
Journal of Electronic Imaging 15(3), 033005 (Jul–Sep 2006)
Markovian segmentation and parameter estimation
on graphics hardware

Pierre-Marc Jodoin
Max Mignotte

Université de Montréal
Département d’informatique et de recherche opérationnelle

C.P. 6128, succ. Centre-Ville
Montréal, Québec
Canada H3C 3J7
E-mail: jodoinp@iro.umontreal.ca
Abstract. In this paper, we show how Markovian strategies used to
solve well-known segmentation problems such as motion estima-
tion, motion detection, motion segmentation, stereovision, and color
segmentation can be significantly accelerated when implemented
on programmable graphics hardware. More precisely, we expose
how the parallel abilities of a standard graphics processing unit usu-
ally devoted to image synthesis can be used to infer the labels of a
segmentation map. The problems we address are stated in the
sense of the maximum a posteriori with an energy-based or proba-
bilistic formulation, depending on the application. In every case, the
label field is inferred with an optimization algorithm such as iterated
conditional mode (ICM) or simulated annealing. In the case of
probabilistic segmentation, mixture parameters are estimated with
the K-means and the iterative conditional estimation (ICE) proce-
dure. For both the optimization and the parameter estimation algo-
rithms, the graphics processor unit’s (GPU’s) fragment processor is
used to update in parallel every labels of the segmentation map,
while rendering passes and graphics textures are used to simulate
optimization iterations. The hardware results obtained with a mid-
end graphics card, show that these Markovian applications can be
accelerated by a factor of 4 to 200 without requiring any advanced
skills in hardware programming. © 2006 SPIE and
IS&T. �DOI: 10.1117/1.2238881�

1 Introduction
Image segmentation is generally understood as a mean of
dividing an image into a set of uniform regions. Here, the
concept of uniformity makes reference to image features
such as color, depth, or motion. Among the existing seg-
mentation methods proposed in the literature, segmentation
models can roughly be divided between feature-space-
based and image-space-based families.1 As the name sug-
gests, feature-space algorithms segment images on the basis
of a feature criteria, whereas space-based algorithms seg-
ment images on the basis of a feature-space criteria. Be-
cause image-space-based techniques incorporate informa-
tions from the image to be segmented and the segmentation
map �typically likelihood and prior informations�, the re-
sults they produce are often more precise, although at the
cost of a heavier computational load.
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Among the image-space-based techniques are the Mar-
kovian algorithms,2,3 which incorporate spatial characteris-
tics by using Markov random fields �MRFs� as a priori
models. The first contribution in that field came from Ge-
man et al.2 who proposed the concept of maximum a pos-
teriori �MAP� as an image-space probabilistic criterion.
Shortly afterward, many Markovian models were adapted
to solve all kinds of segmentation problems going from
motion estimation to stereovision.4 While some authors
proposed ad hoc energy-based solutions, others used proba-
bilistic functions to model the way the desired �hidden�
label field is distributed. The shape of these probabilistic
functions depends on parameters that are either supposed to
be known �or manually adjusted� or estimated in a first step
of processing. In the latter case, estimation algorithms such
as K-means or the iterative conditional estimation �ICE�5,6

have demonstrated their efficiency.
Although Markovian approaches have several appealing

advantages, they are relatively slow algorithms and thus
inappropriate to applications for which time is an important
factor. This paper explains how Markovian segmentation
algorithms used to solve segmentation problems such as
motion detection,7 motion estimation,8 stereovision,9 color
segmentation,1 and motion segmentation can be signifi-
cantly accelerated when implemented on programmable
graphics hardware. This is made possible by the use of the
so-called graphics processor unit �GPU� embedded on most
graphics hardware nowadays available on the market. This
unit can load and execute in parallel general purpose pro-
grams independently of the CPU and the central memory.
As the name suggests, the GPU architecture was optimized
to solve typical graphics problems with the goal of render-
ing complex scenes in real time. Because of the very nature
of conventional graphics scenes, graphics hardware have
been designed to efficiently manipulate texture, vertices,
and pixels. What makes these graphics processors so effi-
cient is their fundamental ability to process vertices and
fragments �see pixels� in parallel, involving interesting ac-
celeration factors.

