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a b s t r a c t 

Considering the recent progress in the development of practical applications in the field of image process- 

ing, it is increasingly important to develop new, efficient and more reliable algorithms to solve an image 

segmentation problem. To this end, various fusion-based segmentation approaches which use consensus 

clustering, and which are based on the optimization of a single criterion, have been proposed. One of 

the greatest challenges with these approaches is to select the best fusion criterion, which gives the best 

performance for the image segmentation model. In this paper, we propose a new fusion model of im- 

age segmentation based on multi-objective optimization, which aims to overcome the limitation and bias 

caused by a single criterion, and to provide a final improved segmentation. To address the ill-posedness 

for the search of the best criterion, the proposed fusion model combines two conflicting and complemen- 

tary criteria for segmentation fusion, namely, the region-based variation of information (VoI) criterion 

and the contour-based F-measure (precision-recall) criterion using an entropy-based confidence weight- 

ing factor. To optimize our energy-based model, we propose an extended local optimization procedure 

based on superpixels and derived from the iterative conditional mode (ICM) algorithm. This new multi- 

objective median partition-based approach, which relies on the fusion of inaccurate, quick and spatial 

clustering results, has emerged as an appealing alternative to the use of traditional segmentation fusion 

models which exist in the literature. We perform experiments using the Berkeley database with manual 

ground truth segmentations, and the results clearly show the feasibility and efficiency of the proposed 

methodology. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The focus of image segmentation is to divide an image into sep-

arate regions which have uniform and homogeneous attributes [1] .

This step is crucial and important in higher-level tasks such as fea-

ture extraction, pattern recognition, and target detection [2] . Sev-

eral promising methods for segmentation of textured natural im-

ages have been recently proposed and reported in the literature.

Of those, the ones which are based on the combination of multiple

and weak segmentations of the same image to improve the quality

of segmentation results are appealing from a theoretical perspec-

tive and offer an effective compromise between the complexity of

the segmentation model and its efficiency. 
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Most of these approaches, which are used to compute the seg-

entation fusion result from a set of initial and weak putative seg-

entation maps, are theoretically based on the notion of median

artition. According to a given specific criterion (which can also

e expressed as a distance or a similarity index/measure between

wo segmentation maps), the median partition approach aims to

inimize the average of the distances (or to maximize the average

f similarity measures), separating the (consensus) solution from

he other segmentations to be fused. To date, a large and growing

umber of fusion-segmentation approaches based on the result of

he median partition problem, along with different criteria or dif-

erent optimization strategies, have been proposed in the literature.

For example, a fusion model of weak segmentations was ini-

ially introduced in the evidence accumulation sense in [3] with

 co-association matrix, and in [4] , it is then based on a min-

mization of the inertia (or intra-cluster scatter) criterion across

luster instances (represented by the set of local re-quantized la-

el histogram given by each input segmentation to be fused). The

usion of multiple segmentation maps has also been proposed

ith respect to the Rand Index (RI) criterion (or its probabilistic
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Fig. 1. The weighted formula approach (WFA). 
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F  
ersion), with either a stochastic constrained random walking tech-

ique [5] (within a mutual information-based estimator to assess

he optimal number of regions), an algebraic optimization method

6] , a Bayesian Markov random field model [7] , a superpixel-based

pproach optimized by the expectation maximization procedure

8] or finally, according to a similarity distance function built from 

he adjusted RI [9] and optimized with a stochastic gradient de-

cent. It should also be noted that the solution of the median par-

ition problem can be determined according to an entropy crite-

ion, either in the variation of information (VoI) sense [10] , us-

ng a linear complexity and energy-based model optimized by an

terative steepest-local energy descent strategy combined with a

patial connectivity constraint, or in the mutual information sense

11] using expectation maximization (EM) optimization. The fusion

f clustering results can also be carried out according to the global

onsistency criterion (GCE) [12] (a perceptual measure which takes

nto account the inherent multiscale nature of an image segmen-

ation by measuring the level of refinement existing between two

patial partitions) or based on the precision-recall criterion [13] us-

ng a hierarchical relaxation scheme. In this context, Franek et al.

14] proposed a methodology allowing the use of virtually any

nsemble clustering method to address the problem of image-

egmentation combination. The strategy is mainly based on a pre-

rocessing step which estimates a superpixel map from the seg-

entation ensemble in order to reduce the dimensionality of the

ombinatorial problem. Finally, in remote sensing, there have been

eports of the combining model based on the maximum-margin

ense (of the hyperplanes between spatial clusters) [15] or the re-

ent Bayesian fusion procedure proposed in [16] , in which the class

abels obtained from different segmentation maps (obtained from

ifferent sensors) are fused by the weights of the evidence model. 

In fact, the performance of these energy-based fusion models

s related both to the optimization procedure, with its potential

bility to find an optimal solution (as quickly as possible), and it

lso largely depends on the chosen fusion criterion, which defines

ll the intrinsic properties of the consensus segmentation map to

e estimated. However, by assuming that an efficient optimization

rocedure is designed and implemented (in terms of its ability to

uickly find a global optimal and stable solution), it remains un-

lear whether it can find the most appropriate single criterion al-

owing both to extract all the useful information contained in the

egmentation ensemble and also to model all the complex geo-

etric properties of the final consensus segmentation map. An-

ther way to look at this problem is to understand that if the op-

imization problem is based on the optimization of a single cri-

erion, the fusion procedure is inherently biased towards search-

ng one particular family of possible solutions; otherwise, some

pecific regions of the search space contain solutions, which are

 priori defined (by the criterion), as acceptable solutions. This

ay bias and limit the performance of an image segmentation

odel. To overcome this main disadvantage (the bias caused by

 single criterion), we propose an interesting solution to use ap-

roaches based on multi-objective optimization in order to design

 new fusion-segmentation model which takes advantage of the

potential) complementarity of different objectives (criteria), and

nables us to finally obtain a better consensus segmentation re-

ult. Following this new strategy, in this work, we introduce a new

ulti-criteria fusion model weighted by an entropy-based confi-

ence measure (EFA-BMFM). The main goal of this model is to

imultaneously combine and optimize two different and comple-

entary segmentation-fusion criteria, namely, the (region-based)

oI criterion and the (contour-based) F-measure (derived from the

recision-recall) criterion. 

