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Abstract. Thanks to its ability to yield functionally rather than
anatomically-based information, the single photon emission com-
puted tomography (SPECT) imagery technique has become a great
help in the diagnostic of cerebrovascular diseases which are the
third most common cause of death in the USA and Europe. Never-
theless, SPECT images are very blurred and consequently their in-
terpretation is difficult. In order to improve the spatial resolution of
these images and then to facilitate their interpretation by the clini-
cian, we propose to implement and to compare the effectiveness of
different existing “blind” or “supervised” deconvolution methods. To
this end, we present an accurate distribution mixture parameter es-
timation procedure which takes into account the diversity of the laws
in the distribution mixture of a SPECT image. In our application,
parameters of this distribution mixture are efficiently exploited in or-
der to prevent overfitting of the noisy data for the iterative deconvo-
lution techniques without regularization term, or to determine the
exact support of the object to be restored when this one is needed.
Recent blind deconvolution techniques such as the NAS—RIF algo-
rithm, [D. Kundur and D. Hatzinakos, “Blind image restoration via
recursive filtering using deterministic constraints,” in Proc. Interna-
tional Conf. On Acoustics, Speech, and Signal Processing, Vol. 4,
pp. 547-549 (1996).] combined with this estimation procedure, can
be efficiently applied in SPECT imagery and yield promising results.
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1 Introduction

Single photon emission computedtomography (SPECT)
imagesare obtainedby the measureof radiations(gamma
rays comingfrom radioactiveisotopesinjectedin the hu-
man body. Contraryto other medicalimaging techniques,
such as x-ray, computertomography magneticresonance
imaging,etc.,this imageryprocesss ableto give function-
ally ratherthananatomically-basemhformation,suchasthe
metabolic behaviorof organs(like the humanbrain), by
measuringand visualizing the level of blood flow. This
study of regionalcerebralblood flow canaid in the diag-
nosticof cerebrovasculadiseasesindbraindisorderge.g.,
Alzheimer's diseaseParkinsors diseasegtc) by indicat-
ing lower, or abnormalhigher metabolicactivity in some
brainregions.

Due to the peculiar imaging process,SPECT suffers
from poor statisticsand poor spatialresolution.Poor statis-
tics result from the small numberof photonsthat can be
acquiredfor eachimage;principally owing to the low sen-
sitivity of the collimator and the low doseof the injected
radiopharmaceuticakactorsinfluencingthe spatialresolu-
tion aremainly the scatteringof the emittedphotonsand,to
alesserdegreetheintrinsic resolutionof the cameraCon-
sequentlyresultingcross-sectionabPECTimagesarevery
blurred andtheir interpretationby the nuclearphysicianis
often difficult, laborintensive,andsubjective.lf the object
to be visualized is small comparedto the source-to-
collimator distance this degradatiorphenomenomay be
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consideredo be approximatelyshift-invariantand,neglect-
ing noise, this one can be modeledby a convolution pro-
cessbetweenthe true undistortedimage and the transfer
function of the imagingsystem* A body of theoreticaland
experimentalwork has led to approximatethis transfer
function[also called the point spreadfunction (PSH] by a
two-dimensionasymmetricGaussiarFunction?® In order
to improve the spatialresolutionof SPECTimages,some
authorshavethusinvestigatedhe SPECTimagedeblurring
problemwith this classof Gaussiartransferfunction and
by using classicalWienerfilter techniques? or supervised
maximum entropy filter-based deconvolutiontechnique’
This restorationprocedurealsocalleda deconvolutiorpro-
cedure,is an important considerationin SPECT medical
imagingwheretheremay be localizedsingularitiesor cold/
hot spotsin the true image,associatedvith lesionsor tu-
mors.Theselocalizedsingularitiesmaynot bevisible in the
blurred image, owing to the diffusive effects associated
with the convolution process,which averagesout differ-
encesn neighboringvalues A deconvolutiorschemecould
thenbe very usefulin orderto detectsuchsingularitieshy
improving the spatialresolutionof SPECTimages.

Underthe assumptiorthat the blur operationis exactly
known, manyiterative methodshavebeenproposedy the
image processingcommunity for tackling this deconvolu-
tion procedureand for facing the usualdifficulties related
to this ill-posed problem.Amongstthe existing methods,
someof themarestructuredn the contextof regularization
problemto makethe inversionwell behaved® Othersare
unregularizedand requirea terminationcriteriain orderto
stop the iterative procedureat the point wherethereis a
balancebetweenthe fit to the image dataand the amplifi-
cation of the noise, inherent to this ill-posed inverse
problem® Neverthelesset us notethatthesesupervised
deconvolutionmethodsremainlimited and sensitiveto the
assumptionmade on the nature of the blurring function.
Theoretically the PSF can be measuredirectly from the
SPECTcameraby visualizingthe blurredresultof a point
sourceagainsta uniform backgroundput suchexperiment
is generallydifficult to obtainin practiceanddoesnot nec-
essarilyyield a reliable PSF In applicationssuchas medi-
calimaging,whenlittle is knownaboutthe PSF. it canturn
out often more relevantto estimatedirectly the PSFfrom
the observednput image.This problemof simultaneously
estimatingthe PSF (or its inversg and restoringan un-
known imageis called “blind deconvolutior’ or “‘decon-
volution with blur identification.” Recenttechniquesexist
andcanbe usedin the SPECTimagerycontext.

In this paper we proposea comparativestudy of exist-
ing blind or supervisedleconvolutiormethodsWe discuss
and comparetheir respectiveeffectivenessfor improving
the spatialresolutionof realbrain SPECTimages First, we
briefly review classicalsuperviseddeconvolutionmethods
which assumeheblur is exactlyknowna priori and,in this
context,we exploit the two-dimensionalGaussiarassump-
tion for the PSFproposecy someauthors:— For the class
of the superviseddeconvolutiontechniquewithout regular
ization term, we presentan accuratedistribution mixture
parameteestimationwhich takesinto accountthe diversity
of the laws in the distribution mixture of a SPECTimage.
In our application,parameterf this distribution mixture
are efficiently exploitedin orderto find a reliable stopping
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rule for theseiterative methodsand then to preventthe
amplificationof the noise.Then,recentblind deconvolution
techniquesare briefly presentedand tested.We will show
thatthejoint estimationof theimageandPSFcanlead,for

someof them,to betterrestorationresultsandalsothat the
Gaussiarassumptionproposedby someauthors,is only a

roughapproximation Finally, for the classof the blind de-
convolution techniquein which the exact supportof the
object to be recoveredis needed,we proposea novel

support-findingalgorithmexploiting alsothe parametersf

the aforementionedlistribution mixture estimationproce-
dure.

