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Abstract. Thanks to its ability to yield functionally rather than
anatomically-based information, the single photon emission com-
puted� tomography (SPECT) imagery technique has become a great
help in the diagnostic of cerebrovascular diseases which are the
third most common cause of death in the USA and Europe. Never-
theless, SPECT images are very blurred and consequently their in-
terpretation is difficult. In order to improve the spatial resolution of
these images and then to facilitate their interpretation by the clini-
cian, we propose to implement and to compare the effectiveness of
different existing ‘‘blind’’ or ‘‘supervised’’ deconvolution methods. To
this end, we present an accurate distribution mixture parameter es-
timation procedure which takes into account the diversity of the laws
in the distribution mixture of a SPECT image. In our application,
parameters� of this distribution mixture are efficiently exploited in or-
der to prevent overfitting of the noisy data for the iterative deconvo-
lution techniques without regularization term, or to determine the
exact support of the object to be restored when this one is needed.
Recent blind deconvolution techniques such as the NAS–RIF algo-
rithm, [D. Kundur and D. Hatzinakos, ‘‘Blind image restoration via
recursive filtering using deterministic constraints,’’ in Proc. Interna-
tional Conf. On Acoustics, Speech, and Signal Processing, Vol. 4,
pp.� 547–549 (1996).] combined with this estimation procedure, can
be
�

efficiently applied in SPECT imagery and yield promising results.
©
�

2002 SPIE and IS&T. [DOI: 10.1117/1.1426082]

1 Introduction

Single
�

photon emission computedtomography � SPECT
� �

imagesareobtainedby the measureof radiations � gamma�
rays� coming from radioactiveisotopesinjectedin the hu-
man! body. Contrary to other medical imaging techniques,
such" as x-ray, computertomography, magneticresonance
imaging,etc.,this imageryprocessis ableto give function-
ally� ratherthananatomically-basedinformation,suchasthe
metabolic! behaviorof organs # like

$
the humanbrain% , b& y

measuring! and visualizing the level of blood flow. This
study" of regionalcerebralblood flow can aid in the diag-
nosticof cerebrovasculardiseasesandbraindisorders' e.g.,(
Alzheimer
)

’s disease,Parkinson’s disease,etc.* by
�

indicat-
ing
+

lower, or abnormalhigher, metabolicactivity in some
brain
�

regions.
Due to the peculiar imaging process,SPECT suffers

from
,

poorstatisticsandpoorspatialresolution.Poorstatis-
tics
-

result from the small numberof photonsthat can be
acquired� for eachimage;principally owing to the low sen-
sitivity" of the collimator and the low doseof the injected
radiopharmaceutical.� Factorsinfluencingthe spatialresolu-
tion
-

aremainly thescatteringof theemittedphotonsand,to
a� lesserdegree,the intrinsic resolutionof thecamera.Con-
sequently" , resultingcross-sectionalSPECTimagesarevery
blurred
�

andtheir interpretationby the nuclearphysicianis
often. difficult, labor-intensive,andsubjective.If the object
to
-

be visualized is small compared to the source-to-
collimator distance,this degradationphenomenonmay be
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considered to beapproximatelyshift-invariantand,neglect-
ing
+

noise,this one can be modeledby a convolutionpro-
cess betweenthe true undistortedimage and the transfer
function of the imagingsystem.1 A body of theoreticaland
experimental( work has led to approximatethis transfer
function
, 2

also� calledthe point spreadfunction 3 PSF
4 576

by
�

a
two-dimensional
-

symmetricGaussianFunction.2,3 In
8

order
to
-

improve the spatial resolutionof SPECTimages,some
authors� havethusinvestigatedtheSPECTimagedeblurring
problem� with this classof Gaussiantransferfunction and
by
�

usingclassicalWienerfilter techniques1,2 or. supervised
maximum entropy filter-baseddeconvolutiontechnique.4

9
This restorationprocedure,alsocalleda deconvolutionpro-
cedure, is an important considerationin SPECTmedical
imaging
+

wheretheremaybe localizedsingularitiesor cold/
hot spotsin the true image,associatedwith lesionsor tu-
mors.Theselocalizedsingularitiesmaynot bevisible in the
blurred
�

image, owing to the diffusive effects associated
with: the convolution process,which averagesout differ-
ences( in neighboringvalues.A deconvolutionschemecould
then
-

be very useful in order to detectsuchsingularitiesby
improving
+

the spatialresolutionof SPECTimages.
Under
;

the assumptionthat the blur operationis exactly
known,manyiterativemethodshavebeenproposedby the
imageprocessingcommunity for tackling this deconvolu-
tion
-

procedureand for facing the usualdifficulties related
to
-

this ill-posed problem.Amongst the existing methods,
some" of themarestructuredin thecontextof regularization
problem� to makethe inversionwell behaved.5–

<
8 Others



are
unregularized= andrequirea terminationcriteria in order to
stop" the iterative procedureat the point where there is a
balance
�

betweenthe fit to the imagedataand the amplifi-
cation of the noise, inherent to this ill-posed inverse
problem.� 9–1

>
3 Nevertheless,
?

let usnotethat thesesupervised
deconvolution
@

methodsremainlimited andsensitiveto the
assumption� madeon the natureof the blurring function.
Theoretically, the PSFcan be measureddirectly from the
SPECT
�

cameraby visualizing the blurredresultof a point
source" againsta uniform background,but suchexperiment
is generallydifficult to obtainin practiceanddoesnot nec-
essarily( yield a reliablePSF. In applicationssuchasmedi-
cal imaging,whenlittle is knownaboutthePSF, it canturn
out. often more relevantto estimatedirectly the PSFfrom
the
-

observedinput image.This problemof simultaneously
estimating( the PSF A or. its inverseB and� restoring an un-
known
C

imageis called ‘‘blind deconvolution’’ or ‘‘decon-
volutionD with blur identification.’’ Recenttechniquesexist
and� canbe usedin the SPECTimagerycontext.

In
8

this paper, we proposea comparativestudyof exist-
ing
+

blind or superviseddeconvolutionmethods.We discuss
and� comparetheir respectiveeffectivenessfor improving
the
-

spatialresolutionof realbrainSPECTimages.First,we
briefly
�

review classicalsuperviseddeconvolutionmethods
which: assumetheblur is exactlyknownaE priori and,� in this
context, we exploit the two-dimensionalGaussianassump-
tion
-

for thePSFproposedby someauthors.1–3 For theclass
of. the superviseddeconvolutiontechniquewithout regular-
ization
+

term, we presentan accuratedistribution mixture
parameter� estimationwhich takesinto accountthediversity
of. the laws in the distributionmixture of a SPECTimage.
In our application,parametersof this distribution mixture
are� efficiently exploitedin orderto find a reliablestopping

rule for theseiterative methodsand then to prevent the
amplification� of thenoise.Then,recentblind deconvolution
techniques
-

are briefly presentedand tested.We will show
that
-

the joint estimationof the imageandPSFcanlead,for
some" of them,to betterrestorationresultsandalsothat the
Gaussian
F

assumption,proposedby someauthors,is only a
rough� approximation.Finally, for the classof the blind de-
convolution techniquein which the exact supportof the
object. to be recoveredis needed,we proposea novel
support-finding" algorithmexploitingalsotheparametersof
the
-

aforementioneddistribution mixture estimationproce-
dure.
@

This paper is organizedas follows. Section II briefly
describes
@

superviseddeconvolution methods and recent
blind
�

deconvolutiontechniquesthat we will compare.In
Sec.
�

3, we detail thedistributionmixtureparameterestima-
tion
-

procedure. Deconvolution experimental results on
phantoms,� synthetic and real brain SPECT images are
given� in Sec.4. Finally, a conclusionandperspectivesare
given� in Sec.5.