The remainder of the paper is organized as follows. In Section 2 ,

e present basic concepts of multi-objective optimization. In

ection 3 , we describe the generation of the segmentation ensem-
le to be fused by our model, while in Section 4 , we describe

he proposed fusion model, i.e. , the used segmentation criteria, the

ulti-objective function and the optimization strategy of the pro-

osed algorithm for the fusion of image segmentation. We explain

he experiments and discussions in Section 5 , and in Section 6 , we

onclude the paper. 

. Multi-objective optimization 

The motivation of using multi-objective (MO) optimization

omes from all the drawbacks and limitations of using a mono-

bjective one, as mentioned in our preliminary work [17] . As previ-

usly mentioned, the final segmentation solution is inherently bi-

sed by the chosen single criterion as well as by the parameters of

he model and the possible outliers of the segmentation ensemble.

 MO optimization-based segmentation fusion framework enables

s to more efficiently extract the useful information contained in

he segmentation ensemble according to different criteria or dif-

erent viewpoints, as well as to model easily all the complex geo-

etric properties of the final consensus segmentation map a priori

efined as the acceptable solution. To this end, the challenge is to

nd two different and complementary criteria. 

Contrary to the mono-objective optimization case, in the MO

ptimization case, there are often several conflicting objectives to

e simultaneously optimized [18] . Existing approaches which are

tilized to solve a MO problem can be distinguished into two

lasses [19] . The first class is called the Pareto approach (PTA), and

ims to provide a set of solutions which are non-dominated with

espect to each objective. The second class (adopted in our work)

s called the weighted formula approach (WFA), which transforms

 MO problem into a problem with a single objective function. This

s typically achieved by first assigning a numerical (estimated data-

riven) weight to each objective (evaluation criterion), and then

ombining the values of the weighted criteria into a single value

ither by adding all the weighted criteria. The formula to deter-

ine the quality (or cost) Z which is related to a given candidate

odel is written as: 

 = w 1 c 1 + w 2 c 2 + · · · + w n c n (1) 

ith n representing the number of evaluation criteria, and w i are

eal-valued weights (assigned to criteria c i ) which satisfy the fol-

owing relations: 0 ≤ w i ≤ 1 and 

∑ n 
i =1 w i = 1 . 

A geometric representation of the WFA approach is given in

ig 1 . In fact, the minimization of Z can be analysed by searching
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the value of the tangency point A for which the line T with slope

−w 1 / w 2 (associated with c 2 = − w 1 
w 2 

c 1 + 

Z 
w 2 

in the case of two

objectives) just touches the boundary of the set of feasible solu-

tions ( FS ) (related to the couple [ c 1 , c 2 ]). Note that the estimation

of the weights (also known as the importance factors ) is an essen-

tial step, and should be based on the degree of information or the

confidence levels regarding the ensemble of segmentations (to be

fused) provided by each criterion, along with the difference of the

scaling between these two criteria. This re-scaling is essential to

prevent either of the two criteria from being assigned too much

significance; otherwise, it would make the fusion of the two crite-

ria ineffective. To address this issue, we propose an entropy-based

confidence measure (see Section 4.3 ). 

3. Generation of the initial segmentations 

In our application, it is simple to acquire the initial segmenta-

tions (see Fig. 2 ) used by our fusion Framework. To do this, we em-

ploy a K -means [20] clustering technique, with an image expressed

in 12 different colour spaces, 1 namely: RGB, HSV, YIQ, XYZ, LAB,

LUV, i123, h123, YCbCr, TSL, HSL and P1P2. For each input image of

the BSDS300, we predict the cluster number of the K -means algo-

rithm ( K ) using a metric which measures the complexity in terms

of the number of distinct texture classes within the image. This

metric, which is defined in [21] , has a range of [0, 1], where a

value close to 0 means that the image has few texture patterns,

and a value close to 1 means that the image has several different

types of texture. Mathematically, the value of K is written as: 

K = floor 

(
1 

2 

+ [ K 

max × complexity value ] 

)
(2)

where floor( x ) is a function which gives the largest integer less

than or equal to x , and K 

max is an upper-bound of the number of

classes for a very complex natural image. In our application, we

used three different values of K 

max , namely K 

max 
1 

= 11 , K 

max 
2 

= 9

and K 

max 
3 

= 3 . Additional details about the complexity value of an

image are given in [10] . Note that in our case, the complexity is

a measure of the absolute deviation ( L 1 norm) of the set of nor-

malized histograms or feature vectors for each overlapping squared

fixed-size ( N w 

) neighbourhood contained within the input image. 

Moreover, we used a set of values of the re-quantized colour

histogram (as a feature vector for the K -means) with equidistant

binning, which is estimated around the pixel to be classified. In our

framework, this local histogram is equally re-quantized for each

of the three-colour channels in a N b = q 3 
b 

bin descriptor. This de-

scriptor is computed on an overlapping squared fixed-size ( N w 

= 7 )

neighbourhood, which is centered around the pixel to be seg-

mented using three different values of K 

max for the K -means al-

gorithm, and using two different values of q b , namely q b = 5 and

q b = 4 , for a total of 12 × (3 + 2) = 60 input segmentations to be

fused. 
1 It should be noted that each colour space has an interesting specific property 

which is efficiently taken into account in our application in order to better diver- 

sify the segmentation ensemble (to be fused), and thus making a more reliable final 

usion procedure. For example, RGB is an additive colour system based on trichro- 

matic theory, and is nonlinear with visual perception. This space colour appears to 

be optimal for tracking applications [27] . The LAB colour system approximates hu- 

man vision, and its component closely matches the human perception of lightness 

[28] . The LUV components provide an Euclidean colour space yielding a perceptu- 

ally uniform spacing of colour approximating a Riemannian space [29] . The HSV 

is interesting in order to decouple chromatic information from the shading effect 

[30] . The YIQ colour channels have the property of being able to code the lumi- 

nance and chrominance information, which are useful in compression applications. 

Besides, this system is intended to take advantage of human colour characteristics. 

XYZ has the advantage of being more psycho-visually linear, although they are non- 

linear in terms of linear-component colour mixing. Each of these properties will be 

efficiently combined by our fusion technique. 

H  

H  

w  

t  

p  

d  

a  

t  

t  

t  
It should be noted that different weak segmentations (result-

ng from a simple K -means expressed in different colour spaces)

sed in our fusion model can be easily viewed as different and

omplementary image channels, as provided by various sensors. In

his context, our fusion model has the same goal of a multi-sensor

ata fusion scheme [22–24] , which aims to take advantage of the

omplementarity in the data in order to improve the final result.

n addition, different values of K 

max (which is related to the clus-

er number) and q b (related to the level of resolution of the tex-

ure model used in the K -means) enable us to generate a consis-

ent variability in the segmentation ensemble, and considers the

nherently ill-posed nature of the segmentation problem, which is

ue to the large number of possible partitions for a single image,

nd which can also be segmented at different levels of resolution

r detail by different human observers. 