This paperis organizedas follows. Sectionll briefly
describessuperviseddeconvolution methods and recent
blind deconvolutiontechniquesthat we will compare.Iln
Sec.3, we detail the distributionmixture parameteestima-
tion procedure. Deconvolution experimental results on
phantoms, synthetic and real brain SPECT images are
givenin Sec.4. Finally, a conclusionand perspectivesre
givenin Sec.5.

2 Deconvolution

2.1 Introduction

In our application,the degradatiorof a SPECTimagecan
be representedis the result of a convolution of the true
imagewith a blurring function (the PSH plus an additive
term to model the noise from the physical system.If the
imagingsystemis assumedo be linear and shift invariant,
the degradatiorprocesscan then be expressedy the fol-
lowing linear model:

g(x,y) =f(x,y)*h(x,y) +n(x,y),

whereg(x,y) is the degradedor blurredimage, f(x,y) is
the undistortedtirue image,h(x,y) is the PSFof the imag-
ing systemandn(x,y) is the additive corruptingnoise.In

this notation, the coordinates(x,y) representhe discrete
pixel locationsand* is the discretelinear convolutionop-

erator

2.2 Supervised Deconvolution Methods

Assumingthat the blurring function h(x,y) is known, the
problemis thento determinef(x,y) giventhe observation
g(x,y). This oneis generallyill-posed owing to the exis-
tence of the additive noise. This meansthat thereis no
unique least square solution of minimal norm ||g(x,y)
—f(x,y)*h(x,y)|?. Besides,a small perturbationof the
given dataproducedarge deviationsin the resultingsolu-
tion. An appropriatesolutionmaybe choserthroughproper
initialization of the algorithm or by using deterministic
prior information aboutthe original image (via a regular
ization term) to makethe inversionwell behaved.n this
way, iterative approachesavebeenproposedTheir main
advantagesrethatthereis no needto explicitly implement
the inverseof an operatorand the processmay be moni-
toredasit progressesSomeof themarebriefly presentedn
this sectionandareoptimal;in theleastsquaresenseunder
constraint® or not’ in the maximum likelihood (ML)
sensé&’ or in the maximuma posteriori(MAP) sensé !
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2.2.1 Van Cittert’s algorithm
Van Cittert'? proposedhe following iterative algorithm:

e 106Y) =Tl Y) + al g(x,y) —h(x,y)* Fi(x,y)1,

where « is a convegenceparameteigenerallysetto 1. In
this iterative schemethe estimatedmagef(x,y) is modi-
fied at eachiteration by addinga term proportionalto the

residualr (x,y) =g(x,y) —h(x,y)* f(x,y).

2.2.2 Landweber’s algorithm

Another iterative algorithm, proposed by Landweber
etal.® is provided by the minimization of the norm

llg(x,y) —h(x,y)* T (x,y)||? andleadsto the following it-
eration,

frr 106y) =T, y) + a h(—=x,—y)*[g(x,y)
—h(x,y)* F(x,y)1.

This algorithm, also called the one stepgradient,leadsto

simply movethe estimatef (x,y) iterativelyin the negative
gradientdirection.

2.2.3 Richardson-Lucy'’s algorithm

The RichardsorLucy’s (RL) algorithni® is an iterative
techniquewhich attemptsto maximizethelikelihood of the
restored image by using the expectation maximization
algorithm* when the image is assumedo come from a
PoissomprocessThis iterativealgorithmmay be succinctly
expresse@s

g(x,y)

R K v s
10 = RO h(=x =y o

In this form of notation,the division andthe multiplication
is donepoint-by-point.

2.2.4 Tichonov—Miller’s algorithm
This algorithm, also called the constrainedleast squares

restoration,consistsin choosingthe estimatef(x,y) that
minimizesthe following costfunction:

f(x,y)=amyg mfin [lg(x,y)—h(x,y)*T(x,y)]?

+aflc(x,y)*f(x,y)|21,

wherethe term c(x,y)* f(x,y) generallyrepresents high

pasdfilteredversionof theimagef(x,y). Thisis essentially
a smoothnesgonstraintwhich suggestghat mostimages
arerelatively flat with limited high-frequencyactivity, and
thusit is appropriateto minimize the amountof high-pass
enegy in therestoredmage.Onetypical choicefor c(x,y)
is the two-dimensional2D) Laplacianoperator The mini-
mization of the earlier equationleads,with the methodof
successiveapproximation,proposedin Ref. 5, to the fol-

lowing iterative estimationschemefor (x,y):
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e 106y =T y) + B{a(x,y)*h(—x,—Y)
—[An(X,Y) + @A, ) 1 (X, y)},

with  fo(x,y)=B[g(x,y)*h(=x,—y)].

An(x,y)=h(x,y)*h(—x,—y) andA.(x,y) aretheautocor
relationfunctionsof h(x,y) andc(x,y), respectively « is
calledtheregularizatiornparameterhich mustbe carefully
chosenfor reliable restoration.This iteration convegesif
0<B<(2|\mad), Where\ . is the largesteigenvalueof
the matrix A, (X,y) + aA(X,y).

2.2.5 Super resolution algorithm

AssumingPoissonphotondistributionin theimage,thena
Bayesianand MAP derivationhasbeenproposedoy Hunt
et al.™ This oneleadsto the following iterative scheme:

e 106, Y) =Tr(x,y)

2.2.6 Molina’s algorithm

Following the Bayesianparadigm,Molina et al. havepro-
posedto incorporateprior informationto the RL (maximum
likelihood) restorationmethod® In order to model the a
priori smoothnessf theimageto be recoveredthis oneis
definedby the following conditionalautoregressivenodel:

a(x,y)
h(x,y)* fi(x,y)

—1.0(* h(x,y)] .

Pe(f)ocexp — 2 afi(l— sN)f].