2 Deconvolution

2.1
G

Introduction

In
8

our application,the degradationof a SPECTimagecan
be
�

representedas the result of a convolution of the true
imagewith a blurring function H the

-
PSFI plus� an additive

term
-

to model the noise from the physical system.If the
imaging
+

systemis assumedto be linear andshift invariant,
the
-

degradationprocesscan then be expressedby the fol-
lowing linear model:

gJ K xL ,& yM NPO f
Q R

xL ,& yM S * h
T U

xL ,& yM VPW nX Y xL ,& yM Z ,&
where: gJ (

[
xL ,& yM )

\
is the degradedor blurred image, f

Q
(
[
xL ,& yM ) i

\
s

the
-

undistortedtrue image,h
T

(
[
xL ,& yM )

\
is the PSFof the imag-

ing
+

systemand nX (
[
xL ,& yM )

\
is the additivecorruptingnoise.In

this
-

notation, the coordinates(xL ,& yM )
\

representthe discrete
pixel� locationsand* is the discretelinear convolutionop-
erator( .

2.2 Supervised Deconvolution Methods

Assumingthat the blurring function h
T

(
[
xL ,& yM )

\
is known, the

problem� is thento determinef
Q

(
[
xL ,& yM )

\
given the observation

gJ (
[
xL ,& yM )

\
. This one is generallyill-posed owing to the exis-

tence
-

of the additive noise. This meansthat there is no
unique= least square solution of minimal norm ] gJ (

[
xL ,& yM )

\
^ f
Q

(
[
xL ,& yM )

\
* h
T

(
[
xL ,& yM )

\ _ 2. Besides,a small perturbationof the
given� dataproduceslarge deviationsin the resultingsolu-
tion.
-

An appropriatesolutionmaybechosenthroughproper
initialization of the algorithm or by using deterministic
prior� information about the original image ` viaD a regular-
ization
+

terma to
-

makethe inversionwell behaved.In this
way: , iterativeapproacheshavebeenproposed.Their main
advantages� arethat thereis no needto explicitly implement
the
-

inverseof an operatorand the processmay be moni-
tored
-

asit progresses.Someof themarebriefly presentedin
this
-

sectionandareoptimal; in theleastsquaresense,under
constraints 5

<
or. not,9

>
in the maximum likelihood b ML c

sense" 10 or. in the maximuma posteriori d MAPe sense." 6,1
f

1
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2.2.1 Van Cittert’s algorithm

V
g

an Cittert12 proposed� the following iterativealgorithm:

f
Q ˆ

k
h i

1 j xL ,& yM kPl f
Q ˆ

k
h m xL ,& yM nPoqpsr gJ t xL ,& yM uwv h

T x
xL ,& yM y * f

Q ˆ
k
h z xL ,& yM {}| ,&

where: ~ is a convergenceparametergenerallyset to 1. In

this
-

iterativescheme,the estimatedimage f
Q ˆ (
[
xL ,& yM )

\
is modi-

fied at eachiteration by addinga term proportionalto the
residual� r� ([ xL ,& yM )

\ �
gJ (
[
xL ,& yM )

\ �
h
T

(
[
xL ,& yM )

\
* f
Q ˆ

k
h ([ xL ,& yM ).

\
2.2.2
G

Landweber’s algorithm

Another
)

iterative algorithm, proposed by Landweber
et� al.,& 9> is provided by the minimization of the norm�
gJ (
[
xL ,& yM )

\ �
h
T

(
[
xL ,& yM )

\
* f
Q ˆ

k
h ([ xL ,& yM )

\ � 2� and� leadsto the following it-
eration,(
f
Q ˆ

k
h �

1 � xL ,& yM �P� f
Q ˆ

k
h � xL ,& yM �P�q� h

T ���
xL ,& � yM � * � gJ � xL ,& yM �

� h
T �

xL ,& yM � * f
Q ˆ

k
h � xL ,& yM �}� .

This algorithm,also called the one stepgradient,leadsto
simply" movetheestimatef

Q ˆ (
[
xL ,& yM )

\
iteratively in thenegative

gradient� direction.

2.2.3
G

Richardson–Lucy’s algorithm

The Richardson–Lucy’s � RL� algorithm� 10 is an iterative
technique
-

which attemptsto maximizethelikelihood of the
restored� image by using the expectationmaximization
algorithm� 14 when: the image is assumedto come from a
Poissonprocess.This iterativealgorithmmaybesuccinctly
expressed( as

f
Q ˆ

k
h �

1   xL ,& yM ¡P¢ f
Q ˆ

k
h £ xL ,& yM ¤ h

T ¥�¦
xL ,& § yM ¨ * gJ © xL ,& yM ª

h
T «

xL ,& yM ¬ * f
Q ˆ

k
h ­ xL ,& yM ® .

In this form of notation,thedivision andthemultiplication
is donepoint-by-point.

2.2.4 Tichonov–Miller’s algorithm

This algorithm, also called the constrainedleast squares
restoration,� consistsin choosingthe estimatef

Q ˆ (
[
xL ,& yM )

\
that

minimizesthe following cost function:

f
Q ˆ ¯ xL ,& yM °P± ar� gmin

f
² ³µ´ gJ ¶ xL ,& yM ·P¸ h

T ¹
xL ,& yM º * f

Q ˆ » xL ,& yM ¼¾½ 2�
¿qÀÂÁ

cÃ Ä xL ,& yM Å * f
Q ˆ Æ xL ,& yM Ç¾È 2� É ,&

where: the term cÃ (
[
xL ,& yM )

\
* f
Q ˆ (
[
xL ,& yM )

\
generallyrepresentsa high

pass� filteredversionof theimagef
Q ˆ (
[
xL ,& yM )

\
. This is essentially

a� smoothnessconstraintwhich suggeststhat most images
are� relatively flat with limited high-frequencyactivity, and
thus
-

it is appropriateto minimize the amountof high-pass
ener( gy in therestoredimage.Onetypical choicefor cÃ (

[
xL ,& yM )

\
is the two-dimensionalÊ 2DË Laplacianoperator. The mini-
mization! of the earlier equationleads,with the methodof
successive" approximation,proposedin Ref. 5, to the fol-
lowing
$

iterativeestimationschemefor f
Q ˆ (
[
xL ,& yM ):

\

f
Q ˆ

k
h Ì

1 Í xL ,& yM ÎPÏ f
Q ˆ

k
h Ð xL ,& yM ÑPÒÔÓÖÕ gJ × xL ,& yM Ø * h

T ÙµÚ
xL ,& Û yM Ü

ÝßÞ Aà h
á â xL ,& yM ãPäqå A

à
cæ ç xL ,& yM è}é * f

Q ˆ
k
h ê xL ,& yM ëíì ,&

with: f
Q ˆ

0
î ï xL ,& yM ðPñÔòôó gJ õ xL ,& yM ö * h

T ÷µø
xL ,& ù yM ú}û .

A
à

h
á ([ xL ,& yM )

\ ü
h
T

(
[
xL ,& yM )

\
* h
T

(
[ ý

xL ,& þ yM )
\

andA
à

cæ ([ xL ,& yM )
\

aretheautocor-
relation� functionsof h

T
(
[
xL ,& yM )

\
andcÃ (

[
xL ,& yM )

\
, respectively. ÿ is

+
called theregularizationparameterwhich mustbecarefully
chosen for reliable restoration.This iteration converges if
0
� �����

(2
[

/ � � max� 	 )\ , where 
 max� is
+

the largesteigenvalueof
the
-

matrix Ah
á ([ xL ,& yM )

\ �
�
Acæ ([ xL ,& yM ).

\
2.2.5
G

Super resolution algorithm

AssumingPoissonphotondistributionin the image,thena
Bayesian
�

andMAP derivationhasbeenproposedby Hunt
et� al.11 This

�
oneleadsto the following iterativescheme:

f
Q ˆ

k
h �

1 � xL ,& yM ��� f
Q ˆ

k
h � xL ,& yM �
�

exp( gJ � xL ,& yM �
h
T �

xL ,& yM � * f
Q ˆ

k
h � xL ,& yM ��� 1.0 * h

T  
xL ,& yM ! .