. Proposed fusion method 

.1. Region-based VoI criterion 

The VoI [25] is an information theoretic criterion used for com-

aring two segmentations (partitions) or clusterings. By measuring

he amount of information which is lost or gained while switch-

ng from one clustering to another, this metric aims to quantify

he information shared between two partitions. In particular, the

oI takes a value of 0 when two clusterings are identical, but ≤ 1

therwise. Similarly, it also expresses roughly the amount of ran-

omness in one segmentation which cannot be explained by the

ther [26] . 

Let us assume that there is a machine segmentation to be com-

uted (or compared) S a ={ C a 
1 
, C a 

2 
, . . . , C a 

R a 
} relative to a (ideal) man-

ally segmented image S b ={ C b 
1 
, C b 

2 
, . . . , C b 

R b 
} , where R a represents

he number of segments or regions ( C ) in S a and R b denotes the

umber of regions in S b . The VoI distance between S a and S b can

e written as follows: 

oI (S a , S b ) = H (S a ) + H (S b ) − 2 I (S a , S b ) (3)

here H( S a ) and H( S b ) denote the entropy associated with the seg-

entation S a , and S b and I( S a , S b ) represent the mutual information

etween these two spatial partitions. Let n be the number of pixels

ithin the image, let n a 
i 

be the number of pixels in the i th cluster

 of the segmentation S a , n b 
j 

the number of pixels in the j th clus-

er j of the segmentation S b and finally, n i 
j 

the number of pixels

hich are together in the i th cluster (or region) of the segmenta-

ion S a and in the j th cluster of the segmentation S b . Note that the

ntropy is always positive or zero in the case where there is no

ncertainty (when there is only one cluster), and is given by: 

 (S a ) = −
R a ∑ 

i =1 

P(i) log P(i) = −
R a ∑ 

i =1 

(
n 

a 
i 

n 

)
log 

(
n 

a 
i 

n 

)
(4)

 (S b ) = −
R b ∑ 

j=1 

P(j) log P(j) = −
R b ∑ 

j=1 

(
n 

b 
j 

n 

)
log 

(
n 

b 
j 

n 

)
(5)

here P(i) = n a 
i 
/n represents the probability that a pixel belongs

o cluster S a (respectively P(j) = n b 
j 
/n being the probability that a

ixel belongs to cluster S b ) in the case where i and j represent two

iscrete random variables with values of R a and R b , respectively,

nd uniquely related to the partition S a and S b . Now, let us assume

hat P(i,j) = n i j /n represents the probability when a pixel belongs

o C a 
i 

and to C b 
j 
, which is the mutual information between the par-

itions S a , and S b is equal to the mutual information between the
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Fig. 2. Examples of initial segmentation set and combination result (output of Algorithm 1 ). (a) Results of K-means clustering. (b) Input image ID 198054 selected from the 

Berkeley image dataset. (c) Final segmentation given by our fusion framework. (d) Contour superimposed on the colour image. 
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Fig. 3. Two images from the BSDS300 (a) and its ground truth boundaries (b). Segmentation results obtained by our EFA-BMFM are shown in (c). 
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random variables i and j , and is expressed as: 

I (S a , S b ) = 

∑ R a 

i =1 

∑ R b 

j=1 
P(i,j) log 

(
P(i,j) 

P(i) P(j) 

)
. (6)

4.2. Contour-based F-measure criterion 

In the field of statistical analysis, the F-measure score (also

called the F-score or F1 score) is defined as a measure of a test’s

accuracy. We obtained the results of the F-measure from a com-

bination of two complementary measures, i.e. precision ( Pr ) and

recall ( Re ). In the (contour-based) image segmentation domain,

these two scores respectively represent the fraction of detections

which are true boundaries and the fraction of the true bound-

aries detected [13] . In particular, a low precision value is typi-

cally the result of significant over-segmentation, and highlights the

fact that a large number of boundary pixels have poor localization.

On the contrary, the recall is low when there is significant under-

segmentation or when there is a failure to capture the salient im-

age structure (in terms of contours). In other words, precision and

recall can be understood in terms of the rate of false positives and

missed detection . 

Mathematically, let us assume that a segmentation result S a =
{ C a 

1 
, C a 

2 
, . . . , C a 

R a 
} has to be compared with a manually segmented

image S b ={ C b 
1 
, C b 

2 
, . . . , C b 

R b 
} (considered as ground truth), where R a 

represents the number of regions ( C ) in S a and R b denotes the

number of regions in S b . Now, let B C a be the set of pixels which

belong to the boundary of the segment C a in the segmentation S a 

( B C b is the set of pixels belonging to the boundary of the segment

C b in the ground truth segmentation S b ). The precision ( Pr ) and re-

call ( Re ) are then respectively defined as: 

P r = 

| B C a ∩ B C b | 
| B C a | , Re = 

| B C a ∩ B C b | 
| B C b | (7)

where ∩ denotes the intersection operator and | X | represents the

cardinality of the set of pixel X . 

Generally, the performance of a boundary detector providing

a binary output is represented by a point in the precision-recall

plane. If the output is a soft or a probabilistic boundary repre-

sentation, a precision-recall curve displays the trade-off between

the absence of noise and the fidelity to the ground truth, con-

sidering that the threshold parameter of the boundary detector

varies. A specific application 

2 can characterise the relative cost α
2 In the case of an algorithm performing a search task, it is usually preferable 

to have a lower rate of false positives (higher precision) than a low rate of missed 

detections (high recall). 

b  

S  

t

S  
etween these two amounts, which highlights a particular point

n the precision-recall curve [31] . In this case, the new expression

f the F-measure is given as follows: 

 α = 

P r × Re 

α × Re + (1 − α) × P r 
(8)

hich is within the range [0, 1] where a score equal to 1 indicates

hat two segmentations are identical ( i.e. they have identical con-

ours). 