In this matrix-vectornotation,f is the true image ordered
lexicographicallyby stackingthe rows into a vector « is
theunknownregularizatiorparametematrix N is suchthat
N;;=1 if cellsi andj are spatialfour-neighbors(pixels at
distanceone and zero otherwise,andscalar¢ is just less
than0.25. Thetermf (I — ¢N)f representsin matrix nota-
tion, the sumof squareof the valuesf; minus ¢ timesthe
sumof f;f; for neighboringpixelsi andj. Following the RL
method,which correspond$o MAP estimationwith a uni-
form image prior, Molina et al. obtainthe following itera-
tive scheme:

Fr 106Y) = (XY T, Y) + [ 1= (X, Y) 1Fi(X,Y)

a(xy)

X h(=X,—y)* ———|.
( * y) h(XaY)*fk(Xay)

mi(Xx,y)=0 correspondsto the classical RL restoration
method(we recallthat,in this form of notation thedivision

andthemultiplicationaredonepoint-by-poinh.f_k(x,y) isa
filtered versionof f,(x,y) in which eachpixel is the aver
ageof its four-neighborspixels.

2.3 Blind Deconvolution Methods

Whenlittle is known aboutthe PSFE a solution for the de-
blurring problemconsistsin achievinga blind deconvolu-
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tion technique.Blind image deconvolutionis the simulta-
neousestimationof the true image and the PSFfrom the
blurred observation A commonly used methodfor blind

deconvolutionis by minimization of an error metric that
optimizesthe form of therestoredmageandthe PSF(or its

inverse to fit the various constraintson the form of the
solution; typically positivity and known supportof the ob-

jectto berecoveredSteepestiescenbr conjugategradient
method are generallyusedto achieveoptimization>® A

secondmethod, usually called “‘grouped coordinate de-
scent,” restoresthe image and the PSF separatelyin an
iterative form. During eachcycle either the image or the
PSFis held staticwhile the otheris updated generallyus-
ing one of the standarddeconvolutiontechniquée’:®® In

thesemethodsthat alternatebetweerrestoratiorof theim-

ageand PSF, iterationsdo not necessarilyhaveto usethe
same restorationalgorithm. In this section, we describe
briefly four recentblind deconvolutiontechniquesstem-
ming from thesetwo differentapproaches.

2.3.1 The iterative blind deconvolution method

The iterative blind deconvolution(IBD) method,proposed
by Ayersand Dainty,’ requiresthat the imageandthe PSF
be non-negativewith known finite support(the supportis

definedas the smallestrectanglecontainingthe entire ob-

ject). After aninitial guessis madefor the true image,the

algorithm alternatesbetweenthe image and Fourier do-

mains, enforcing known constraintsin each. The con-

straintsare baseduponinformationavailableaboutthe im-

age and the PSE The image domain constraintscan be
imposedby replacingnegativevaluedpixels within the re-

gion of supportwith zero and nonzeropixels outsidethe

region of supportwith the backgroundpixel value. The

Fourierdomainconstraintinvolves a Wienerlike filter for

theimageandthe PSF This filter allows to efficiently sup-
pressnoiseamplificationresultingfrom theill-posednature
of the restorationproblem

- G(u,v) Ff 4(uv)
|Fi1(u,0)| 2+ af Ay 1 (u,0) |

Hk(u,l})

G(u,v) HE_;(u,v)

F(u,v)=— — _
. [Hi_1(u,0) 2+ el |[Fy_1(u,v)|?

whereH,(u,v), G(u,v), andF(u,v) representhe 2D fast
Fourier transformof the PSF the original image and the
true image, respectively Subscriptsdenote the iteration
numberof the algorithmand(.)* is the complexconjugate
of (.). The real constanta representshe enegy of the
additive noise and must be carefully chosenfor reliable
restorationFigurel givesan overviewof this schemeThe
algorithmis run for a specifiednumberof iteration,or until

the estimatesbegin to convege. The major drawbackof

this methodis its lack of reliability; the uniqguenessand
convegencepropertiesare uncertainand the algorithmis

sensitiveto theinitial imageestimateand canexhibitinsta-
bility.
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Impose Fourier
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3

F (u,v)

H k (u,v)

Fig. 1 IBD algorithm.

2.3.2 The Biggs—Lucy’s algorithm

This method® alternatesbetweenrestoringthe imageand
the PSFusingthe RL algorithm[by simply swappingvari-
ablesh(x,y) and f(x,y) in the RL iteration]. The image
andthe PSFestimatesare given by

ﬁk+1(X1y): R ﬁk(X7y)
> fuxy)
a(x,y)
X| (=%, —y) s ——— |,
oy vty
froa(x,y)= X fr(x,y)
> Aea(xy)
a(x,y)
X h + (_ [ )* 2 '
Y ) ()

This methodrequiresa goodinitial guesgor the PSFanda
different numberof iterationsfor the image and the PSE
expressedy an asymmetricfactor which is necessanpe-
causeimageand PSFestimatesonvepge at differentrates.
Dependingon the type of the image and the natureof the
PSF this factor is generallydifferentand mustbe carefully
chosenfor reliable restoration.

2.3.3 The non-negativity and support constraints
recursive inverse filtering algorithm

The non-negativity and support constraintsrecursivein-
versefiltering (NAS—RIF) techniqué® is applicableto situ-
ationsin which anobjectof finite supportis imagedagainst
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f (x.y)
Image
/ Estimate

gx.y)

red | 1) ®

Blurred (x,y)
Image e(x,y)
/ Optimization
Algorithm

Fig. 2 NAS-RIF algorithm.

a uniform or noisy backgroundwhich is our case.lt com-
prisesa 2D variablefinite impulseresponsdilter u(x,y) of
dimensionN,, X Ny, with the blurredimagepixels g(x,y)
asinput. The outputof this filter representsn estimateof

the true imagef(x,y). This estimateis passedhrougha
nonlinear filter which usesa nonexpansivemapping to
projectthe estimatedmageinto the spacerepresentindhe
known characteristicef the true image.The differencebe-

tweenthis projectedimagef, (x,y) andf(x,y) is usedas
the error signalto updatethe variablefilter u(x,y). Figure
2 givesan overviewof this schemeTheimageis assumed
to be non-negativewith known support.The costfunction
usedin this restorationprocedurds definedas