2.2.6
G

Molina’s algorithm

Following
�

the Bayesianparadigm,Molina et� al. have
"

pro-
posed� to incorporateprior informationto theRL # maximum
likelihood$ restorationmethod.6

%
In order to model the aE

priori& smoothness" of the imageto be recovered,this oneis
defined
@

by the following conditionalautoregressivemodel:

PF
' ( f)�* exp( +-, 1

2 . f t
/ 0

I 1
2 N
3 4

f5 .
In this matrix-vectornotation,f is the true imageordered
lexicographically
$

by stackingthe rows into a vector. 6 is
+

the
-

unknownregularizationparameter, matrix N
3

is suchthat
N
3

i j 7 1 if cells i
8

and� j
9

are� spatialfour-neighbors: pixels� at
distance
@

one; and� zerootherwise,andscalar < is just less
than
-

0.25.Theterm f
= t/ ([ I> ?
@

N
3

)
\
f
=

represents,� in matrix nota-
tion,
-

the sumof squaresof the valuesf
=
i minus! A times

-
the

sum" of fifj
B for neighboringpixels i

8
and� j

9
. Following theRL

method,which correspondsto MAP estimationwith a uni-
form
,

imageprior, Molina et� al. obtain. the following itera-
tive
-

scheme:

f
Q ˆ

k
h C

1 D xL ,& yM E�F�G k
h H xL ,& yM I f

Q¯
k
h J xL ,& yM K�LNM 1 O�P k

h Q xL ,& yM RTS f
Q ˆ

k
h U xL ,& yM V

W
h
T XZY

xL ,& [ yM \ * gJ ] xL ,& yM ^
h
T _

xL ,& yM ` * f
Q ˆ

k
h a xL ,& yM b .

c
k
h ([ xL ,& yM )

\ d
0
�

correspondsto the classical RL restoration
methode we: recall that,in this form of notation,thedivision
and� themultiplicationaredonepoint-by-pointf . f

Q¯
k
h ([ xL ,& yM ) i

\
s a

filtered versionof f
Q

k
h ([ xL ,& yM )

\
in which eachpixel is the aver-

age� of its four-neighborspixels.

2.3 Blind Deconvolution Methods

When
g

little is known aboutthe PSF, a solution for the de-
blurring
�

problemconsistsin achievinga blind deconvolu-
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tion
-

technique.Blind imagedeconvolutionis the simulta-
neousi estimationof the true imageand the PSFfrom the
blurred
�

observation.A commonly usedmethod for blind
deconvolution
@

is by minimization of an error metric that
optimizes. theform of therestoredimageandthePSF j or. its
inverse
+ k

to
-

fit the various constraintson the form of the
solution;" typically positivity andknown supportof the ob-
ject
l

to berecovered.Steepestdescentor conjugategradient
methodare generallyused to achieveoptimization.15,8 A
second" method, usually called ‘‘grouped coordinatede-
scent,’" ’ restoresthe image and the PSF separatelyin an
iterative
+

form. During eachcycle either the imageor the
PSFis held staticwhile the other is updated,generallyus-
ing one of the standarddeconvolutiontechnique.7,13

m
In

these
-

methods,thatalternatebetweenrestorationof the im-
age� and PSF, iterationsdo not necessarilyhaveto usethe
same" restorationalgorithm. In this section, we describe
briefly
�

four recent blind deconvolutiontechniquesstem-
ming! from thesetwo differentapproaches.

2.3.1 The iterative blind deconvolution method

The iterativeblind deconvolutionn IBD o method,proposed
by
�

AyersandDainty,7
m

requires� that the imageandthe PSF
be
�

non-negativewith known finite support p the
-

supportis
defined
@

as the smallestrectanglecontainingthe entire ob-
ject
l q

. After an initial guessis madefor the true image,the
algorithm� alternatesbetweenthe image and Fourier do-
mains,! enforcing known constraints in each. The con-
straints" arebaseduponinformationavailableaboutthe im-
age� and the PSF. The image domain constraintscan be
imposed
+

by replacingnegativevaluedpixels within the re-
gion� of supportwith zero and nonzeropixels outsidethe
region of support with the backgroundpixel value. The
Fourierdomainconstraintinvolvesa Wiener-like filter for
the
-

imageandthePSF. This filter allows to efficiently sup-
press� noiseamplificationresultingfrom theill-posednature
of. the restorationproblem

H
r ˆ

k
h s ut ,& uwv�x G

y z
ut ,& {}| F̂k

h ~
1* � ut ,& �w��

F̂k
h �

1 � ut ,& �w��� 2 �
� /
� �

Ĥk
h �

1 � ut ,& �w��� 2 ,&

F
� ˆ

k
h � ut ,& �w��� G

y �
ut ,& �w� H

r ˆ
k
h �

1* � ut ,& �w��
H
r ˆ

k
h  

1 ¡ ut ,& ¢w£�¤ 2 ¥
¦ /
� §

F
� ˆ

k
h ¨

1 © ut ,& ªw«�¬ 2 .

where: Hk
h ([ ut ,& ­ ),

\
G
y

(
[
ut ,& ® )

\
, andF(

[
ut ,& ¯ )

\
representthe2D fast

Fourier
�

transformof the PSF, the original image and the
true
-

image, respectively. Subscriptsdenote the iteration
numberof thealgorithmand(.)* is thecomplexconjugate
o. f (.). The real constant ° representsthe energy of the
additive� noise and must be carefully chosenfor reliable
restoration.� Figure1 givesanoverviewof this scheme.The
algorithm� is run for a specifiednumberof iteration,or until
the
-

estimatesbegin to converge. The major drawbackof
this
-

method is its lack of reliability; the uniquenessand
conver gencepropertiesare uncertainand the algorithm is
sensitive" to the initial imageestimateandcanexhibit insta-
bility
�

.

2.3.2
G

The Biggs–Lucy’s algorithm

This method13 alternates� betweenrestoringthe imageand
the
-

PSFusingthe RL algorithm ± by
�

simply swappingvari-
ables� h

T
(
[
xL ,& yM )

\
and f

Q
(
[
xL ,& yM )

\
in the RL iteration² . The image

and� the PSFestimatesaregiven by

h
Tˆ

k
h ³

1 ´ xL ,& yM µ�¶ 1
·

f
Q ˆ

k
h ¸ xL ,& yM ¹

h
Tˆ

k
h º xL ,& yM »

¼
f
Q

k
h ½¿¾ xL ,& À yM Á * gJ Â xL ,& yM Ã

h
T

k
h Ä xL ,& yM Å * f

Q ˆ
k
h Æ xL ,& yM Ç ,&

f
Q ˆ

k
h È

1 É xL ,& yM Ê�Ë 1
Ì

h
Tˆ

k
h Í

1 Î xL ,& yM Ï
f
Q ˆ

k
h Ð xL ,& yM Ñ

Ò
h
T

k
h Ó

1 ÔZÕ xL ,& Ö yM × * gJ Ø xL ,& yM Ù
h
T

k
h Ú

1 Û xL ,& yM Ü * f
Q ˆ

k
h Ý xL ,& yM Þ .

This methodrequiresa goodinitial guessfor thePSFanda
dif
@

ferent numberof iterationsfor the imageand the PSF,
expressed( by an asymmetricfactor which is necessarybe-
cause imageandPSFestimatesconverge at differentrates.
Dependingon the type of the imageand the natureof the
PSF
4

, this factor is generallydifferentandmustbecarefully
chosen for reliablerestoration.