.3. Multi-objective function 

The VoI and F-measures, which are described in

ections 4.1 and 4.2 , are in fact frequently used to validate a

ew segmentation method [7,31,32] as two complementary com-

arison measures which enable the assessment of an automatic

egmentation ( i.e. given by an algorithm) relative to a set of

round truth segmentations (provided by a set of human experts).

his summarizes the possible (and consistent) interpretation of an

nput image segmented at different levels of detail or resolution

evels (see Fig. 3 ). Let { S b 
k 
} k ≤L = { S b 

1 
, S b 

2 
, . . . , S b 

L 
} be a finite ensemble

f L manually obtained ground truth segmented images of the

ame scene (segmented by L different human experts at different

evels of detail), and S a be the spatial clustering result to be

stimated by making a comparison with the manually labeled set

 S b 
k 
} k ≤L . The mean F-measure and the mean VoI metrics are simply

he two metrics which consider this set of possible ground truth

egmentations, i.e. : 

 

(
S a , { S b k } k ≤L 

)
= 

1 

L 

L ∑ 

k =1 

C (S a , S b k ) (9)

ith C ∈ {VoI, F α}. In particular, the VoI distance function will give

 low value (on the contrary, the F α measure function will give a

igh value) to a segmentation result S a which is in good agreement

ith the set of segmentation maps obtained from human experts. 

In our case, we aim to obtain a final improved segmentation

esult ˆ S by the fusion of a family of L segmentations { S k } k ≤L =
 S 1 , S 2 , . . . , S L } (associated with the same scene or image), with the

ope that the result is more accurate than that of each individual

ember of { S k } k ≤ L . To this end, these two complementary crite-

ia, namely the contour-based F-measure and the region-based VoI

easure, can be used directly as an MO cost function in an energy-

ased model. From this point of view, the consensus segmentation
ˆ 
 

MO 
is simply obtained as the result of the following bi-criteria op-

imization problem: 

ˆ 
 MO = arg min 

S∈ S n 
MO (S, { S k } k ≤L ) with : (10)
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Algorithm 1. EFA-based fusion model algorithm. 
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O (S, { S k } k ≤L ) = w VoI VoI (S, { S k } k ≤L ) + 

w F α

F α(S, { S k } k ≤L ) 
(11) 

here S is a segmentation map belonging to the set of possi-

le segmentations ( S ∈ S n ). The importance (or weighting) factors

 VoI and w F α must be data-driven and estimated based on the

oncept of the informational importance of the segmentation en-

emble given a criterion, or according to the traditional multiple-

riteria analysis decision making (MCDM) problem under uncer-

ainty [33] based on the intrinsic information generated by the

egmentation ensemble through each criterion. 

In our model, we can use the entropy value to measure the

mount of decision information contained in the segmentation en-

emble and related to each criterion as follows (for the VoI crite-

ion and similarly for the F-measure): 

 VoI = −D 

∑ L 

i =1 

{
VoI (S i , { S k } k ≤L ) 

S VoI 

log 
VoI (S i , { S k } k ≤L ) 

S VoI 

}
(12) 

here: S VoI = 

L ∑ 

j=1 

VoI (S j , { S k } k ≤L ) (13) 

here D = 1 / log ( L ) is a constant which guarantees 0 ≤ e VoI ≤ 1. In

his context, the degree of divergence of the intrinsic information

or the contrast intensity) of the VoI and the F α criterion can be

easured as follows: 

 VoI = 1 − e VoI (14) 

 F α = 1 − e F α (15) 

nd finally, the objective weight for each criterion (VoI and F α) is

hus defined by: 

 VoI = 

d VoI 

d VoI + d F α

∈ [0 , 1] (16) 

 F α = 

d F α

d VoI + d F α

∈ [0 , 1] . (17) 

In this manner, the entropy generated by the set of mean pair-

ise VoI distances of each weak segmentation ( i.e. the set of rough

egmentations to be fused) is first computed to obtain e VOI (in ad-

ition, the entropy generated by the set of mean pairwise F α dis-

ances of each weak segmentation allows us to obtain e F α ). Then,

 VOI and e F α enable us to estimate the degrees of divergence of the

ntrinsic information related to each criterion, i.e. d VoI or d F α
(also

eferred to as the inherent contrast intensity [33] ), and are finally

oth used to compute the weight W associated with each criterion.

Conceptually, the entropy e VOI or e F α defines the uncertainty of

istribution of mean pairwise distances (related to each criterion).

or example, if the set of weak segmentation maps to be fused

ave similar pairwise mean distances relative to the VoI criterion,

his VoI criterion transmits too little information (relative to the

ther F α criterion) to the fusion (decision maker) model [34] . As

 result, the weight W VoI of this VoI criterion is less because this

riterion becomes less important for our fusion model. 

.4. Optimization of the fusion model 

To enable us to solve this consensus function, in the bi-criteria

ense, we resort to a deterministic search technique, which is

alled the iterative conditional mode (ICM), proposed by Besag

35] ( i.e. a Gauss-Seidel relaxation), where pixels are updated one

t a time. In this work, we used a much more effective enhance-

ent of the ICM algorithm, which involves utilizing a superpixel
 i.e. the regions or segments given by each individual segmenta-

ion S k generated by the K-means algorithm) concept instead of

ixels. This superpixel-based strategy makes our consensus energy

unction nearly convex by adding several region-based constraints

among other advantages over the pixel-based fusion method [36] ).

owever, with the lack of proper initialization, this algorithm will

onverge towards a bad local minima( i.e. a local minima which is

ar away from the global minimum, and which gives a poor seg-

entation result). 

Again, to solve this problem, we resort to the entropy val-

es of each criteria (see (12) ). Thus, we select the criteria which

ives the minimal entropy ( i.e. the most informative criterion; see

ection 4.3 ), and for the first iteration of the ICM, of the L seg-

entations to be fused, we then choose the one which ensures the

inimal consensus energy (in this selected criterion sense) of our

usion model. Because this iterative algorithm amounts to achiev-

ng simultaneously, for each superpixel to be labeled, the mini-

um value of (11) , we call this segmentation algorithm a multi-

riteria fusion model based on the entropy-weighted formula ap-

roach (EFA-BMFM). The pseudo-code of EFA-BMFM is shown in

lgorithm 1 . 
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Fig. 4. Example of fusion convergence result for three various initializations. (a) Berkeley image ID 229036 and its ground-truth segmentations. (b) A non informative (or 

blind) initialization. (c) The worst input segmentation. (d) The best input segmentation (from the segmentation set) selected by the entropy method (see Section 4.4 ). (e), (f) 

and (g) segmentation results after 10 iterations of our EFA-BMFM fusion model (resulting from (b), (c) and (d), respectively). 
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5. Experimental tests and results 