J(u): z ’fZ(X,y)[WJ
(X,y)eDsup
2
+ > [fxy)-LelP+y| > U(x,y)—ly
(x,y) € Dgyp v(xy)

where f(x,y)=g(x,y)*u(x,y), and sgnff)=—1 if f<0
andsgn(f) =1 if f=0. Dg,,is thesetof all pixelsinsidethe
region of support,and Ds, is the setof all pixels outside
the region of support.The variable y in the third term is
nonzeroonly whenLg is zero,i.e., the backgroundcolor is
black. The third term is usedto constrainthe parameter
awayfrom thetrivial all-zeroglobal minimumfor this situ-
ation. Authors haveshownthat the earlierequationis con-
vex with respectto u(x,y), so thatconvegenceof the al-
gorithm to the global minimum is ensuredusing the
conjugategradientminimizationroutine®®

2.3.4 The You—-Kaveh’s algorithm

This method attemptsto minimize a costfunction consist-
ing of a restorationerror measureand two regularization
terms,onefor theimageandthe otherfor the blur

C(?,ﬁ)=argrPLn [319(x,y)—h(x,y)*T(x,y)]?

+ ey Fou 2+ 2 vlatx,y)* hox,y) 2,

wherea(x,y) andc(x,y) areregularizationoperator(e.g.,
a high-passdfilter suchasthe Laplacian. A and y arethe
regularizationparametershat control the tradeof between

PROOF COPY 013201JElI

fidelity to the observatiorand smoothnessf the estimated
imageandthe estimatedPSF In orderto takeinto account
the scaleproblem,inherentto this cost function, an alter
nating minimization using steepestdescentor conjugate
gradientmethodis proposedNote that, using steepestie-
scentmethod resultingiterative proceduresre closeto the
iteration schemeproposedby Landweber(with a regular
izationtermfor the blur) for the alternaterestorationof the
imageandthe PSE

3 Distribution Mixture Parameter Estimation

3.1 Introduction

In this section,we presentan estimationprocedureallow-
ing to estimatethe gray level statisticaldistributionassoci-
atedto eachclass(alsocalledthe noisemode) of a SPECT
image.We will showalsohow this informationcanbe ex-
ploitedin the aforementionedupervisedr blind deconvo-
lution methods.

To this end, we considera couple of randomfields Z
=(X,G), whereG=(Gq,se S) representshe field of ob-
servationdocatedon a lattice S of N sitess (associatedo
the N pixels of the SPECTimage, and X=(Xg,s€ S) the
label field (relatedto the N classlabels X of a segmented
SPECTimage. Eachaforementionedabel is associatedo
a specific brain anatomicaltissue;the “CSF” areadesig-
natesthe regionthat is normally due to the lack of radia-
tions. In this distributionmixture parameteestimation this
regiondesignateshe brain regionfilled with cerebrospinal
fluid (without blood flow and thus without radiation and
alsothe areaoutsidethe brain region. The “white matter”’
and‘‘gray mattet’ (brightestregion areassociatedo alow
and a higher level of blood flow, respectively® Each
G, takesits valuein (0, .. .,255) (256 gray levels, and
eachX; in (e;="CSF", e,="white mattel’, e;="gray
matter’).

In thefollowing, the parameterén uppercaseletterdes-
ignatethe randomvariableswhereaghe lower caseletters
representhe realizationsof theseconcernedandomvari-
ables.In this estimationstep, the distribution of (X,G) is
defined,first, by prior distribution Py(x), supposedo be
Markovianand secondly by the site-wiseconditionallike-
lihoods PGS ,Xs(gslxs) whose shapeand parameterrb(xs)

dependon the concernectlasslabel x; (gs designateshe
gray level intensity associatedo site s). Finally, we as-
sume independencebetween each random variable Gg
given X;. The observableG is called the “incomplete
data,” and Z the “completedata.’

3.2 Estimation of the Distribution Mixture
Parameters for the Complete Data

Assumingthe segmentatiorresultx is known, the param-
etersof the gray level statisticaldistribution associatedo
eachclass,canthenbe easily computedwith the ML esti-
mator of the completedata.
Experimentationiaveshownthatwe canrightly model
the statisticalgray level distributionin the backgroundor in
the CSFareaby a exponentialaw (seeRef. 3 andalsothe
left partof the histogramreportedin Fig. 3). Thisled usto
think that the noisein this regionis approximatelyPoisso-
nian with the following statisticalgray level distribution:

Journal of Electronic Imaging / January 2002/ Vol. 11(1) /5
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Fig. 3 Image histogram of the picture reported in Fig. 4(b) (solid
curve) and estimated probability density mixture obtained with the
ICE procedure (dotted and dashed curves).

1
Es(g,a)= ;ex;{ - %)

with g>0. Letnow G=(G4, ..., Gy) be M randomvari-
ables,independenand identically distributedaccordingto
a ‘“single” exponential law &g(g;a), and g
=(94, ..., gu) a realizationof G. The ML estimatorof
oy for the completedatais simply the meanof the sample

In orderto describethe luminancewithin the white mat-
ter and the gray matterregions,we model the conditional
density function for theseregionsby two Gaussianaws.
This assumptionof normality is a reasonableapproxima-
tion due to the reconstructionphysical processused in
SPECTimageryin which the gray level of a given pixel,
hereinconsideredas a randomvariable,are sumsof many
variablesandthe “central limit theorem” canbe applied®
ThecorrespondingL estimatorof the completedata,for a
sampleg distributedaccordingto a normallaw, is defined
simply by the empiricalmeanand the empirical variance.