2.3.3 The non-negativity and support constraints
recursive inverse filtering algorithm

The
�

non-negativityand support constraintsrecursive in-
verseD filtering ß NAS

?
–RIFà technique

- 15 is applicableto situ-
ations� in which anobjectof finite supportis imagedagainst

Fig. 1 IBD algorithm.
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a� uniform or noisy backgroundwhich is our case.It com-
prises� a 2D variablefinite impulseresponsefilter ut (

[
xL ,& yM ) o

\
f

dimension
@

N
á

xuâ ã N
á

yuä with: the blurredimagepixels gJ (
[
xL ,& yM )

\
as� input. The outputof this filter representsan estimateof
the
-

true image f
Q ˆ (
[
xL ,& yM )

\
. This estimateis passedthrougha

nonlineari filter which uses a nonexpansivemapping to
project� the estimatedimageinto the spacerepresentingthe
knowncharacteristicsof the true image.Thedifferencebe-
tween
-

this projectedimage f
Q ˆ

NL
å (
[
xL ,& yM )

\
and f

Q ˆ (
[
xL ,& yM )

\
is usedas

the
-

error signal to updatethe variablefilter ut (
[
xL ,& yM )

\
. Figure

2
æ

givesan overviewof this scheme.The imageis assumed
to
-

be non-negativewith known support.The cost function
used= in this restorationprocedureis definedas

J
ç è

ué ê�ë ì
(
í
xâ ,yä )
î ïñð

supò f
Q ˆ 2
� ó

xL ,& yM ô 1 õ sgn" ö fQ ˆ ÷ xL ,& yM ø¿ø
2
æ

ù ú
(
í
xâ ,yä )
î ûñü¯

supò
ý
f
Q ˆ þ xL ,& yM ÿ�� LB

� � 2 ��� ��
(
í
xâ ,yä )
î ut 	 xL ,& yM 
�� 1

2

,&

where: f
Q ˆ (
[
xL ,& yM )

\ �
gJ (
[
xL ,& yM )

\
* ut (
[
xL ,& yM )

\
, and sgn(f

Q
)
\ 
��

1 if f
Q �

0
�

and� sgn(f
Q

)
\ �

1 if f
Q �

0.
� �

sup is thesetof all pixelsinsidethe

region� of support,and �¯ sup is
+

the set of all pixels outside
the
-

region of support.The variable � in the third term is
nonzeroonly whenLB is zero,i.e., thebackgroundcolor is
black.
�

The third term is used to constrainthe parameter
away� from thetrivial all-zeroglobalminimumfor this situ-
ation.� Authorshaveshownthat the earlierequationis con-
vexD with respectto ut (

[
xL ,& yM )

\
, so that convergenceof the al-

gorithm� to the global minimum is ensured using the
conjugate gradientminimizationroutine.15

2.3.4
G

The You–Kaveh’s algorithm

This
�

method8 attempts� to minimizea costfunctionconsist-
ing of a restorationerror measureand two regularization
terms,
-

onefor the imageandthe other for the blur

C � fQ ˆ ,& hTˆ ��� ar� gmin
f
²

,h
á � 1

2
� � gJ � xL ,& yM ��� h

T  
xL ,& yM ! * f

Q ˆ " xL ,& yM #%$ 2�
& 1

2 ')( cÃ * xL ,& yM + * f
Q ˆ , xL ,& yM -�. 2� / 1

2 021 aE 3 xL ,& yM 4 * h
Tˆ 5 xL ,& yM 6�7 2� 8 ,&

where: aE (
[
xL ,& yM )

\
andcÃ (

[
xL ,& yM )

\
areregularizationoperator9 e.g.,(

a� high-passfilter suchas the Laplacian: . ; and� < are� the
regularization� parametersthat control the tradeoff between

fidelity to the observationandsmoothnessof the estimated
image
+

andthe estimatedPSF. In orderto takeinto account
the
-

scaleproblem,inherentto this cost function, an alter-
nating minimization using steepestdescentor conjugate
gradient� methodis proposed.Note that, usingsteepestde-
scent" method,resultingiterativeproceduresarecloseto the
iteration
+

schemeproposedby Landweber= with: a regular-
ization termfor theblur> for thealternaterestorationof the
imageandthe PSF.

3
?

Distribution Mixture Parameter Estimation

3.1
?

Introduction

In this section,we presentan estimationprocedureallow-
ing
+

to estimatethe gray level statisticaldistributionassoci-
ated� to eachclass@ also� calledthenoisemodelA of. a SPECT
image.We will showalsohow this informationcanbe ex-
ploited� in theaforementionedsupervisedor blind deconvo-
lution
$

methods.
To this end, we considera couple of randomfields ZB (
[
X
C

,& Gy )
\
, whereG

y D
(
[
G
y

sE ,& sF G S
H

)
\

representsthe field of ob-
servations" locatedon a lattice S

H
of. N
á

sites" sF I associated� to
the
-

N
á

pixels� of the SPECTimageJ ,& andX
C K

(
[
X
C

sE ,& sF L S
H

)
\

the
label field M relatedto the N

á
class labelsXsE of. a segmented

SPECT
�

imageN . Eachaforementionedlabel is associatedto
a� specificbrain anatomicaltissue;the ‘‘CSF’’ areadesig-
natesthe region that is normally due to the lack of radia-
tions.
-

In this distributionmixtureparameterestimation,this
region� designatesthe brain regionfilled with cerebrospinal
fluid
O P

without: blood flow and thus without radiationQ and�
also� the areaoutsidethe brain region.The ‘‘white matter’’
and� ‘‘gray matter’’ R brightest

�
regionS are� associatedto a low

and� a higher level of blood flow, respectively.16 Each



G
y

sE takes
-

its value in (0, . . .& ,255)& (256 gray levelsT ,& and
each( X

C
sE in
+

(e� 1 U ‘‘CSF’’, e� 2
� V ‘‘white matter’’ , e� 3

W X ‘‘gray
matter’’ Y .

In thefollowing, theparametersin uppercaseletterdes-
ignate
+

the randomvariableswhereasthe lower caseletters
represent� the realizationsof theseconcernedrandomvari-
ables.� In this estimationstep,the distribution of (X,& Gy ) i

\
s

defined,
@

first, by prior distribution P
Z

X(
[
xL )
\
, supposedto be

Markovianandsecondly, by the site-wiseconditionallike-
lihoods
$

P
Z

G
[

s\ /
]
X
^

s\ ([ gJ sE /
�
xL sE )\ whose shapeand parameter_ (

í
xâ s\ )î

depends
@

on the concernedclasslabel xL sE (
[
gJ sE designates

@
the

gray� level intensity associatedto site sF )\ . Finally, we as-
sume" independencebetween each random variable G

y
sE

given� XsE . The observableG
y

is called the ‘‘incomplete
data,’
@

’ andZ
`

the
-

‘‘completedata.’’

3.2
?

Estimation of the Distribution Mixture
Parameters for the Complete Data

Assuming
)

the segmentationresult xL is
+

known, the param-
eters( of the gray level statisticaldistribution associatedto
each( class,can thenbe easilycomputedwith the ML esti-
matorof the completedata.

Experimentations



haveshownthatwe canrightly model
the
-

statisticalgraylevel distributionin thebackgroundor in
the
-

CSFareaby a exponentiallaw a see" Ref. 3 andalsothe
left partof thehistogramreportedin Fig. 3b . This led us to
think
-

that the noisein this regionis approximatelyPoisso-
niani with the following statisticalgray level distribution:

Fig. 2 NAS–RIF algorithm.
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d
G
[ e gJ ; f2g�h 1i

exp( j gJ k
,&

with: gJ l 0.
�

Let now G
y m

(
[
G
y

1 ,& ..., G
y

M
n ) b
\

e M randomvari-
ables,� independentand identically distributedaccordingto
a� ‘‘single’’ exponential law o G

[ (
[
gJ ; p )

\
, and gJq (

[
gJ 1 ,& ..., gJ M)

\
a realizationof G

y
. The ML estimatorofr

ML
s for thecompletedatais simply themeanof thesample

gJ .17

In
8

orderto describethe luminancewithin thewhite mat-
ter
-

and the gray matterregions,we model the conditional
density
@

function for theseregionsby two Gaussianlaws.
This
�

assumptionof normality is a reasonableapproxima-
tion
-

due to the reconstructionphysical processused in
SPECT
�

imageryin which the gray level of a given pixel,
hereinconsideredasa randomvariable,aresumsof many
variablesD andthe ‘‘central limit theorem’’ canbe applied.17

The
�

correspondingML estimatorof thecompletedata,for a
sample" gJ distributed

@
accordingto a normal law, is defined

simply" by the empiricalmeanandthe empiricalvariance.