In spite of appearances, it is possible to take advantage
of the parallel abilities of programmable graphics hardware
to solve problems that goes beyond graphics. This is what

people call general-purpose computation on GPUs
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�GPGPUs�.10 Some authors have shown that applications
such as fast Fourier transforms,11 linear algebra,12 motion
estimation, and spatial segmentation with level sets could
run on graphics hardware.10,13 Even if these applications
have little in common with traditional computer graphics,
they all share a common denominator: they are problems
that can be solved by parallel algorithms.

Parallel implementations of Markovian algorithms ap-
plied to motion detection14 and picture restoration15 have
been proposed in the past. Unfortunately, these methods
were build on dedicated, expensive, and sometimes obso-
lete architectures. This paper shows how reasonably priced
and widely distributed graphics hardware can be used to
significantly accelerate Markovian segmentation. Even if
GPUs are cutting edge technologies made for graphics ren-
dering, this contribution shows that implementing a MAP
segmentation algorithm on a fragment processor is not
much more difficult than writing it in a C-like procedural
language.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the proposed Markovian segmentation
theory before Sec. 3 presents three energy-based segmenta-
tion problems. Section 4 follows with the probabilistic �and
unsupervised� problem of motion and color segmentation
before Secs. 5 and 6 present the iterated conditional mode
�ICM� and simulated annealing �SA� optimization algo-
rithms and the parameter estimation algorithms K-means
and ICE. Section 6 gives an in-depth look to the graphics
hardware architecture and exposes how the algorithms pre-
sented so far can be implemented on a graphics hardware.
Finally, Sec. 8 shows experimental results and Sec. 9 con-
cludes the paper.

2 Markovian Segmentation
The applications this contribution tackles aim at subdivid-
ing observed input images into uniform regions by group-
ing pixels having features in common such as color, mo-
tion, or depth. Starting with some observed data Y �which
is typically one or more input images�, the goal of a seg-
mentation program is to infer a label field X containing
class labels �i.e., labels indicating whether a pixel belongs
or not to a moving area or a certain depth for instance�.
Here X and Y are generally defined over a rectangular lat-
tice of size N�M represented by S= �s �0�s�N�M�,
where s is a site located at the Cartesian position �i , j� �for
simplicity, s is sometimes defined as a pixel�. It is common
to represent by a lower-case variable such as x or y, a
realization of the label field or the observation field. For
each site s�S, its corresponding element xs in the label
field takes a value in �= �e1 ,e2 , . . . ,eN�, where N is the total
number of classes. In the case of motion detection
for example, N can be set to 2 and �
= �StaticClass,Mobileclass�. Similarly, the observed value
ys takes a value in �= ��1 ,�2 , . . . ,���, where � can be set,
for instance, to 28 for gray-scale images and 224 for color
images.

In short, a typical segmentation model is made of two
fields x and y, i.e., an observation field �y� that is to be
decomposed into N classes by inferring a label field �x�.

In the context of this paper, the goal is to find an optimal
ˆ
labeling x that maximizes the a posteriori probability P�X
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=x �Y =y� �represented by P�x �y� for simplicity�, also called
the MAP estimate:2 x̂MAP=arg maxxP�x �y�. With Bayes
theorem, this equation can be rewritten as

x̂MAP = arg max
x

P�y�x�P�x�
P�y�

, �1�

or equivalently x̂MAP=arg maxxP�y �x�P�x�, since P�y� is
not related to x. Assuming that X and Y are MRF, and
according to the Hammersley-Clifford theorem,2 the a pos-
teriori probability P�x �y�—as well as the likelihood P�y �x�
and the prior P�x�—follows a Gibbs distribution, namely,