3.3 Estimation of the Distribution Mixture
Parameters for the Incomplete Data

When the segmentationresult is unknown (i.e., the class
label of eachpixel is not supposedo be known), the con-
sideredproblemis more complex. In order to determine
o= [fb(el) ,<I>(e2) ,(D(es)], we use the iterative conditional

estimation(ICE) algorithm. This procedure,describedin

detailin Ref. 18 relieson an estimator®(X,G) with good
asymptotic properties, like the ML estimatoy for com-
pletely observeddata case.When X is unobservablethis
procedurestartsfrom an initial parameterector ®(® (not
too far from the optimal one andgenerates sequencef
parameterectorsleadingto the optimal parametersin the
leastsquaresensewith the following iterative scheme:

(I)(p+1):1 {ci)[x 1+ - .-+CT>[X 1}
n 1.9 (915
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where x(;y, with i=12,...,n, , are realizationsof X

drawn according to the posterior distribution
Pyc[x/g,®®]. In order to decreasethe computational
load, we cantake n=1 without altering the quality of the
estimationt’ Finally, we can use the Gibbs sampler
algorithn® to simulaterealizationsof X accordlngto the
posteriordistribution. For the local a priori model of the
Gibbs sampley we adoptan isotropic Potts model with a
first orderneighborhood? In this model,therearetwo pa-
rameters,called “the clique parameter$’denotedp,, 3,

andassociatedo the horizontalandvertical binary cliques,
respectivel %/ (Cliquesaresubsetf siteswhich aremutual
neighbors?) Given this a priori model, the prior distribu-
tion Py(x) canbe written as

Z Bsl1—8(xs, X011,

Pyx(X)=exp

where summationis taken over all pairs of neighboring
sitesand &(.) is the Kroneckerdelta function. In orderto
favor homogeneousegionswith no privileged orientation
in the Gibbs samplersimulation process,we choose S
=pB,=pB,=1. Finally, ®(P*1) is computedfrom & in
the following way:

« Stochastic step: usingthe Gibbssampleronerealiza-
tion x is simulatedaccordingto the posteriordistribu-
tion Py,(x/g), with parametevector® (P,

« Estimation step: the parametervector® 1) is esti-
mated with the ML estimatorof the completedata
correspondingo eachclass.

o If N;=#(se S:xg=¢;) isthenumberof pixels of

the CSF area, the ML estimator® .y of a is
given by Ref. 17: a(x,g) = (UNy) s s~ Js-

o If No=#(seS:xg=e,) andN;=#(se S:x;=¢3)
pixels are locatedin the white matter and gray
matter regions, respectively the corresponding
ML estimatorof eachclassis given by the em-

pirical meanand the empirical variance.For in-
stance,for the white matter class, we have for

By
- 1
M(ng): N_ZSES%=E‘2 Os»
1 ~
PxO= 1,1 o, (O

« Repeatuntil convegenceis achievedi.e., if ®P*1)
+® (P we returnto stochasticstep.

Figure 3 representshe estimatedlistributionmixture of
the SPECTimageshownin Fig. 4(b). The threesite-wise
likelihoods PGS,XS(gslek) , k=1,2,3,(weightedby the esti-

matedproportion, of eachclasse,) aresuperimposedo
the imagehistogram.Correspondingestimatesbtainedby
the estimationprocedurerequiringaboutteniterations,are
givenin Table 1.
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() (b)

()

Fig. 4 Examples of support determination for some cross-sectional brain SPECT slices.

3.4 Determination of the Support and Stopping Rule

In the caseof supervisedleconvolutiontechniquesvithout
regularizationterm, such as the Van—Cittert, the Landwe-
ber, the RL, andthe superresolutionalgorithms,the itera-
tive deconvolutionprocedureis generallymonitoredas it

progressesnd stoppedafter someiterations,generallyby
visualinspectionThis iterationnumbermay be very differ-

entfor eachSPECTimageandis generallyrelatedto the
behaviorof eachiterative methodnearthe convegence.ln

fact, at somepoint of the iteration procedure the solution
fit more to the noise than the image data. Therefore,for

thesemethods,the processhasto be stoppedat the point
wherethereis a balancebetweenthe fit to the imagedata
andthe amplificationof noise.To this end,in orderto stop
automaticallythesealgorithmsbefore the amplification of
the noise, we proposeto computethe parametersof the

distribution mixture of fk regularly namelyeveryKk itera-

tions (k depend=on the speedof convegenceof the con-

sidereddeconvolutiormethod. If the parametermssociated
to the backgrounchoise(i.e., @) is abovea fixed threshold,
we decideto stopthe procedure Of course this threshold
hasto be fixed empirically like the iterationnumber Nev-

erthelesscontraryto the iteration number this threshold
doesnot dependof the adoptedunregularizedmethodor

the speedof convegenceof eachmethodas well asthe

usedSPECTimages.Besides,t doesnot requirea visual

inspection,for eachiteration of the deconvolutionproce-

dure, that can be cumbersomend unreliablefor an auto-

matic deconvolutionof a setof SPECTimages.

For the supervisedleconvolutiormethodsusinga regu-
larizationterm (e.g.,the TichonowMiller's algorithm), or
prior information (e.g.,the Molina’s algorithm), the termi-
nation criteria consistssimply in stopping the algorithm
whenthe solutionis stable.Neverthelesshesemethodsre-
quire a regularization parameterwhich must be chosen

Table 1 Estimated parameters for the picture reported in Fig. 4(b).
7 stands for the proportion of the three classes within the SPECT
image. a are the exponential law parameter. . and o are the
Gaussian law parameters.

ICE procedure

final
®len 0.52(7)11(a)
(I)?ggl) 0.26(.,,.) 100(,0 648((;2)
q’)?tg?l) 0.22(77.) 172(#) 383(0.2)

PROOF COPY 013201JElI

carefullyfor reliablerestorationThis parametecanbealso
derivedefficiently from the proposednoise model estima-
tion procedure.

In the caseof blind deconvolutiontechniquesin which
the rectangularsupport of the object to be restoredis
neededand unknown, we can also efficiently exploit the
parameter®f the distributionmixture of the inputimageg
by adoptingthe following strategy;we assumehatthe row
R; € S containsthe object O to be restoredif we canfind
two consecutivesites e R; for which

P(gij/ "CSF)<P(g;;/ "white mattef),

wherethe subscriptd,j referto the pixel locatedat the ith
row andthe jth columnandg to the luminance We adopt
an identical reasoningfor the column and the object sup-
port is then accuratelydeterminedoy the setof pixels g;;
which belongto arow R; anda column(; containingthe
object O. Figure 4 displaysexamplesof rectangularsup-
port determinationfor some cross-sectionabrain SPECT
imagesA moreaccuratesupportcould be given by an un-
supervisedMarkovian segmentatiorbasedon parameters
given by the ICE procedureFinally, let us recall alsothat
for theseblind deconvolutiontechniquesthereis no need
to implementa stoppingrule and convegenceis reached
whenthe estimatedPSFandimageare stable.