3.3
?

Estimation of the Distribution Mixture
Parameters for the Incomplete Data

When
g

the segmentationresult is unknown t i.e., the class
label of eachpixel is not supposedto be knownu ,& the con-
sidered" problem is more complex. In order to determinevxwzy|{

(
í
e} 1)
î ,& ~ (

í
e} 2
� )î ,& � (

í
e} 3
� )î � ,& we use the iterative conditional

estimation( � ICE
8 �

algorithm.� This procedure,describedin
detail
@

in Ref. 18 relieson an estimator� ˆ (
[
X,& Gy )

\
with good

asymptotic� properties, like the ML estimator, for com-
pletely� observeddata case.When X

�
is
+

unobservable,this
procedure� startsfrom an initial parametervector � (0)

í �
not

too
-

far from the optimal one� and� generatesa sequenceof
parameter� vectorsleadingto the optimal parameters,in the
leastsquaresense,with the following iterativescheme:

� (
í
p� � 1) � 1

nX ��� ˆ � xL (1)
í ,& gJ �%� ��� ˆ � xL (

í
n� )
î ,& gJ ��� ,&

where: xL (
í
i)
î ,& with i

8 �
1,2, . . . ,nX ,& , are realizationsof X

�
drawn
@

according to the posterior distribution
P
�

X
�

/
�
G
  ¡ xL /

�
gJ ,& ¢ (

í
p� )
î £

. In order to decreasethe computational
load, we can take nX ¤ 1 without altering the quality of the
estimation.( 19 Finally, we can use the Gibbs sampler
algorithm� 20 to

-
simulaterealizationsof X

�
according� to the

posterior� distribution. For the local aE priori model! of the
Gibbs
F

sampler, we adoptan isotropic Pottsmodel with a
first orderneighborhood.21

�
In this model,therearetwo pa-

rameters,� called ‘‘the clique parameters’’ denoted ¥ 1 ,& ¦ 2
and� associatedto thehorizontalandverticalbinarycliques,
respectively. § Cliques

�
aresubsetsof siteswhich aremutual

neighbors.i 21̈ Given
F

this aE priori model,! the prior distribu-
tion
-

PX(
[
xL )
\

canbe written as

P
�

X
� © xL ª�« exp( ¬®­¯

s° ,t± ²2³ st° ´ 1 µ·¶¹¸ xL s° ,& xL t± º¼» ,&

where: summationis taken over all pairs of neighboring
sites" and ½ (

[
.) is the Kroneckerdelta function. In order to

favor
,

homogeneousregionswith no privileged orientation
in the Gibbs samplersimulation process,we choose¾ st°¿ÁÀ

1 ÂÁÃ 2 Ä 1. Finally, Å (
í
p� Æ 1) is computedfrom Ç (

í
p� )
î

in
the
-

following way:

• Stochastic
È

step: usingtheGibbssampler, onerealiza-
tion
-

xL is simulatedaccordingto the posteriordistribu-
tion
-

P
�

X
�

/
�
G
  (
[
xL /
�
gJ )
\
, with parametervector É (

í
p� )
î
.

• Estimation step: the parametervector Ê (
í
p� Ë 1) is esti-

mated! with the ML estimatorof the completedata
corresponding to eachclass.Ì If N

á
1 Í #(sÎ Ï S

Ð
:xL s° Ñ e� 1)

\
is thenumberof pixelsof

the
-

CSF area, the ML estimator Ò ˆ (
í
e} 1)
î of. Ó is

given� by Ref. 17: Ôˆ (
[
xL ,& gJ )

\ Õ
(1
[

/N
á

1)
\ Ö

s° × S
Ø

:xâ sÙ Ú e} 1
gJ s° .Û If

8
N
á

2
� Ü #(

Ý
sÎ Þ S

Ð
:xL s° ß e� 2

� )\ andN
á

3
W à #(

Ý
sÎ á S

Ð
:xL s° â e� 3

W )\
pixels� are located in the white matter and gray
matter regions, respectively, the corresponding
ML estimatorof eachclassis given by the em-
pirical� meanand the empirical variance.For in-
stance," for the white matter class,we have forã ˆ

(
í
e} 2
� )î :ä ˆ å xL ,& gJ æèç 1

N
á

2

é
s° ê S
Ø
:xâ sÙ ë e} 2 gJ s° ,&

ì ˆ 2í xL ,& gJ îèï 1ð
N
á

2
� ñ 1ò ó

s° ô S
Ø

:xâ sÙ õ e} 2� ö gJ s° ÷ùø ˆ ú 2.
• Repeatuntil convergenceis achieved;i.e., if û ˆ (

í
p� ü 1)ý /� þ ˆ (

í
p� )
î
,& we returnto stochasticstep.

Figure
�

3 representstheestimateddistributionmixtureof
the
-

SPECTimageshownin Fig. 4ÿ b� � . The threesite-wise
likelihoods
$

P
�

G
 

sÙ /
�
X
�

sÙ ([ gJ s° /
�
e� k
h ),\ k

� �
1,2,3, � weighted: by theesti-

matedproportion � k
h of. eachclasse� k

h )\ aresuperimposedto
the
-

imagehistogram.Correspondingestimatesobtainedby
the
-

estimationprocedure,requiringaboutten iterations,are
given� in Table1.

Fig. 3 Image histogram of the picture reported in Fig. 4(b) (solid
curve) and estimated probability density mixture obtained with the
ICE procedure (dotted and dashed curves).
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3.4
?

Determination of the Support and Stopping Rule

In thecaseof superviseddeconvolutiontechniqueswithout
regularization� term, suchas the Van–Cittert, the Landwe-
ber
�

, the RL, andthe superresolutionalgorithms,the itera-
tive
-

deconvolutionprocedureis generallymonitoredas it
progresses� and stoppedafter someiterations,generallyby
visualD inspection.This iterationnumbermaybevery differ-
ent( for eachSPECTimageand is generallyrelatedto the
behavior
�

of eachiterativemethodnearthe convergence.In
fact, at somepoint of the iteration procedure,the solution
fit
�

more to the noise than the image data.Therefore,for
these
-

methods,the processhasto be stoppedat the point
where: thereis a balancebetweenthe fit to the imagedata
and� theamplificationof noise.To this end,in orderto stop
automatically� thesealgorithmsbeforethe amplificationof
the
-

noise, we proposeto computethe parametersof the
distribution
@

mixture of f
Q ˆ

k
h regularly� , namelyevery k

�
itera-
+

tions
-

(k
�

depends
@

on the speedof convergenceof the con-
sidered" deconvolutionmethod� . If theparameterassociated
to
-

thebackgroundnoise � i.e.,
+ �

)
\

is abovea fixed threshold,
we: decideto stop the procedure.Of course,this threshold
hasto be fixed empirically like the iterationnumber. Nev-
ertheless,( contrary to the iteration number, this threshold
does
@

not dependof the adoptedunregularizedmethodor
the
-

speedof convergenceof eachmethodas well as the
used= SPECTimages.Besides,it doesnot requirea visual
inspection,
+

for eachiteration of the deconvolutionproce-
dure,
@

that can be cumbersomeand unreliablefor an auto-
matic deconvolutionof a setof SPECTimages.