P�x�y� =
1

�x�y
exp �− U�x,y�� , �2�

where �x�y is a normalizing constant, and U�x ,y� is an en-
ergy function. Combining Eqs. �1� and �2�, the optimization
problem at hand can be formulated as an energy minimiza-
tion problem, i.e.,

x̂MAP = arg min
x

�W�x,y� + V�x�� , �3�

where W�x ,y� and V�x� are, respectively, the likelihood and
prior energy functions. If we assume that the noise in y is
not correlated, the global energy function U�x ,y� can be
represented by a sum of local energy functions

x̂MAP = arg min
x

�
s�S

�Ws�xs,ys� + V	s
�xs�� . �4�

Here, 	s is the neighborhood around site s, and V	s
�xs�

=�c�	s
Vc�xs� is a sum of potential functions defined on

so-called cliques c. Notice that function Vc�xs� defines the
relationship between two neighbors in c, a binary clique
linking a site s to a neighbor r.

An ad hoc definition of Ws�xs ,ys� and V	s
�xs� leads to a

so-called energy-based segmentation. By opposition, when
Ws�xs ,ys� and V	s

�xs� are defined by a probabilistic law
linking xs to ys, the segmentation is called probabilistic. In
both cases, though, x̂MAP is estimated with an optimization
procedure such as SA or ICM, which are typically slow
algorithms. Details of these algorithms are discussed in
Sec. 5.

3 Energy-Based Segmentation
This section shows how typical computer vision problems
can be expressed as the minimum of a global energy func-
tion made of a likelihood and a prior term.

3.1 Motion Detection
The goal of motion detection is to segment a video se-
quence into mobile and static regions. For this kind of ap-
plication, moving pixels are typically the ones with a non-
zero displacement, no matter what direction or speed they
might have. Motion detection is thus a particular case of the
more general motion segmentation problem. The solution
presented in this section was inspired by the work of
Bouthemy and Lalande,7 which proposed one of the first

energy-based Markovian solution to that problem.
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Note that their paper influenced many subsequent con-
tributions including the one by Dumontier et al.,14 who
proposed a parallel hardware architecture to detect motion
in real time. Unfortunately, the hardware they used was
specifically designed and is not, to our knowledge, avail-
able on the market. In addition, the design of their hardware
architecture is different from standard graphics hardware.

The solution proposed here is based on the concept of
temporal gradient and does not require the estimation of an
optical flow. From two successive frames f�t� and f�t+1�,
the observation field y is defined as the temporal derivative
of the intensity function df /dt, namely, y= 	f�t+1�− f�t�	.
Assuming that scene illumination variation is small, the
likelihood energy function linking the observation field to
the label field is defined by

W�xs,ys� =
1


2 �ys − mpxs�2, �5�

where mp is a constant, and 
 is the variance of the Gauss-
ian noise. Because of the very nature of the problem, N
=2 and xs� �0,1�, where 0 and 1 correspond to static and
moving labels. As for the prior energy term, as in Refs. 7
and 14, the following Potts model was implemented

Vc�xs� = 
1 if xs � xr

0 otherwise.
�6�

The overall energy function to be minimized is thus defined
by

�7�

where 	s is a second-order neighborhood �eight neighbors�,

Fig. 1 Total number of possible displacement vector for a site
s�S is �2dmax+1�2.
Fig. 3 Difference between a label field x estimated w
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and �MD is a constant. Note that this solution makes the
implicit assumption that the camera is still and that moving
objects were shot in front of a static background. To help
smooth out interframe changes, one can add a temporal
prior energy term V��xs� linking label xs estimated at time t
and the one estimated at time t−1.

