segmentation techniques
giving a binary edge representation (as the proposed segmentation
method). Indeed, this benchmark procedure will automatically
estimate the optimal binary labeling corresponding to the best

Table 1
Average PRI-based performance measure, for different segmentation (into regions)
algorithms [53,41,3,29,5,2,48,24,7,20,40,27,6,13,28,4,26,54,30,9,25,21,55,14,23],
(only those above PRI = 0.75 are herein referenced and are ranked in descending
order of PRI-based performance value across the BSDS300). The bold values indicate
the best score.

ALGORITHMS PRI

HUMANS (in [4]) 0.87
VOIBFM 0.81
-2011- gPb-owt-ucm [53] 0.81
-2010- PRIF [41] 0.80
-2008- CTex [3] 0.80
-2009- MIS [29] 0.80
-2011- SCKM [5] 0.80
-2008- FCR [2] 0.79
-2012- SFSBM [48] 0.79
-2004- FH [24] (in 4) 0.78
-2011- MD2S [7] 0.78
-2009- HMC [20] 0.78
-2009- Consensus [40] 0.78
-2009- Total Var. [27] 0.78
-2009- A-IFS HRI [6] 0.77
-2001- JSEG [13] (in [3]) 0.77
-2011- KM [28] 0.76
-2007- CTM [4,14] 0.76
-2008- Av. Diss. [26] (in [53]) 0.76
-2011- SCL [54] 0.76
-2005- Mscuts [30] (in [27]) 0.76
-2002- Mean-Shift [9] (in [4]) 0.75
-2008- NTP [25] 0.75
-2010- iHMRF [21] 0.75
-2005- NCuts [30] (in [53]) 0.75
-2006- SWA [55] (in [53]) 0.75

Table 2
Average performance measures, for different segmentation (into regions) algorithms
[53,41,29,5,2,48,24,7,20,27,13,28,4,26,54,30,9,25,55,14,23], in terms of several com-
plementary rate of good segmentation using a distance measure (smaller distance
based scores are thus preferred) over the BSDS300. The bold values indicate the best
score.

ALGORITHMS VoI GCE BDE

HUMANS 1.10 0.08 4.99
VOIBFM 1.88 0.20 9.30
gPb-owt-ucm [53] 1.65 – –
PRIF [41] 1.97 0.21 8.45
MIS [29] 1.93 0.19 7.83
SCKM [5] 2.11 0.23 10.09
MD2S [7] 2.36 0.23 10.37
FCR [2] 2.30 0.21 8.99
HMC [20] 3.87 0.30 8.93
Total Var. [27] 1.82 0.18 16.24
JSEG[13] (in [27]) 2,32 0.20 14.40
SFSBM [48] 2.21 0.21 8.87
KM [28] 2.41 – –
CTM [4],[14] 2.02 0.19 9.90
Av. Diss. [26] (in [53]) 2.62 – –
SCL [54] 2.14 0.18 9.38
MsCUtS [30] (in [27]) 2.47 0.19 15.10
Mean-Shift [9] (in [4]) 2.48 0.26 9.70
NTP[25](in[27]) 2.49 0.24 16.30
NClltS [23] (in [4]) 2.93 0.22 9.60
FH [24] (in [4]) 2.66 0.19 9.95
SWA [55] (in [53]) 2.06 – –
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Fig. 9. From top to bottom, distribution of the (1) PRI measure, (2) number and (3)
size of regions over the 300 segmented images of the BSDS300.

Table 3
Average F-measure-based performance measure for different segmentation algo-
rithms [9,30,55,56] on the Weizmann dataset (single and two objects database).

Algorithms F-measure score

Single object database Two objects database

VOIBFM ðK 6 4Þ 0:82� 0:016 0:77� 0:027
VOIBFM (K with Eq. (8)) 0:78� 0:015 0:76� 0:025
AggProc [56] 0:86� 0:012 0:68� 0:005
Mean-Shift [9] (in [56]) 0.57�0.023 0.61�0.023
NCuts [30] (in [56]) 0.72�0.012 0.58�0.059
SWA V1 [55] (in [56]) 0.83�0.016 0.66�0.065
SWA V2 [55] (in [56]) 0.76�0.018 –
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F-measure score [49] for the entire BSDS300 dataset. To overcome
this latter disadvantage, it is more interesting that this benchmark
measure itself chooses the optimal threshold on a soft boundary
image provided by averaging several (6, in this test), binary con-
tour maps as those given by the proposed scheme with 6 different
seeds for the K-means based segmentation ensemble. In this case,
the obtained score is F-measure ¼ 0:61@ðRecall ¼ 0:59

;Precision ¼ 0:63Þ for the test set of the BSDS300, which is quite
good in comparison to the other leading segmentation algorithms.

Experiments have also been conducted on the Weizmann Data-
Set (WDS), which is composed of images that clearly depict one or
two object/s in the foreground that differ from its surroundings
[56]. It is important to note that the WDS is thus especially suited
for segmentation algorithms a priori specifying that the number of

Fig. 10. Segmentation results obtained by the proposed VOIBFM algorithm on the five first images of the Weizmann dataset (first and second row: single object dataset and
third and fourth row: two-object dataset).
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classes is set to two (i.e., object and background) or set to three
(i.e., two objects and background) whereas the proposed VOIBFM
algorithm has been optimized (especially through Eq. (8)) on the
BSDS300 for which, on average, there are 20 regions per image
(and per human segmenter) [4]. Knowing this, the proposed VOI-
BFM algorithm reports an F-measure score of 0:78� 0:015 for
the segment who fits the best the foreground [56] on the WDS (sin-
gle object dataset) and 0:82� 0:016 if the constraint K 6 4 is added
(K being the number of classes of the K-means, see Eq. (8)) which is
competitive compared to the scores listed in [56]. For the two-ob-
ject database, the final score is 0:76� 0:025 (and 0:77� 0:027 with

the constraint K 6 4) which is the highest averaged F-measure
score (on the two-object WDS) presented in the website’s author
[56] (see Table 3 and Fig. 10).