4 Experimental Results

The effectivenes®f eachdeconvolutiormethodwastested
on severalcross-sectiongbhantomssyntheticandreal hu-

Fig. 5 Original PSF defined as a two-dimensional Gaussian distri-
bution with variance 0?=1.5 in a 7 X7 support.

Journal of Electronic Imaging / January 2002/ Vol. 11(1)/7
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Table 2 lIteration number for each supervised deconvolution
method as chosen by the proposed stopping rule. Respectively, the
Van Cittert (VC), the Landweber (LW), the Richardson-Lucy (RL),
the super resolution (SR), and the Molina’'s (MO) algorithms.

Iteration number
VvC LW RL ™ SR MO

10 4 200 50 100 10

man brain SPECTimagesof 64 X 64 pixels sizewith 256
gray levels. Thosepresentedn this sectionare only a few
examples.

Exceptfor the TichonowMiller’s algorithm, the initial
estimatedimage of theseiterative schemesds the original
input image[i.e.,fo(x,y) =g(x,y)]. Besidesgxceptfor the
NAS-RIF blind deconvolutiortechnique the original PSF
estimate,a priori fixed for the superviseddeconvolution
methods,s approximatedor the real SPECTimagesby a

two-dimensional Gaussian distribution [i.e., hy(X,y)
=Gy y(a))] with variancea?=1.5 (i.e., about3 pixels of
width at half maximumasshownin Fig. 5). This variance
value hasbeenchosenempirically, for eachset of decon-
volution experimentgpresentedn this section,in orderto
obtain the best supervisedrestorationresults. The initial
inversefinite impulseresponse€FIR) filter requiredby the
NAS-RIF algorithm is simply the Kronecker delta
functiont® andwe haveusedy=0 becausehe background
of the SPECTimagesis not completelyblack. Finally, pa-
rameters\ and y, usedin the You andKaveh’ algorithm,

Table 3 Computational cost for each deconvolution method. Re-
spectively, the Van Cittert (VC), the Landweber (LW), the
Richardson-Lucy (RL), the super resolution (SR), the Molina (MO),
the IBD, the Biggs—Lucy (BL), the NAS—RIF and finally, the You—
Kaveh'’s (YK) algorithm. Results are obtained on a standard Sun-
Sparc 2 workstation and are expressed in seconds.

Computational cost

Supervised methods Blind methods

VC LW RL T SR MO IBD BL NAS-RIF YK

3 1 18 8 18 2 30 120 129 345

aregivenby the estimationmethodproposedy the authors
in Ref. 8. In orderto objectively comparethe spatialreso-
lution improvementsndthe contrastenhancemerietween
the original and estimatedmagesaswell asthe resolution
improvementof thesedifferentrestorationapproacheswe
havestretchedhe histogramof the estimatedmageat con-

vergence(i.e., fﬁna,(x,y)] in orderto get the samemean
value asthe original input imageg(x,y).

For the unregularizedsuperviseddeconvolutionmeth-
ods, the terminationcriteriais given by the stoppingstrat-
egy presentedn Sec.3.4 (seeTable 2). For the blind de-
convolution methodsrequiring the exact support of the
objectto berestoreddeconvolutiorresultsarebasedon the
support-findingalgorithm presentedn this samesection.

The computationatostfor a SPECTimageandfor each
supervisear blind deconvolutionproceduras indicatedin
Table 3.

(h) @

@ (k)

Fig. 6 Examples of brain SPECT image deconvolutions. (a) Original image. (b)—(g) Supervised de-
convolution methods, respectively; (b) Van Cittert, (c) Landweber, (d) RL, (e) Tichonov—Miller, (f) super
resolution, (g) Molina’s algorithm. (h)—(k) Blind deconvolution methods, respectively; (h) IBD, (i)

Biggs—Lucy, (j) You—Kaveh, (k) NAS—RIF algorithm.

8/ Journal of Electronic Imaging / January 2002/ Vol. 11(1)
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Fig. 7 Estimated PSF by the You—Kaveh'’s algorithm in a 7 X7 sup-
port.

Figures6 presentexamplesof brain SPECTimagede-
convolutionsobtainedby thesedifferentmethods Figure 7
displaysthe PSFestimatedoy the You—Kavehs algorithm.

Amongstthe supervisedleconvolutiorschemesthe Van
Cittert’s methodseemdo improveslightly the resolutionof
the original SPECT image. The Landwebels algorithm
seemgo give quite goodresultsrelativelyto its implemen-
tationsimplicity andits low computationatomplexity The
TichonowMiller and the Molina’s algorithms,which im-
posea priori smoothnes®f the true imagein an effort to
control noise,seemto fail to detectall detailsand singu-
larities of the true undistortedmage.In fact, the usedprior
modelseemgo be muchtoo simpleto modelaccuratelyall
the propertyof the true unblurredimage.The RL andthe
superresolutionalgorithmsgive similar resultsandallow to
improvesslightly the spatialresolutionof theseSPECTim-
ages.

Amongstthe blind deconvolutiontechniquesthe IBD is
unableto convege for 200 iterationsand more. The algo-
rithm fails to producea reliable estimateof the true image
for all the presentedSPECTimages.Deconvolutionexperi-
mentswith the exactrectangulasupportof the objectto be
restored,variousinitial conditionsand different noise pa-
rameter values « produced poor results as well. The
Biggs-Lucy andthe You—Kavehs algorithmsseento give
quite good contrastenhancementesultsbut also showun-
desirableartifactsall around(and maybeinside) the object
to be restored.In addition, thesetechniquesemainsensi-

tive to theinitial PSFgivento the deconvolutiorprocedure.

A randominitial guessfor the PSFor aninitial Kronecker
deltafunction lead to poor results.Let us note that these
methodsare not ensuredo convepe to the global minima
and remain highly sensitiveto the initial conditions. Fi-
nally, the NAS—RIF techniqgueseemdo convegeto agood
estimateof the solution without a priori information or
good initial guessaboutthe PSE Figure 8 gives examples
of five cross-sectionabPECTimagedeconvolutionf hu-
manbrain given by the NAS—RIF algorithm.