3.2 Motion Estimation
The goal of motion estimation is to estimate the direction
and magnitude of the optical flow observed over each site
s�S of an animated sequence.16–18 Among the solutions
proposed in the literature, many are based on an hypothesis
called lightness consistency. This hypothesis stipulates that
a site s�S at time t keeps its intensity after it moved to site
s+vs at time t+1. Although this hypothesis excludes noise,
scene illumination variation, and occlusions �and thus is an
extreme simplification of the true physical nature of the
scene� it enables simple energy functions to generate fairly
accurate results. Under the terms of this hypothesis, the
goal of motion estimation is to find, for each site s�S, an
optical displacement vector vs for which fs�t�� fs+vs�t
+1�. In other words, the goal is to find a vector field v̂ for
which

v̂s = arg min
vs

	fs�t� − fs+vs
�t + 1�	, " s � S . �8�

Notice that the absolute difference could be replaced by a
cross-correlation distance for more robustness. Such strat-
egy is sometimes called in the literature “region-based
matching.”18 When estimating motion, the observation field
y is the input image sequence f and y�t� is a frame at time
t. Furthermore, the label field x is a vector field made of
2-D vectors defined as xs=vs= ��i ,� j�, where �i and � j are
integers taken between −dmax and dmax, as shown in Fig. 1.

However, Eq. �8� has one major limitation which comes
from the fact that real-world sequences contain textureless

Fig. 2 Motion detection, motion estimation, and stereovision label
fields obtained after a Markovian optimization.
ith ICM �7 iterations� and SA �247 iterations�.
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areas and/or areas with occlusions. Typically, over these
areas several vectors xs can have a minimum energy, al-
though only one is valid. This is the well-known aperture
problem.19 To guarantee the uniqueness of a consistent so-
lution, some approaches have been proposed.16 Among
these approaches, many opt for a regularization term �or
smoothness constraints� whose essential role is to rightly
constrain the ill-posed nature of this inverse problem.
These constraints typically encourage neighboring vectors
to point in the same direction with the same magnitude. In
the context of the MAP, these constraints can be expressed
as a prior energy function such as the Potts model of Eq.
�6�. However, since the number of labels can be large �here
�2dmax+1�2�, we empirically observed that a smoother
function is better suited. In fact, the following linear func-
tion was implemented

V	s
�xs� = �

c�	s

��xs�0� − xr�0�� + �xs�1� − xr�1��� , �9�

where c is a binary clique linking site s to site r. Notice that
other smoothing functions are available.19 The global en-
ergy function U�x ,y� to be minimized is obtained by com-
bining Eqs. �8� and �9� as follows:

�10�

where �ME is a constant. Note that Konrad and Dubois8

proposed a similar solution involving a line process to help

Table 1 SA and ICM algorithms.

1 T←Tmax

2 For each site s�S

2a P�xs=ek �ys�= 1
� exp�−1

T U�ek ,ys��, "ek��

2b xs← according to P�xs �ys�, randomly select ek��

3 T←T � cooling rate

5 Repeat lines 2 and 3 until T�Tmin

1 Initialize x

2 For each site s�S

3 xs=arg minek��U�ek ,ys�

4 Repeat lines 2 and 3 until x stabilizes
preserve edges.
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3.3 Stereovision
The goal of stereovision is to estimate the relative depth of
3-D objects from two �or more� images of a scene. For
simplicity purposes, many stereovision methods use two
images taken by cameras aligned on a linear path with par-
allel optical axis �this setup is explained in detail in
Scharstein and Szelisky’s review paper�.9 Stereovision al-
gorithms often make some assumptions on the true nature
of the scene. One common assumption �which is similar to
motion estimation the lightness consistency assumption�
states that every point visible in one image is also visible
�with the same color� in the second image. Based on that
assumption, the goal of a stereovision algorithm is to esti-
mate the distance between each site s—with coordinate
�i , j�—in one image to its corresponding site t—with coor-
dinate �i+ds , j�—in the second image. Such distance is
called disparity and is proportional to the inverse depth of
the object projected on site s. In this contribution, ds
� �0,DMAX�. This gives rise to a matching cost function
that measures how good a disparity ds is for a given refer-
ence image yref. This is expressed mathematically by

C�s,d,y� = 	yref�i, j� − ymat�i + ds, j�	 , �11�

where y= �ymat ,yref�, and ymat is the second image familiarly
called the matching image. Notice that the function 	 . 	 can
be replaced by a robust function9 if necessary. In the con-
text of the MAP, C�.� stands for the likelihood energy func-

Table 2 K-means algorithm.