5.1. Data set and benchmarks 

In order to measure the performance of the proposed fusion

model, we validate our approach using the famous Berkeley seg-

mentation database (BSDS300) [37] . Recently, this dataset has been

enriched to BSDS500 3 [38] with 200 additional test colour im-

ages of size 481 × 321. In order to quantify the efficacy of

the proposed segmentation algorithm, for each colour image, the

BSDS300 and the BSDS500 offer a set of benchmark segmenta-

tion results ( i.e. ground truth), given by human observers (be-

tween 4 and 7). In addition, we used the Matlab source code pro-

posed in [32] with the aim of estimating the different quantitative

performance measures ( i.e. the four image segmentation indices
3 The BSDS300 [37] and the BSDS500 [38] are available online at: https://www2. 

eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html . 

o  

S

resented in Section 5.3 ). This code is available online at: http:

/www.eecs.berkeley.edu/ ∼yang/software/lossysegmentation . In ad-

ition, to test the effectiveness for other types of images, we tested

ur proposed method on the aerial image segmentation dataset

ASD) 4 [39] , and we performed a quantitative evaluation using two

edical images (a brain magnetic resonance imaging (MRI) and a

ornea image) recently used in [40] and [41] . 

.2. Initial tests 

Our initial tests can be divided into two main stages. First, we

ested the convergence properties of our ICM procedure based on

uperpixels by choosing as the initialization of our iterative local

radient-descent algorithm various initializations extracted from

ur segmentation ensemble { S k } k ≤ L (these convergence proper-
4 The ASD [39] is available online at: http://web.ornl.gov/ ∼jiy/ASD/Aerial Image 

egmentation Dataset.html. 

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/~yang/software/lossysegmentation
http://web.ornl.gov/~jiy/ASD/Aerial
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Fig. 5. Average error of different initialization methods (for the probabilistic Rand index (PRI) performance measure) on the BSDS300. 

Fig. 6. Progression of the segmentation result as a function of the number of segmentations ( L ) to be fused for the EFA-BMFM algorithm. More precisely, for L = 12, 24, 36, 

48 and 60 segmentations. 

Fig. 7. Progression of the VoI, (lower is better) and the PRI (higher is better) according to the segmentation number (L) to be fused for our proposed EFA-BMFM algorithm 

(on the BSDS500). Precisely, for L = 1, 12, 24, 36, 48 and 60 segmentations. 
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ies have been discussed in Section 5.7 ). From our results, the fi-

al energy value, along with the resulting final segmentation map,

s on average better when the initial segmentation solution is as-

ociated with an initialization chosen by our proposed entropy-

ased method, while it remains robust to other initializations (see

ection 4.4 and Fig. 4 ). We also found that the average error for the

RI performance measure (on the BSDS300) is lower when the ini-

ial segmentation solution is associated with an initialization cho-

en by our entropy-based method (Init - best in Fig. 5 ). 
Secondly, we tested the effect of the number of initial segmen-

ations on the accuracy of the final segmentation result. Qualita-

ively, Fig. 6 shows that the final consensus result is even better

han the size of the segmentation ensemble L is high. Quantita-

ively, we observed that the different performance measures (see

ection 5.3 ) are improved when we increase the number of initial

egmentations. This test demonstrates the validity of the proposed

usion procedure, and shows that the segmentation results can be
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Fig. 8. A sample of results obtained by applying our proposed algorithm to images from the Berkeley dataset compared to other algorithms. From left to right: original 

images, FCR [4] , SCKM [51] , MD2S [50] , GCEBFM [44] , MDSCCT [48] and our method (EFA-BMFM). 

 

 

 

 

 

 

 

 

 

 

 

 

enhanced if the segmentation ensemble is completed by other seg-

mentation maps of the same scene. 

5.3. Performance measures and results 

In an attempt to test and evaluate our fusion segmentation

model, we employed four performance metrics which are most

popular in the literature. These well-known performance mea-
5 
sures are: 

5 The GCE metric is in the range [0;1], where a score of 0 indicates that there is a 

perfect match between two segmentations and an error of 1 represents a maximum 

difference between the two segmentations to be compared [44] . Also, the PRI met- 

ric is in the range [0;1], where higher values indicating greater similarity between 

two segmentations [7] . For the BDE measure, a value near-zero indicates high qual- 

ity of the image segmentation, and its maximum value can be the length of the 

image segmentation [43] . The VOI metric taking a value of 0 when two segmen- 

 

 

 

t

w

1. The Probabilistic Rand index (PRI) [42] counts the fraction of

pairs of pixels whose labels are consistent between the com-

puted segmentation and the human segmentation, averaging

through all of the ground-truth segmentation of a given image.

2. The boundary displacement error (BDE) [43] measures the av-

erage displacement error of boundary pixels between two seg-

mented images. In particular, it defines the error of one bound-

ary pixel as the distance between the pixel and the closest pixel

in the other boundary image. 

3. The variation of information (VoI) [25] defines the distance be-

tween two segmentations as the average conditional entropy of

one segmentation given the other; it measures the amount of
ations are identical and positive otherwise. This metric is in the range [0;log(n)], 

here n denotes the number of pixels within the image [10] . 
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Table 1 

Performance of several segmentation algorithms (with or with- 

out a fusion model strategy) for three different performance mea- 

sures: VoI, GCE and BDE (lower is better), on the BSDS300. 

ALGORITHMS VoI GCE BDE 

HUMANS 1.10 0.08 4.99 

Algorithms With Fusion Model 

EFA-BMFM 1.870 0.198 8.284 

-2016- GCEBFM [44] 2.10 0.19 8.73 

-2014- FMBFM [13] 2.01 0.20 8.49 

-2014- VOIBFM [10] 1.88 0.20 9.30 

-2014- SFSBM [21] 2.21 0.21 8.87 

-2010- PRIF [7] 1.97 0.21 8.45 

-2008- FCR [4] 2.30 0.21 8.99 

-2007- CTM γ =20 [32] 2.02 0.19 9.90 

Algorithms Without Fusion Model 

-2016- DGA-AMS [46] 2.03 – –

-2014- CRKM [47] 2.35 – –

-2012- MDSCCT [48] 2.00 0.20 7.95 

-2012- AMUS [8] 1.68 0.17 –

-2011- KM [49] 2.41 – –

-2011- MD2S [50] 2.36 0.23 10.37 

-2010- SCKM [51] 2.11 0.23 10.09 

-2009- MIS [52] 1.93 0.19 7.83 

-2009- HMC [53] 3.87 0.30 8.93 

-2008- NTP [54] 2.49 0.24 16.30 

-2008- Av. Diss [55] 2.62 – –

-2005- NCuts K=20 [56] (in [32] ) 2.93 0.22 9.60 

-2004- FH 

∑ =0 . 5 ,k =500 [57] (in [32] ) 2.66 0.19 9.95 

-2002- Mean-Shift [58] 2.48 0.26 9.70 

Table 2 

Performance of several segmentation algorithms (with or without a fu- 

sion model strategy) for the PRI performance measure (higher is better) 

on the BSDS300. 