The effectivenessof thesedeconvolutiontechniquess
alsotestedon areal SPECTphantom(i.e., a physicalplexi-
glasheadphantonfilled with radioactivematerialandmea-
suredby a SPECTsystem for which the groundtruth of
this segmentedphantomis exactly known and thus for
which the performanceof eachdeconvolutionmethodcan
thenbe objectivelyjudged.Figure9 presentan exampleof
deconvolutiorresults,on this SPECTphantom pobtainedoy
the different aforementioneddeconvolutionmethods.We
caneasilynoticethatthis SPECTvolumeis lessnoisy and
lessblurredthanthe real humanbrain SPECTslice previ-
ously presentedand processeddueto severalfactorssuch
asadifferentdoseof radioactiveisotopescontainedn each
uniform region of this SPECTphantom,a longer acquisi-
tion time, the stillnessof this simulatedbrain during the
SPECT process,a reducedattenuation,etc). In order to
fully assesghe succesf this restorationprocedure we
use the specific evaluation criteria proposedin Ref. 4,
basedon the estimationof the threefollowing measures:

i First, the averagecontrastof the image, defined
by C=(1—m,/m3), wherem, and m; are the
meanof the pixel value in the white matterand
gray matterarea,respectively

ii. (i) Second,the image mottle M, in the white
matterregion,characterizedby taking the ratio of
the standarddeviation o, of pixel valuesin this
areato the meanms,.

ii. (i) Third, theimagemottle M 5 in the gray matter
area.

Thesetwo last parametersallow to measurehe ampli-
fication of the noiseand/ormeasurehe presenceof unde-
sirable artifacts that can be createdby the deconvolution
procedurein a uniform regionof the real SPECTphantom
(thuswith ideally uniform radioactiveactivity). Due to the
differenceof proportionof pixels belongingto eachbrain

Fig. 8 Examples of human brain cross-sectional SPECT image deconvolutions given by the NAS—RIF
algorithm. Top: five consecutive real cross-sectional SPECT slices. Bottom: deconvolution results.
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{1

(k)

Fig. 9 Examples of phantom SPECT image deconvolutions. (a) Original image. (b)—(g) Supervised
deconvolution methods, respectively; (b) Van Cittert, (c) Landweber, (d) RL, (e) Tichonov—Miller, (f)
super resolution, (g) Molina’s algorithm. (h)—(k) Blind deconvolution methods, respectively; (h) IBD, (i)

Biggs—Lucy, (j) You—Kaveh, (k) NAS—RIF algorithm.

anatomicaltissue, we considerthe total mottle measure
givenby M =p,M,+ p3M 3, with p, andp; designateshe
proportionof pixel belongingto the white matterandgray
matterarea,respectivelyA reliable SPECTimagerestora-
tion techniquewill thenallow to enhancehe contrastof the
imagewith little increasdén mottle,i.e., without amplifying
too much the noise and/orwithout creatingfalse artificial
features(technically an increaseby a factor of 10%—15%
of the original mottle of theimageremainsacceptabléf the
contrastenhancemenis significantly increasefi* Due to
the difference of thickness betweenthe cross-sectional
slicesof therealandsegmenteghhantom theseabovemen-
tioned measuresare estimated on the whole three-
dimensional (3D) phantom after this one has been
registere on the groundtruth of the segmenteghhantom
volume (seeFig. 10 wheresomeconsecutiveslicesof the
segmentegbhantomare showr). Table4 givesthe contrast
andimagemottle for eachdeconvolutiorntechniqueapplied
on this SPECTphantom.

Amongst the superviseddeconvolution schemes,the
Landwebets algorithm allows to increasesignificantly the
contrastof the image but at cost of an unacceptablén-

creaseof the mottle of the image (+33.0% of mottle).

Deconvolutionresults,obtainedon this SPECT phantom,
by the Van Cittert, the RL, the Tichonow-Miller and the
superresolutionalgorithmarenearly similar; they allow to

obtaina good contrastenhancemeribut also presentsome
artifacts,visible all aroundthe objectto be restored Moli-

na’s algorithm gives the bestresultsfor this SPECTvol-

ume; i.e., a good contrastenhancementvith only a little

increaseof the mottle. Experimentshave shown that this
methodis well suitedfor cross-sectiongbPECTimagesnot
too blurred.

Amongstthe blind deconvolutiontechniquesthe IBD
algorithm fails to producea reliable estimateof the true
image.The You—Kavehs algorithmallows oneto increase
the contrastof the image but this techniquealso creates
undesirableartifacts and/or an unacceptablemplification
of the noise (+30.2% of mottle). Deconvolutionresult
given by the Biggs-Lucy’s algorithmis very poor. Finally,
the NAS—RIF blind deconvolutiontechniqueproducecon-
trastenhancementesultasgoodasthe bestsupervisedle-
convolutiontechnique(i.e., the Molina’s algorithm) along
with the slightestincreaseof the mottle amongstthe con-

Fig. 10 Examples of some consecutive cross-sectional slices of the segmented phantom (ground

truth).

10/ Journal of E\I]eé:ltronic Imaging / January 2002/ Vol. 11(1)
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Table 4 Contrast and image mottle enhancement from the original input image and for each decon-
volution method (enhancement expressed in percentage). Respectively; the Van Cittert (VC), the
Landweber (LW), the Richardson-Lucy (RL), the super resolution (SR), the Molina (MO), the IBD, the
Biggs—Lucy (BL), the NAS—RIF and finally, the You—Kaveh'’s (YK) algorithm.

Supervised Blind
VvC Lw RL ™ SR MO IBD BL NAS-RIF YK
AC 34.5% 62.0% 35.1% 28.7% 35.1% 28.0% —6.1% 12.2% 24.7% 29.0%
AM 15.3% 33.0% 14.9% 13.5% 14.9% 12.6% 3.8% 13.8% 11.5% 30.2%

sideredsupervisedaindblind deconvolutiontechniquesEx-
perimentshave shownthat this methodis well suited for
bothvery blurred SPECTslicesandalsoin the caseof less
blurred SPECTimages.

We havealsotestedthe effectivenesof thesedeconvo-
lution techniqueson a cross-sectionaslice of a synthetic
SPECT volume. In order to simulate at best the typical
characteristicef realhumanbrain SPECTimageswe have
recreatedhreehomogeneousegionsand addedthe corre-
spondingnoise for eachones,accordingto the gray level
statistical distribution already estimatedon a real human

brain SPECTslice (seethe distribution mixture presented
in Fig. 3 and parametergjiven in Table 1). We havealso
addeda 3D Gaussiarblur in orderto simulatethe 3D scat-
tering of the emittedphotons.Figure 11 showsthe ground
truth of a segmentedyntheticslice, the syntheticSPECT
slice, andfinally the deconvolutionresultsobtainedby our
differentrestorationmethods.