1 
k← random initialization "
k��


2 For each site s�S

2a xs←arg minek�� 	ys−
ek
	2

3 
k←
1

Nk
�xs=ek

ys "
k��


4 Repeat lines 2 and 3 until each mean 
k no longer
moves

5 �k
nm→ 1

Nk
�xs=ek

�ys
n−
k

n��ys
m−
k

m�, "�k���

Table 3 ICE algorithm.

1 �←K-means

2 For each site s�S

2a P�ek �ys�= 1
Zs

exp�W�ek ,ys�+V	s
�, "ek��

2b xs← according to P�xs �ys�, randomly select ek��

3a 
k←
1

Nk
�xs=ek

ys "
k��


3b �k
nm← 1

Nk
�xs=ek

�ys
n−
k

n��ys
m−
k

m�, "�k���

5 Repeat lines 2 and 3 until � stabilizes
Jul–Sep 2006/Vol. 15(3)4
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tion, and the disparity map d is the label field to be esti-
mated. Thus, to ensure uniformity with the notation of Sec.
2, the cost function of Eq. �11� can be referred to as
C�s ,x ,y�.

To ensure spatial smoothness, two strategies have been
traditionally proposed. The first one is to convolute
C�s ,x ,y� with a low-pass filter or a so-called aggregation
filter w �see Ref. 9 for details on aggregation�. Although a
prefiltering step slows down the segmentation process, it
can significantly reduce the effect of noise and thus en-
hance result quality. The second strategy to ensure spatial
smoothness is to take advantage of a prior energy term
V	s

�x� of the form

V	s
�x� = �

c�	s

�xs − xr� , �12�

where the absolute value could be replaced by another cost
function if necessary. The global energy function U�x ,y�
can thus be written as

�13�

where �s is a constant.
Minimizing the energy function of Eq. �13� can be time

consuming, especially when the number of disparities
DMAX is large. To save on processing time, two simple
strategies are conceivable. The first one is to minimize the
likelihood function only and ignore the prior term: x̂s
=arg minxs

�w*C��s ,x ,y�. In this way, the filter w is as-
sumed to be good enough to ensure spatial smoothness.
This simple greedy strategy is called winner take all �WTA�
and converges after only one iteration. Another way to re-
duce processing time is to precompute C�s ,x ,y� in a 3-D
table. Such a table–called the disparity space integration
�DSI� table—contains N�M�DMAX cost values. Once
the DSI table has been computed, is can be filtered by w,
after which the optimization process can be launched.

4 Probabilistic Segmentation
In this paper, both the color and the motion segmentation
are based on a probabilistic criterion, which relates the ob-
served data ys to its label xs with a distribution P�ys �xs�. For

Fig. 5 �a� Logical diagram of a typical process

processor and �b� fragment processor inputs and outp
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the color segmentation, ys takes a value between 0 and 255
for gray-scale images and between �0,0,0� and
�255,255,255� for color images. As for motion segmenta-
tion, ys is a 2-D vector represented by ys=vs= �us ,vs�,
where us and vs are real values. Notice that since ys is an
observation, the motion vector vs"s�S is assumed to have
been previously estimated.