ALGORITHMS PRI 

HUMANS 0.87 

Algorithms With Fusion Model 

EFA-BMFM 0.806 

-2016- GCEBFM [44] 0.80 

-2014- FMBFM [13] 0.80 

-2014- VOIBFM [10] 0.81 

-2014- SFSBM [21] 0.79 

-2010- PRIF [7] 0.80 

-2009- Consensus [6] 0.78 

-2008- FCR [4] 0.79 

-2007- CTM γ =20 [32] 0.76 

Algorithms Without Fusion Model 

-2016- LSI [59] 0.80 

-2014- CRKM [47] 0.75 

-2011- SCKM [51] 0.80 

-2011- MD2S [50] 0.78 

-2011- KM [49] 0.76 

-2009- MIS [52] 0.80 

-2009- HMC [53] 0.78 

-2009- Total Var [60] 0.78 

-2009- A-IFS HRI [61] 0.77 

-2008- CTex [62] 0.80 

-2004- FH 

∑ =0 . 5 ,k =500 [57] (in [32] ) 0.78 

-2005- NCuts K=20 [56] (in [32] ) 0.72 

-2002- Mean-Shift [58] 0.75 

-2001- JSEG c=255 ,s =1 . 0 ,m =0 . 4 [63] (in [62] ) 0.77 

 

 

 

 

 

Table 3 

Performance of several segmentation algorithms (with or without a fusion 

model strategy) for three different performance measures: VoI, GCE and 

BDE (lower is better), on the BSDS500. 

ALGORITHMS VoI GCE BDE 

HUMANS 1.10 0.08 4.99 

Algorithms With Fusion Model 

EFA-BMFM 1.97 0.21 7.90 

-2016- GCEBFM [44] 2.18 0.20 8.61 

-2014- FMBFM [13] 2.00 0.21 8.19 

-2014- VOIBFM [10] 1.95 0.21 9.00 

-2010- PRIF [7] 2.10 0.21 8.88 

-2008- FCR [4] 2.40 0.22 8.77 

-2007- CTM [32] (in [64] ) 1.97 – –

Algorithms Without Fusion Model 

-2011- WMS d �=20 [65] (in [64] ) 2.10 – –

-2004- FH 

∑ =0 . 8 [57] (in [64] ) 2.18 – –

-2002- Mean-Shift [58] (in [64] ) 2.00 – –

Table 4 

Performance of several segmentation algorithms (with or without a fu- 

sion model strategy) for the PRI performance measure (higher is better) 

on the BSDS500. 

ALGORITHMS PRI 

HUMANS 0.87 

Algorithms With Fusion Model 

EFA-BMFM 0.81 

-2016- GCEBFM [44] 0.80 

-2014- FMBFM [13] 0.80 

-2014- VOIBFM [10] 0.80 

-2010- PRIF [7] 0.79 

-2008- FCR [4] 0.79 

-2007- CTM [32] (in [64] ) 0.73 

Algorithms Without Fusion Model 

-2004- FH 

∑ =0 . 8 [57] (in [64] ) 0.77 

-2011- WMS d �=20 [65] (in [64] ) 0.75 

-2002- Mean-Shift [58] (in [64] ) 0.77 
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information which is lost or gained while switching from one

region to another. 

4. The global consistency error (GCE) [37] determines the extent

to which one segmentation map can be viewed as a refinement

of another segmentation map. In this way, for a perfect match,

every region in one of the segmentations must be a refinement

( i.e. , a subset) of a region in the other segmentation. 
s  
As can be seen from the results given in Tables 1 and 2 , for

he BSDS300, our method generally outperforms the state-of-the

rt algorithms in terms of the different distance measures with:

DE = 8.284, VoI = 1.870, GCE = 0.198 (a lower value is better)

nd PRI = 0.806 (a higher value is better). From the tables, we also

ee that if we compare our results to a mono-objective approach

FMBFM and VOIBFM) based on the same single criterion, we ob-

ain significantly better results. This shows clearly that our strategy

f combining two complementary (contour and region-based) cri-

eria of segmentation (the VoI and the F-measure) is effective. In

ddition, from the data in Tables 3 and 4 , we observe that for the

SDS500, our method gives comparable performance results com-

ared to different algorithms with or without the fusion model

hen: BDE = 7.90, VoI = 1.97, GCE = 0.21 (a lower value is better)

nd PRI = 0 . 81 . Moreover, Fig. 7 , we observe that the PRI and VoI

erformance scores are better when L (the segmentation number

o be fused) is high. This test shows that our performance scores

an be further improved if we increase the number of segmenta-

ions to be fused. In addition, for better comparison, in Fig. 8 , we

resent a sample of results obtained by applying our algorithm to

ome images from the Berkeley dataset compared to other state-

f-the-art algorithms. In addition, Fig. 9 displays a small number of

egmented images which are similar to those shown in the mono-

riterion fusion model (FMBFM and VOIBFM) proposed in [10] and

13] , respectively. Fig. 10 shows the best and worst segmentation

esults (in the PRI sense) from the BSDS300. The results for the

ntire database will be available on the website of the author.

ig. 11 shows the distribution of the PRI, BDE, VoI and GCE mea-

ures. From this figure, we can conclude that few segmentations
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Fig. 9. Additional segmentation results obtained from the BSDS300. 

Fig. 10. Best and worst segmentation results (in the PRI sense) obtained from the BSDS300. First column: (a) image ID 167062 and (b) its segmentation result (PRI = 0.99). 

Second column: (c) image ID 175043 and (d) its segmentation result (PRI = 0.37). 
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Fig. 11. Distribution of the BDE, GCE, PRI and VoI measures over the 300 segmented images of the BSDS300. 