For thesuperviseddeconvolutionmethodsusinga regu-
larization
$

term 	 e.g.,( the Tichonov–Miller ’s algorithm
 , o& r
prior� information � e.g.,( the Molina’s algorithm� ,& the termi-
nation criteria consistssimply in stopping the algorithm
when: thesolutionis stable.Neverthelessthesemethodsre-
quire
 a regularizationparameterwhich must be chosen

carefully for reliablerestoration.This parametercanbealso
derived
@

efficiently from the proposednoisemodel estima-
tion
-

procedure.
In
8

the caseof blind deconvolutiontechniques,in which
the
-

rectangularsupport of the object to be restored is
neededand unknown,we can also efficiently exploit the
parameters� of the distributionmixture of the input imagegJ
by
�

adoptingthefollowing strategy;we assumethat therow�
i � S
Ð

contains the object � to
-

be restoredif we canfind
two
-

consecutivesites ��� i for which

P
� �

gJ i j /
� �

CSF
� �����

P
� �

gJ i j /
� �

white: matter��� ,&
where: the subscriptsi

8
,& j refer� to the pixel locatedat the i

8
th
-

row� and the j
 
th
-

columnandgJ to
-

the luminance.We adopt
an� identical reasoningfor the column and the object sup-
port� is then accuratelydeterminedby the set of pixels gJ i j

which: belongto a row ! i and� a column " j
# containing the

object. $ . Figure 4 displaysexamplesof rectangularsup-
port� determinationfor somecross-sectionalbrain SPECT
images.
+

A moreaccuratesupportcould be given by an un-
supervised" Markovian segmentationbasedon parameters
given� by the ICE procedure.Finally, let us recall also that
for theseblind deconvolutiontechniques,thereis no need
to
-

implementa stoppingrule and convergenceis reached
when: the estimatedPSFandimagearestable.

4 Experimental Results

The
�

effectivenessof eachdeconvolutionmethodwastested
on. severalcross-sectionalphantoms,syntheticandreal hu-

T
%

able 1 Estimated parameters for the picture reported in Fig. 4(b).& stands for the proportion of the three classes within the SPECT
image. ' are the exponential law parameter. ( and ) 2

*
are the

Gaussian law parameters.

ICE procedure

+
(
,
e1)
-final

.
0.52(

, /
)
- 11(
, 0

)
-1

(
,
e2)
-final 0.26(

, 2
)
- 100(

, 3
)
- 648(

, 4 2)
-5

(
,
e3)
-final

.
0.22(

, 6
)
- 172(

, 7
)
- 383(

, 8 2)
-

Fig. 4 Examples of support determination for some cross-sectional brain SPECT slices.

Fig. 5 Original PSF defined as a two-dimensional Gaussian distri-
bution with variance 9 2 : 1.5 in a 7 ; 7 support.
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manbrain SPECTimagesof 64 = 64
>

pixels sizewith 256
gray? levels.Thosepresentedin this sectionareonly a few
examples.@

Except for the Tichonov–Miller ’s algorithm, the initial
estimated@ imageof theseiterative schemesis the original
input image A i.e., f

B ˆ
0
C (D xE ,F yG )

H I
gJ (
D
xE ,F yG )

H
] . Besides,exceptfor the

NAS
K

–RIF blind deconvolutiontechnique,the original PSF
estimate,@ aL priori fixed

M
for the superviseddeconvolution

methods,N is approximatedfor the real SPECTimagesby a
two-dimensional
O

Gaussian distribution P i.e., h
Qˆ

0
C (D xE ,F yG )

H
RTS

xâ ,yä (D U 2
V
)
H
] with varianceW 2

V X
1.5 Y i.e., about3 pixels of

widthZ at half maximumasshownin Fig. 5[ . This variance
value\ hasbeenchosenempirically, for eachset of decon-
volution\ experimentspresentedin this section,in order to
obtain] the best supervisedrestorationresults.The initial
inversefinite impulseresponsêFIR_ filter requiredby the
NAS
K

–RIF algorithm is simply the Kronecker delta
function15 and` we haveusedacb 0

d
becausethebackground

of] the SPECTimagesis not completelyblack. Finally, pa-
rameterse and` f ,F usedin theYou andKaveh’s algorithm,

are` givenby theestimationmethodproposedby theauthors
in Ref. 8. In order to objectivelycomparethe spatialreso-
lution
g

improvementsandthecontrastenhancementbetween
the
O

original andestimatedimagesaswell asthe resolution
improvementof thesedifferent restorationapproaches,we
havestretchedthehistogramof theestimatedimageat con-
ver\ gence h i.e.,

i
f
B ˆ

final(
D
xE ,F yG )

H
] in order to get the samemean

value\ asthe original input imagegJ (
D
xE ,F yG ).

H
For
j

the unregularizedsuperviseddeconvolutionmeth-
ods,] the terminationcriteria is given by the stoppingstrat-
egy@ presentedin Sec.3.4 k seel Table 2m . For the blind de-
convolutionn methodsrequiring the exact support of the
object] to berestored,deconvolutionresultsarebasedon the
support-findingl algorithmpresentedin this samesection.

Thecomputationalcostfor a SPECTimageandfor each
supervisedl or blind deconvolutionprocedureis indicatedin
T
o
able3.

Table 2 Iteration number for each supervised deconvolution
method as chosen by the proposed stopping rule. Respectively, the
Van Cittert (VC), the Landweber (LW), the Richardson–Lucy (RL),
the
p

super resolution (SR), and the Molina’s (MO) algorithms.

Iteration number

VC LW RL TM SR MO

10 4 200 50 100 10

Table 3 Computational cost for each deconvolution method. Re-
spectively, the Van Cittert (VC), the Landweber (LW), the
Richardson–Lucy (RL), the super resolution (SR), the Molina (MO),
the
p

IBD, the Biggs–Lucy (BL), the NAS–RIF and finally, the You–
Kaveh’s (YK) algorithm. Results are obtained on a standard Sun-
Sparc 2 workstation and are expressed in seconds.

Computational cost

Supervised methods Blind methods

VC LW RL TM SR MO IBD BL NAS–RIF YK

3 1 18 8 18 2 30 120 129 345

Fig. 6 Examples of brain SPECT image deconvolutions. (a) Original image. (b)–(g) Supervised de-
convolution methods, respectively; (b) Van Cittert, (c) Landweber, (d) RL, (e) Tichonov–Miller, (f) super
resolution, (g) Molina’s algorithm. (h)–(k) Blind deconvolution methods, respectively; (h) IBD, (i)
Biggs–Lucy, (j) You–Kaveh, (k) NAS–RIF algorithm.
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Figures6 presentsexamplesof brain SPECTimagede-
convolutionsn obtainedby thesedifferentmethods.Figure7
displays
q

the PSFestimatedby theYou–Kaveh’s algorithm.
Amongstthesuperviseddeconvolutionschemes,theVan

Cittert’
r

s methodseemsto improveslightly theresolutionof
the
O

original SPECT image. The Landweber’s algorithm
seemsl to give quitegoodresultsrelatively to its implemen-
tation
O

simplicity andits low computationalcomplexity. The
Tichonov–Miller and the Molina’s algorithms,which im-
poses aL priori smoothnessl of the true imagein an effort to
controln noise,seemto fail to detectall detailsand singu-
laritiesof the trueundistortedimage.In fact, theusedprior
modelseemsto bemuchtoo simpleto modelaccuratelyall
the
O

propertyof the true unblurredimage.The RL and the
superl resolutionalgorithmsgivesimilar resultsandallow to
improve
i

slightly the spatialresolutionof theseSPECTim-
ages.`

Amongsttheblind deconvolutiontechniques,the IBD is
unablet to converge for 200 iterationsandmore.The algo-
rithm fails to producea reliableestimateof the true image
for
u

all thepresentedSPECTimages.Deconvolutionexperi-
mentsN with theexactrectangularsupportof theobjectto be
restored,various initial conditionsand different noisepa-
rameterv values w produceds poor results as well. The
Biggs
x

–Lucy andtheYou–Kaveh’s algorithmsseemto give
quitey goodcontrastenhancementresultsbut alsoshowun-
desirable
q

artifactsall around z and` maybeinside{ the
O

object
to
O

be restored.In addition, thesetechniquesremainsensi-
tive
O

to theinitial PSFgivento thedeconvolutionprocedure.