The results of the experiment illustrated in Fig. 11 show that
our fusion model has good asymptotic properties. Indeed, the PRI
or VoI performance measures are even better than the size of the
segmentation ensemble L is high. This test demonstrates the valid-
ity of the proposed fusion procedure and shows also that the per-
formance scores are perfectible if the segmentation ensemble is
completed by other (and different) segmentation maps (of the
same scene).

Statistics on the distribution of the complexity measure for each
image of the BSDS300 and the distribution of the value of K (num-
ber of classes of the K-means) for each segmentation of Skf gk6L (see
Eq. (8) and 2) are given in Fig. 12. Evolution of the PRI measure as a
function of the value of Kmax (see (8)) is also given in Fig. 13. It is
worth mentioning that the proposed fusion model is a bit sensitive
to this parameter Kmax and this one has to be in the range ½6;9� in
order to keep a PRI score greater than or equal to 0:80.

In order to further confirm the efficiency of the VOIBFM fusion
procedure, experiments have been performed with the combina-
tion of 60 mean shift based segmentations [9] achieved by ran-
domly varying the parameters hs and hr within respectively the
interval ½2; . . . ;15� and ½20; . . . ;50�, in the HSV color space. Once
again, the proposed fusion procedure shows a consistent improve-
ment in performance compared to each individual segmentation
(see Tables 1 and 2), and despite the fact that the mean shift algo-
rithm does not take into account all the texture information. The
final scores are: PRI = 0.795, VoI = 2.383, GCE = 0.153, BDE = 9.461.

Finally, the VOIBFM fusion procedure has also been experi-
mented on a segmentation ensemble in which, iteratively, a certain
number of outliers (i.e., bad input K-means based segmentations in
the mean VoI sense) were excluded. Fig. 14 illustrates the evolu-
tion of the PRI score for a given value of the number of outliers ex-
cluded from the segmentation ensemble. It is important to notice
that this strategy does not allow to improve the final segmentation
result in terms of (average) PRI score. This experiment also shows
us two important points. First, all the segmentations are, to some
extent, important. Even a bad input segmentation map (in the
mean VoI sense) remains informative and allows to improve the fi-
nal average PRI-based good classification rate. Indeed, a bad seg-
mentation may be globally bad, according to a defined criterion,
and nevertheless able to produce some good segments (for some
sub-parts of the image) which may be informative for the subse-
quent fusion procedure. Second, the strategy of excluding, from
the fusion procedure, 59 outliers out of 60, i.e., to choose amongst
the 60 segmentations to be fused, the one ensuring the minimal
consensus energy, in the mean VoI sense (i.e., this is equivalent
to just consider the initialization step of the proposed algorithm,
see Eq. (6)), without gradient descent-based fusion process
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(because, being the single element of the segmentation ensemble),
allows to obtain an interesting PRI score (averaged over the
BSDS300) equals to 0.79. This result also confirms that the pro-
posed initialization strategy is reliable. The fusion process based
on the steepest local energy descent, on this best segmentation
(in the mean VoI sense), then allows to further improve this PRI
score up to 0.81.

To finally summarize, the herein proposed fusion model has the
advantage to be derived from a recent and appealing information
Theory based criterion and be both reliable and easy and fast to
optimize.

5.4. Algorithm

It takes respectively, on average, one minute for the segmenta-
tion ensemble generation and less than 15 s for the fusion step (for
a 320� 214 image and for a 2.2 GHz, AMD Athlon 64 Processor
3500+). It is important to note that the two aforementioned steps
can easily be parallelized. It is straightforward for the generation
of the segmentation ensemble but also true for the proposed fusion
model by considering a Jacobi-type version of the Gauss–Seidel
based ICM procedure [57].

The code, data, and all that is necessary for reproduction of the
results are freely accessible on the author’s website (directory:
http://ResearchMaterial/voibfm.html).

6. Conclusion

Throughout this paper, the ability of a novel and reliable seg-
mentation strategy, based on a general framework for consistently
combining, in the VOI sense, multiple (simple) segmentation maps
to produce a final improved partition result has been demon-
strated. This new deterministic fusion procedure, based on the
median partition approach, has a computational complexity linear
in the number of pixels (and a fixed number of Tmax ¼ 50 iterations
are sufficient to reach a convergence) and thus is scalable to large
datasets. In addition, this fusion method can combine segmenta-
tion maps with a possibly different number of regions while being
able to determining a different number of regions for each consen-
sus segmentation map. This new segmentation method based on
the framework of segmentation combination performs very favor-
ably compared to other competing and currently available seg-
mentation schemes. Besides, it remains easy to code, improvable
(by considering and adding other spatial clusterings in the segmen-
tation ensemble) and may be applied to many other problems
dealing with label fields (such as 3D segmentation, 3D reconstruc-
tion, depth field or motion estimation). In addition, this free
parameter fusion model is easily parallelizable and thus quite suit-
able for advanced processor architecture with multi-core technol-
ogies. For all these reasons, the proposed fusion method may
therefore be seen as an attractive strategy for solving the difficult
image segmentation problem.
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