Fig. 12. Distribution of the number and size of regions over the 300 segmented 

images of the BSDS300. 
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xhibit poor PRI and BDE scores even for the most difficult seg-

entation cases. Moreover, Fig. 12 shows the distribution of the

umber and size of regions obtained by our EFA-BMFM algorithm

ver the BSDS300. 
.4. Comparison of medical image segmentation 

Medical image segmentation is an important part of medical

nalysis, and is also a process which is clearly different from the

egmentation of natural (textured colour) images because input

edical images are generally in grey levels, have low contrast and

re noisy. We performed two experiments on medical images to

emonstrate the effectiveness and flexibility of our segmentation

pproach. In the first experiment, we used a brain magnetic res-

nance imaging (MRI), as shown in Fig. 13 . The results, which

ere obtained by using the region-based model via local similarity

actor (RLSF), the global active contour model (these two models

hich are based on active contour were recently proposed in [40] )

nd our EFA-BMFM model, are shown in Fig. 13 (b)–(d), respec-

ively. As can be seen, our method outperforms the global active

ontour model and gives an interesting result compared to the seg-

entation achieved by the RLSF model. In the second experiment,

e tested our model on a real cornea image, and we compared

he segmentation result provided by our EFA-BMFM model with

he results given by the fast global minimization (FGM) [45] and

he double fitting terms of multiplicative and difference (DMD)

41] models (see Fig. 14 ). We observe that the quality of the seg-

entation obtained by the FGM model for this cornea image is not

s good as those of the DMD and EFA-BMFM. The reason for this is

as mentioned in [41] ) that the image with intensity inhomogene-

ty is too challenging for the FGM. 

.5. Comparison of segmentation methods for aerial image 

egmentation 

We also benchmarked our fusion model as a segmentation

ethod using the aerial image segmentation dataset (ASD) [39] .

his new image dataset contains 80 high-resolution aerial images,

ith spatial resolutions ranging from 0.3 to 1.0 m, including dif-

erent scenes as schools, residential areas, cities, warehouses and

ower plants. The images were normalized to realize a resolution
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Fig. 13. Comparison of two region-based active contour models on a brain MRI. (a) original image. (b) segmentation of the RLSF model [40] . (c) segmentation of the global 

active contour model [40] . (d) segmentation achieved by our EFA-BMFM model. 

Table 5 

Boundary benchmarks on the aerial image segmentation 

dataset (ASD). Results obtained for different segmentation 

methods (with or without the fusion model strategy). The 

figure shows the F-measures (higher is better) when choos- 

ing an optimal scale for the entire dataset (ODS) or per im- 

age (OIS). 

ALGORITHMS ODS OIS 

HUMANS 0.68 0.69 

Algorithms Without Fusion Model 

FH [57] 0.59 0.62 

SRM [66] 0.58 0.60 

Mean shift [58] 0.56 0.58 

JSEG [63] 0.54 0.56 

FSEG [67] 0.58 0.61 

MSEG [68] 0.53 0.57 

Algorithms With Fusion Model 

EFA-BMFM 0.50 0.50 

VOIBFM [10] 0.36 0.36 

FMBFM [13] 0.53 0.53 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Fusion segmentation models and complexity. 

EFA-BMFM GCEBFM [44] VOIBFM [10] 

K-means step (generation of 

initial segmentations) 

O ( N × K × I × d ) O ( N × K × I × d ) O ( N × K × I × d ) 

Fusion step O ( Nbsup × n ) O ( Nbsup × n ) O ( n ) 
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of 312 × 312 pixels, and the segmentation results were then super-

sampled in order to obtain segmentation images with the original

resolution (512 × 512 pixels). 

Table 5 shows the overall F-measure of different segmentation

algorithms under two different scale settings. The first is the score

under the optimal data set scale (ODS), and the average F-measure

of 80 images at each scale is calculated and the best measure

across scales is reported. The second is the score under the optimal

image scale (OIS), which uses the best F-measure across scales for

each image, and the average measure over images is reported. 6 As

can be seen from the data on Table 5 , our method outperforms the

VOIBFM fusion model in terms of both the ODS and OIS, and it re-
6 The soft contour map is provided by averaging, 6 times, the set of hard ( i.e. 

binary) boundary representations of our segmentation method with different values 

of K max (the number of classes of the segmentation). 

m  

c  

t  

t  

e  
ains generally competitive compared to segmentation algorithms

ithout a fusion strategy. In addition, and for better comparison,

amples of the results obtained by applying our algorithm to some

mages from the ASD dataset compared to other state-of-the art

lgorithms are given in Fig. 15 . 

.6. Algorithm complexity 

With respect to the time complexity, the first step of our al-

orithm (the generation of the initial ensemble of segmentations)

as a complexity equal to O ( N · K · I · d ), where N, K, I and d are

he number of points of each cluster, the number of clusters, the

umber of iterations and the dimension of each point to be clus-

ered, respectively. Moreover, the second step (fusion algorithm) is

haracterized by a complexity time of O ( Nbsup · n ), where n is the

ixel number within the image and Nbsup represents the number

f superpixels existing in the set of segmentations to be fused (see

able 6 for a comparison with other methods). 

As another important aspect, in terms of the execution time,

he segmentation operation takes on average about 240 s for an

ntel 64 Processor core i7-4800M Q, 2.7 GHz with 8GB of RAM

emory and non-optimized code running on Linux; on average,

t takes 60 s to generate the segmentation ensemble and approxi-

ately 180 s for the fusion step and for a 320 × 214 image ( Table 7

ompares the average computational time for an image segmenta-

ion and for different segmentation algorithms whose PRI is greater

han 0.76). Further, it is important to note that the algorithm can

asily be parallelized (using the parallel capabilities of a graphic
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Fig. 14. Comparison of two segmentation methods on segmenting a real cornea image. (a) original image of size 256 × 256. (b) detection using the FGM method [45] (50 0 0 

iterations). (c) detection using the DMD method [41] (5 iterations). (d) detection resulting from our EFA-BMFM model (10 iterations). 

Table 7 

Average CPU time for different segmentation algorithms for 

the BSDS300. 