A randominitial guessfor the PSFor an initial Kronecker
delta
q

function lead to poor results.Let us note that these
methodsN arenot ensuredto converge to the global minima|
and` remain highly sensitiveto the initial conditions.Fi-
nally, theNAS–RIF techniqueseemsto convergeto a good
estimate@ of the solution without aL priori information

i
or

good? initial guessaboutthe PSF. Figure8 givesexamples
of] five cross-sectionalSPECTimagedeconvolutionsof hu-
manbrain given by the NAS–RIF algorithm.

The
o

effectivenessof thesedeconvolutiontechniquesis
also` testedon a realSPECTphantom} i.e.,

i
a physicalplexi-

glas? headphantomfilled with radioactivematerialandmea-
suredl by a SPECTsystem~ for which the groundtruth of
this
O

segmentedphantom is exactly known and thus for
whichZ the performanceof eachdeconvolutionmethodcan
then
O

beobjectivelyjudged.Figure9 presentsanexampleof
deconvolution
q

results,on this SPECTphantom,obtainedby
the
O

different aforementioneddeconvolutionmethods.We
cann easilynoticethat this SPECTvolumeis lessnoisy and
lessblurred than the real humanbrain SPECTslice previ-
ously] presentedandprocessed� due

q
to severalfactorssuch

as` a differentdoseof radioactiveisotopescontainedin each
uniformt region of this SPECTphantom,a longer acquisi-
tion
O

time, the stillnessof this simulatedbrain during the
SPECT
�

process,a reducedattenuation,etc.� . In order to
fully
u

assessthe successof this restorationprocedure,we
uset the specific evaluation criteria proposedin Ref. 4,
based
�

on the estimationof the threefollowing measures:

i.
i

First, the averagecontrastof the image,defined
by
�

C � (1
D �

m| 2 /
�
m| 3
� )H , where m| 2 and` m| 3

� are` the
meanof the pixel value in the white matterand
gray? matterarea,respectively.

ii. � ii � Second,
�

the image mottle M 2 in the white
matterN region,characterizedby taking the ratio of
the
O

standarddeviation � 2 of] pixel valuesin this
area` to the meanm| 2

V .

iii. � iii � Third, theimagemottleM 3
� in thegraymatter

area.`
Thesetwo last parametersallow to measurethe ampli-

fication of the noiseand/ormeasurethe presenceof unde-
sirablel artifacts that can be createdby the deconvolution
procedures in a uniform regionof the real SPECTphantom�
thus
O

with ideally uniform radioactiveactivity� . Due to the
dif
q

ferenceof proportionof pixels belongingto eachbrain

Fig. 7 Estimated PSF by the You–Kaveh’s algorithm in a 7 � 7 sup-
port.

Fig. 8 Examples of human brain cross-sectional SPECT image deconvolutions given by the NAS–RIF
algorithm. Top: five consecutive real cross-sectional SPECT slices. Bottom: deconvolution results.
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anatomical` tissue, we consider the total mottle measure
given? by M

� ���
2M
�

2 ��� 3
� M� 3

� ,F with � 2 and` �
3
� designates
q

the
proportions of pixel belongingto the white matterandgray
matterarea,respectively. A reliableSPECTimagerestora-
tion
O

techniquewill thenallow to enhancethecontrastof the
image
i

with little increasein mottle,i.e.,without amplifying
too
O

much the noiseand/orwithout creatingfalse artificial
features
u �

technically
O

, an increaseby a factor of 10%–15%
of] theoriginal mottleof theimageremainsacceptableif the
contrastn enhancementis significantly increased� .4� Due to
the
O

difference of thickness between the cross-sectional
slicesl of therealandsegmentedphantom,theseabovemen-
tioned
O

measures are estimated on the whole three-
dimensional
q �

3D
� �

phantoms after this one has been
registeredv 22

V
on] the groundtruth of the segmentedphantom

volume\ � seel Fig. 10 wheresomeconsecutiveslicesof the
segmentedl phantomareshown� . Table4 givesthe contrast
and` imagemottle for eachdeconvolutiontechniqueapplied
on] this SPECTphantom.

Amongst
 

the superviseddeconvolution schemes,the
Landweber
¡

’s algorithmallows to increasesignificantly the
contrastn of the image but at cost of an unacceptablein-

creasen of the mottle of the image ( ¢ 33.0%
�

of mottle£ .
Deconvolution
¤

results,obtainedon this SPECTphantom,
by
�

the Van Cittert, the RL, the Tichonov–Miller and the
superl resolutionalgorithmarenearlysimilar; theyallow to
obtain] a goodcontrastenhancementbut alsopresentsome
artifacts,` visible all aroundthe object to be restored.Moli-
na’s algorithm gives the best resultsfor this SPECTvol-
ume;t i.e., a good contrastenhancementwith only a little
increase
i

of the mottle. Experimentshave shown that this
methodN is well suitedfor cross-sectionalSPECTimagesnot
too
O

blurred.
Amongst the blind deconvolutiontechniques,the IBD

algorithm` fails to producea reliable estimateof the true
image.
i

TheYou–Kaveh’s algorithmallows oneto increase
the
O

contrastof the image but this techniquealso creates
undesirablet artifacts and/or an unacceptableamplification
of] the noise ( ¥ 30.2%

�
of mottle¦ . Deconvolution result

given? by the Biggs–Lucy’s algorithmis very poor. Finally,
the
O

NAS–RIF blind deconvolutiontechniqueproducecon-
trast
O

enhancementresultasgoodasthebestsupervisedde-
convolutionn technique§ i.e.,

i
the Molina’s algorithm̈ along`

withZ the slightestincreaseof the mottle amongstthe con-

Fig. 9 Examples of phantom SPECT image deconvolutions. (a) Original image. (b)–(g) Supervised
deconvolution methods, respectively; (b) Van Cittert, (c) Landweber, (d) RL, (e) Tichonov–Miller, (f)
super resolution, (g) Molina’s algorithm. (h)–(k) Blind deconvolution methods, respectively; (h) IBD, (i)
Biggs–Lucy, (j) You–Kaveh, (k) NAS–RIF algorithm.

Fig. 10 Examples of some consecutive cross-sectional slices of the segmented phantom (ground
truth).
p
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sideredl supervisedandblind deconvolutiontechniques.Ex-
perimentss haveshownthat this methodis well suited for
both
�

very blurredSPECTslicesandalsoin thecaseof less
blurred
�

SPECTimages.
W
©

e havealsotestedthe effectivenessof thesedeconvo-
lution
g

techniqueson a cross-sectionalslice of a synthetic
SPECT
�

volume. In order to simulate at best the typical
characteristicsn of realhumanbrainSPECTimages,we have
recreatedthreehomogeneousregionsandaddedthe corre-
spondingl noisefor eachones,accordingto the gray level
statisticall distribution alreadyestimatedon a real human

brain
�

SPECTslice ª seel the distribution mixture presented
in
i

Fig. 3 and parametersgiven in Table 1« . We havealso
added` a 3D Gaussianblur in orderto simulatethe3D scat-
tering
O

of the emittedphotons.Figure11 showsthe ground
truth
O

of a segmentedsyntheticslice, the syntheticSPECT
slice,l andfinally the deconvolutionresultsobtainedby our
dif
q

ferentrestorationmethods.
Amongstthesuperviseddeconvolutionschemes,theVan

Cittert
r

and the Landweber’s algorithmgive quite good re-
sultsl althoughat costof a slight amplificationof the noise
in
i

eachuniform region of the syntheticSPECTslice. The

Table 4 Contrast and image mottle enhancement from the original input image and for each decon-
volution method (enhancement expressed in percentage). Respectively; the Van Cittert (VC), the
Landweber (LW), the Richardson–Lucy (RL), the super resolution (SR), the Molina (MO), the IBD, the
Biggs–Lucy (BL), the NAS–RIF and finally, the You–Kaveh’s (YK) algorithm.