Amongstthe supervisedleconvolutiorschemesthe Van
Cittert and the Landwebets algorithm give quite good re-
sultsalthoughat costof a slight amplificationof the noise
in eachuniform region of the syntheticSPECTslice. The

e M

G (X)
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Fig. 11 Examples of synthetic SPECT image deconvolutions. (a) Top: ground truth of the segmented
synthetic slice. Bottom: synthetic SPECT slice. (b)—(g) Supervised deconvolution methods, respec-
tively; (b) Van Cittert, (c) Landweber, (d) RL, (e) Tichonov-Miller, (f) super resolution, (g) Molina’s
algorithm. (h)—(k) Blind deconvolution methods, respectively; (h) IBD, (i) Biggs—Lucy, (j) You—Kaveh,
(k) NAS—RIF algorithm.
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(b)

(@)

Fig. 12 (a) Cross-sectional slice of a phantom SPECT volume, (b) deconvolution with the optimal
parameters given by our distribution mixture estimation method [a rectangle of 35 X 43 pixels size in
this case, see Fig. 4(b)], (c) overestimated support size (37 X 45 pixels size), (d) underestimated

support size (33 X 41 pixels size).

RL, the TichonowMiller and the superresolution algo-
rithm showclearly someartifactsall aroundthe objectto be
restored Deconvolutionresultgiven by the Molina’s algo-
rithm is very poor for this syntheticimage; experiments
have shownthat this methodis not well suitedfor highly
blurredimage.

Amongst the blind deconvolutiontechniquesthe IBD
doesnot convepge. The You—Kaveh andthe Biggs-Lucy’s
algorithm show clearly false and undesirableartificial fea-
tures createdby the iterative blind deconvolutionproce-
dure.Onceagain,the NAS—RIF techniqueproducesarela-
tively good restorationresult.

Finally, in orderto attestthe effectivenesof our param-
eter estimationprocedurewe have also comparedthe de-
convolution results,on SPECT images, obtainedby ex-
ploiting or not the optimal parametersgiven by our
distribution mixture estimationmethod.

Figure 12 showsthe resultsof the NAS—RIF algorithm,
on a cross-sectionadlice of a phantomSPECTvolume,for
respectivelythe rectangularsupportestimatedby our pro-
cedure]a rectangleof 35 X 43 pixelssizein this case see
Fig. 4(b)], an overestimatedupportsize (37 X 45 pixels
sizg, andfinally an underestimategupportsize (33 X 41
pixels size. Theseexperimentslearly showthatthe resto-
ration, even for an overestimationor underestimatiorof
10%, produceslessgood deconvolutionresultscompared
to the one obtainedby exploiting the rectangularsupport
estimatedby our estimationprocedure.ln the caseof an
overestimatedandincorrec} supportsize,the blind decon-
volution techniquedoesnot improve sufficiently the reso-
lution of the SPECTimage|[cf. Fig. 12(c)]. Moreover in
the caseof an underestimatedupportsize, someexternal
regionsof the brain are missing[cf. Fig. 12(d)]. The other
blind deconvolutionalgorithms produce poor deconvolu-
tion resultsfor underestimatioror overestimationof sup-

port sizeaswell. This leadsusto think thata goodestima-
tion of the supportsizeis given by our algorithm and this
accurateestimationis essentialn orderto rightly constrain
theill-posed natureof the blind deconvolutionalgorithms.
As for unregularizedupervisedleconvolutiormethods,
Fig. 13 showsthe resultsof N=4 iterationsof the Land-
webets algorithm(aschoserby the proposedstoppingrule
andby settinga < oy whereqg is the parameteassociated
to the backgroundnoisefor the original input image and
the deconvolutionresult given by N=2 and N=6 itera-
tions of this iterative algorithm. For N= 2, the deconvolu-
tion resultis poor (the brain remainsblurred and for N
=6 the amplificationof noisebeginsto be too important.
Therefore,N=4 (chosenby our algorithm seemsto be a
good compromisesolution. In fact, the contrastenhance-
mentincreasesvith the numberof iterationuntil N=4 and
keeps nearly constant after N=4 (at around AC
=+60%). For N=6 and over, the mottle of the image
beginsto significantlyincreaseto unacceptabléevels.

5 Conclusion

In this paperwe have shownthat a deconvolutionproce-
dure noticeablyimprovesthe spatial resolutionof human
brain SPECTimagesand can be a greathelp to facilitate
their interpretationby the nuclearphysician.The proposed
distributionmixture estimationprocedureallows efficiently
to give a reliable terminationcriteria for the unregularized
iterative deconvolutiontechniquesor to accuratelydeter
mine the rectangularsupportof the objectto be restored
whenthis oneis needediy someblind deconvolutiortech-
nigues.This estimationprocedurds quite generaland can
beusedfor otherapplicationssuchasanunsupervisedar-
kovian segmentatiorf brain SPECTimagesinto different
anatomical tissues, to create realistic synthetic brain

(a) (h)

() CH

Fig. 13 (a) Cross-sectional slice of a phantom SPECT volume. (b) N=4 iterations of the Landweber’s
algorithm (as chosen by the proposed stopping rule). (c) N=2 iterations of the Landweber’s algorithm.

(d) N=6 iterations of the Landweber’s algorithm.

12/ Journal of E!]elzc:ltronic Imaging / January 2002/ Vol. 11(1)
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SPECTimagesor to give relevantinformationin orderto

classifythesebrainimagesinto differentpathologyclasses.
Amongstexistingdeconvolutiontechniquesthe NAS—RIF

algorithm performs better than other deconvolution
schemedor SPECTimagerestoration.This techniquecan

be efficiently combinedwith our estimationprocedureto

find the supportof the objectto be restoredandyield very

promisingresultswithouta priori assumptioron the nature
of the blurring function or for all type of SPECTimages
(more or lessblurred. Finally, let us note also that this

method can efficiently be extendedin order to take into

accountthe inter-slice blur inherentto this 3D imagingpro-

cess.This can be doneby consideringa 3D variable FIR

filter with a blurred SPECTvolume pixels asinput?3
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