ALGORITHMS PRI CPU time (s) [image size] 

-EFA-BMFM- 0.80 � 240 [320 × 214] 

-GCEBFM- [44] 0.80 � 180 [320 × 214] 

-VOIBFM- [10] 0.81 � 60 [320 × 214] 

-FMBFM- [13] 0.80 � 90 [320 × 214] 

-CTM- [32] 0.76 � 180 [320 × 200] 

-PRIF- [7] 0.80 � 20 [320 × 214] 

-FCR- [4] 0.79 � 60 [320 × 200] 

-MDSCCT- [48] 0.81 � 60 [320 × 214] 

-CTex- [62] 0.80 � 85 [184 × 184] 

-HMC- [53] 0.78 � 80 [320 × 200] 

-LSI- [59] 0.80 � 60 [481 × 321] 
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rocessor unit) because its two steps (described above) are purely

ndependent. Finally, to enable comparisons with future segmen-

ation methods, the source code (in C ++ language) of our model
nd the ensemble of segmented images are publicly accessible

ere: http://www-etud.iro.umontreal.ca/ ∼khelifil/ResearchMaterial/ 

fa-bmfm.html . 

.7. Discussion 

The most obvious finding to emerge from the above analysis is

hat the use of the MO optimization concept enables us to design

 new fusion model that takes advantages of the complementarity

f different segmentation criteria. 

This interesting model appears to be very competitive for differ-

nt kinds of performance measures, and it therefore appears as an

lternative to complex and computationally demanding segmenta-

ion models which exist in the literature. Moreover, another possi-

le alternative analysis is given in Table 8 . In fact, from this table,

e can confirm that the performance measures are quite differ-

nt for a given image compared to the values obtained by other

pproaches. Thus, our model outperforms the VOIBFM [10] fusion

http://www-etud.iro.umontreal.ca/~khelifil/ResearchMaterial/efa-bmfm.html
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Fig. 15. A sample of results obtained by applying our algorithm to images from the aerial image dataset [39] compared to other popular segmentation algorithms (gPb-owt- 

ucm [38] , Felz-Hutt (FH) [57] , SRM [66] , Mean shift [58] , JSEG [63] , FSEG [67] and MSEG [68] ). The first row shows six example images. The second row overlays segment 

boundaries generated by four subjects, where the darker pixels correspond to the boundaries marked by more subjects. The last row shows the results obtained by our 

method (EFA-BMFM). 

 

 

 

 

 

 

t  

h  

c  

o  

l  

o  
model and the MDSCCT [48] algorithm (a purely algorithmic ap-

proach), in terms of the number of images of the BSDS300 which

obtain the best GCE, BDE and PRI scores. These results provide fur-

ther support for the hypothesis that our model appears to be very

competitive against other methods with or without a fusion strat-

egy. Compared to the mono-objective approach, the combination of
wo objectives makes our fusion algorithm slower, confirming the

ypothesis in [69] , and indicating that a high number of objectives

ause additional challenges. However, it appears that the choice

f using super-pixels with the ICM (as an optimization algorithm)

imits this problem as the execution time remains close to those of

ther algorithms. In this context, we present a convergence analy-
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Fig. 16. Convergence analysis. (a) input image ID 187039 selected from the BSDS300. (b) change of the segmentation map of our EFA-BMFM fusion model starting from a 

blind (or non informative) initialization. (c) evolution of the consensus energy function along the number of iterations of the EFA-BMFM. 

s  

t  

(  

s  

a  

n  

t  

a  

s

 

o  

fi  
is of a Berkeley colour image, shown in Fig. 16 . Fig. 16 shows (a)

he original Berkeley image ID 187039 selected from the BSDS300,

b) the evolution of the segmentation map of our EFA-BMFM fu-

ion model starting from a blind (or noninformative) initialization

nd (c) the evolution of the consensus energy function along the

umber of iterations of the EFA-BMFM. In Fig. 16 (c), we observe
hat our EFA-BMFM model converged to a minimum energy value

fter 5 iterations. It should be noted that this faster convergence

peed of our model resulted from the use of superpixels. 

As mentioned in Section 1 , to date, there have been no reports

f the application of current knowledge of MO optimization to the

eld of the fusion of colour image segmentation. These interest-
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Table 8 

Comparison of scores between the EFA-BMFM and other segmentation algorithms for the 300 images of the 

BSDS300. Each value indicates the number of images of the BSDS300 which obtain the best score. 

MEASURES EFA-BMFM Vs GCEBFM [44] EFA-BMFM Vs MDSCCT [48] EFA-BMFM Vs VOIBFM [10] 

EFA-BMFM GCEBFM EFA-BMFM MDSCCT EFA-BMFM VOIBFM 

GCE 216 84 261 39 167 133 

VOI 143 157 122 178 134 166 

BDE 151 149 175 125 201 99 

PRI 147 153 167 133 160 140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing results provided by our model are related both to the general-

ity and the relative applicability of this MO concept with different

segmentation criteria. 

6. Conclusion 

In this paper, we present a new and efficient multi-criteria

fusion model based on the entropy-weighted formula approach

(EFA-BMFM). The proposed model combines multiple segmenta-

tion maps to achieve a final improved segmentation result. This

model is based on two complementary (contour and region-based)

criteria of segmentation (the VoI and the F-measure criteria). We

applied the proposed segmentation model to BSDS30 0, BSDS50 0,

ASD and medical images, and the proposed model appears to be

comparable to or even outperform other segmentation models,

which proves the effectiveness and robustness of our multi-criteria

fusion approach. In our model, the fusion process is performed at

three different conceptual and hierarchical levels; first, at the crite-

rion level, because the proposed fusion model combines two con-

flicting and complementary criteria; second, at the (segmentation)

decision level by exploiting the combination of different and weak

segmentations of the same image (expressed in different colour

spaces); third, at the (pixel-)data level, and this is done by con-

sidering the set of superpixels as the atomic elements to be seg-

mented in the consensus segmentation (instead of the set of pix-

els). Although our current multi-criteria fusion model is reason-

ably efficient and the superpixel strategy makes our energy func-

tion nearly convex, it would be interesting to optimize the consen-

sus function with other optimization algorithms such as the explo-

ration/selection/estimation (ESE) [70] or genetic algorithms. Thus,

these algorithms are guaranteed to find the optimal solution; how-

ever, they have the drawback of a huge computational time. To

overcome this problem, we can use the parallel computing capabil-

ities of a graphic processor unit (GPU) (based on its massively par-

allel architecture consisting of thousands of smaller, which are de-

signed to handle multiple tasks simultaneously). For all these rea-

sons, the proposed fusion method may therefore be seen as an at-

tractive strategy for solving the difficult image segmentation prob-

lem. 
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