Supervised Blind

VC LW RL TM SR MO IBD BL NAS–RIF YK

¬
C 34.5% 62.0% 35.1% 28.7% 35.1% 28.0% ­ 6.1% 12.2% 24.7% 29.0%®
M 15.3% 33.0% 14.9% 13.5% 14.9% 12.6% 3.8% 13.8% 11.5% 30.2%

Fig. 11 Examples of synthetic SPECT image deconvolutions. (a) Top: ground truth of the segmented
synthetic slice. Bottom: synthetic SPECT slice. (b)–(g) Supervised deconvolution methods, respec-
tively;
p

(b) Van Cittert, (c) Landweber, (d) RL, (e) Tichonov–Miller, (f) super resolution, (g) Molina’s
algorithm. (h)–(k) Blind deconvolution methods, respectively; (h) IBD, (i) Biggs–Lucy, (j) You–Kaveh,
(k) NAS–RIF algorithm.

Comparison of deconvolution techniques . . .

Journal
¯

of Electronic Imaging / January 2002 / Vol. 11(1) / 11

  PROOF COPY 013201JEI  



  PROOF COPY 013201JEI  

  PRO
O

F CO
PY 013201JEI  

RL, the Tichonov–Miller and the super resolution algo-
rithm showclearlysomeartifactsall aroundtheobjectto be
restored.v Deconvolutionresultgiven by the Molina’s algo-
rithmv is very poor for this synthetic image; experiments
haveshownthat this methodis not well suitedfor highly
blurred
�

image.
Amongst
 

the blind deconvolutiontechniques,the IBD
does
q

not converge.TheYou–Kavehandthe Biggs–Lucy’s
algorithm` showclearly falseandundesirableartificial fea-
tures
O

createdby the iterative blind deconvolutionproce-
dure.
q

Onceagain,theNAS–RIF techniqueproducesa rela-
tively
O

goodrestorationresult.
Finally
j

, in orderto attesttheeffectivenessof our param-
eter@ estimationprocedure,we havealso comparedthe de-
convolutionn results, on SPECT images,obtainedby ex-
ploitings or not the optimal parametersgiven by our
distribution
q

mixture estimationmethod.
Figure12 showsthe resultsof the NAS–RIF algorithm,

on] a cross-sectionalsliceof a phantomSPECTvolume,for
respectivelyv , the rectangularsupportestimatedby our pro-
ceduren ° a` rectangleof 35 ± 43 pixels sizein this case,see
Fig.
j

4² b� ³µ´ ,F an overestimatedsupportsize (37 ¶ 45
·

pixels
sizel ¸ ,F andfinally an underestimatedsupportsize(33 ¹ 41

·
pixelss sizeº . Theseexperimentsclearlyshowthat the resto-
ration, even for an overestimationor underestimationof
10%, produceslessgood deconvolutionresultscompared
to
O

the one obtainedby exploiting the rectangularsupport
estimated@ by our estimationprocedure.In the caseof an
overestimated] » and` incorrect¼ supportl size,theblind decon-
volution\ techniquedoesnot improve sufficiently the reso-
lution
g

of the SPECTimage ½ cf.n Fig. 12¾ cn ¿µÀ . Moreover, in
the
O

caseof an underestimatedsupportsize,someexternal
regionsof the brain aremissing Á cf.n Fig. 12Â dq ÃÅÄ . The other
blind
�

deconvolutionalgorithms producepoor deconvolu-
tion
O

resultsfor underestimationor overestimationof sup-

ports sizeaswell. This leadsus to think thata goodestima-
tion
O

of the supportsize is given by our algorithmandthis
accurate` estimationis essentialin orderto rightly constrain
the
O

ill-posednatureof the blind deconvolutionalgorithms.
As for unregularizedsuperviseddeconvolutionmethods,

Fig.
j

13 showsthe resultsof N
Æ Ç

4
·

iterationsof the Land-
weberZ ’s algorithm È as` chosenby theproposedstoppingrule
and` by setting ÉËÊÍÌ 0

C whereZ Î
0
C is theparameterassociated

to
O

the backgroundnoisefor the original input imageÏ and`
the
O

deconvolutionresult given by N
Æ Ð

2 and N
Æ Ñ

6
>

itera-
tions
O

of this iterativealgorithm.For N
Æ Ò

2,
Ó

the deconvolu-
tion
O

result is poor Ô the
O

brain remainsblurredÕ and` for N
Æ

Ö 6
>

the amplificationof noisebeginsto be too important.
Therefore,
o

N
Æ ×

4
· Ø

chosenn by our algorithmÙ seemsl to be a
good? compromisesolution. In fact, the contrastenhance-
mentN increaseswith thenumberof iterationuntil N

Æ Ú
4
·

and
keeps nearly constant after N

Æ Û
4 Ü at` around Ý CÞTß 60%

>
). For N

Æ à
6
>

and over, the mottle of the image
begins
�

to significantly increaseto unacceptablelevels.

5
á

Conclusion

In this paperwe haveshownthat a deconvolutionproce-
dure
q

noticeablyimprovesthe spatial resolutionof human
brain
�

SPECTimagesand can be a greathelp to facilitate
their
O

interpretationby the nuclearphysician.The proposed
distribution
q

mixtureestimationprocedureallowsefficiently
to
O

give a reliable terminationcriteria for the unregularized
iterative
i

deconvolutiontechniquesor to accuratelydeter-
mineN the rectangularsupportof the object to be restored
whenZ this oneis neededby someblind deconvolutiontech-
niques.This estimationprocedureis quite generalandcan
be
�

usedfor otherapplicationssuchasanunsupervisedMar-
kovian
â

segmentationof brain SPECTimagesinto different
anatomical` tissues, to create realistic synthetic brain

Fig. 12 (a) Cross-sectional slice of a phantom SPECT volume, (b) deconvolution with the optimal
parameters given by our distribution mixture estimation method [a rectangle of 35 ã 43 pixels size in
this
p

case, see Fig. 4(b)], (c) overestimated support size (37 ä 45 pixels size), (d) underestimated
support size (33 å 41 pixels size).

Fig. 13 (a) Cross-sectional slice of a phantom SPECT volume. (b) N æ 4 iterations of the Landweber’s
algorithm (as chosen by the proposed stopping rule). (c) N ç 2 iterations of the Landweber’s algorithm.
(d) N è 6 iterations of the Landweber’s algorithm.
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SPECT
�

imagesor to give relevantinformation in order to
classifyn thesebrain imagesinto differentpathologyclasses.
Amongst
 

existingdeconvolutiontechniques,theNAS–RIF
algorithm` performs better than other deconvolution
schemesl for SPECTimagerestoration.This techniquecan
be
�

efficiently combinedwith our estimationprocedureto
find
M

the supportof the object to be restoredandyield very
promisings resultswithout aL priori assumption` on thenature
of] the blurring function or for all type of SPECTimagesé
more or less blurredê . Finally, let us note also that this

methodN can efficiently be extendedin order to take into
account` theinter-sliceblur inherentto this 3D imagingpro-
cess.n This can be doneby consideringa 3D variableFIR
filter with a blurredSPECTvolumepixels as input.23
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