Because ys is related to xs by a probability distribution,
the energy function Ws�xs ,ys� is designed according to that
distribution, namely, Ws�xs ,ys��−ln P�ys �xs�. A very popu-
lar function used to model P� ys �xs� is the multidimensional
Gaussian distribution

P� ys�xs� =
1

��2��d��xs
��1/2 exp �−

1

2
� ys − 
xs

��xs

−1� ys

− 
xs
�T
 , �14�

where d is the dimensionality of ys �d=1 or 3 for grayscale/
color segmentation and d=2 for motion segmentation� and
�
xs

,�xs
� are the mean and variance-covariance matrices of

class xs. Using a classical Potts function as prior model, the
global energy function of Eq. �4� can be written as

�
s�S


1

2�ln ��xs
� + � ys − 
xs

��xs

−1� ys − 
xs
�T� + �pV	s

�xs�� .

�15�

In the case of unsupervised segmentation, the Gaussian pa-
rameters �= ��
k ,�k� �1�k�N� must be estimated con-
jointly with x or preliminary to the segmentation step. To

Fig. 4 Diagram showing physical relation between the CPU, the
main memory and the graphics hardware.

eline with programmable vertex and fragment
ing pip

uts.
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do so, many parameter estimation algorithms are available
among which K-means5 and ICE �Ref. 6� are commonly
used. For further details on probabilistic Markovian seg-
mentation, consider the following books.4,20

5 Optimization Procedures
Since Eq. �4� has no analytical solution, x̂ must be esti-
mated with an optimization procedure. The first optimiza-
tion procedure we have implemented is the SA, which is a
stochastic relaxation algorithm based on a Gibbs sampler.
The concept of SA is based on the manner in which some
material recrystallizes when slowly cooled down after be-
ing heated at a high temperature. The final state �called the
frozen ground state� is reached when temperature gets
down to zero. Similarly, SA searches for the global minima
by cooling down a temperature factor21 T from an initial
temperature TMAX down to zero.

The major advantage with SA is its ability to always
reach the global minima with the appropriate decreasing
cooling temperature schedule. This is made possible be-
cause SA authorizes energy increases to escape form local
minima. To do so, SA stochastically samples the system
probability distribution and randomly generates new con-
figurations. In this paper, the system probability is made of
the global energy function �here U�x ,y�� and a temperature
factor T. This probability function is similar to Boltzmann’s
probability function,21 which can be written as

P�x,y� =
1

�
exp �−

U�x,y�
T


 , �16�

where � is a normalization factor. The SA algorithm is
presented in the upper section of Table 1.

The main limitation with SA is the number of iterations
it requires to reach the frozen ground state. This makes SA
unsuitable for many applications for which time is a deci-
sive factor. This explains the effort of certain researchers to
find faster optimization procedures. One such optimization
procedure is Besag’s ICM algorithm.3 Starting with an ini-
tial configuration x�0�, ICM iteratively minimizes U�x ,y� in
a deterministic manner by selecting, for every site s�S, the
label ek�� that minimizes the local energy function at that
point. Since ICM is not stochastic, it cannot exit from local
minima and, thus, requires x to be initialized near the glo-
bal minima. In practice, however, this limitation is rarely a
problem since ICM generates fairly good results, always at
a fraction of the time needed by SA �Fig. 3 illustrates the
difference between ICM and SA�. The ICM algorithm is

Fig. 6 Execution m
presented in the lower section of Table 1.
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6 Parameter Estimation
The two parameter estimation algorithms we have imple-
mented for this paper are K-means5 and ICE.6 K-means is
an iterative clustering method that assumes input data �ys�
is distributed within K spherical clusters of equal volume
�see Table 2�. At each iteration, every site s is assigned to
the nearest cluster after which the center of mass of every
cluster is recomputed. The resulting K-means clusters mini-
mize the sum-of-square error function: �k=1

N �xs=ek
	ys

−
k	2.3 The variance-covariance of each cluster is esti-
mated once the algorithm has converged.

The K-means algorithm has two well-known limitations.
First, its assumption that all clusters are spherical with
equal volume is simplistic an often unsuited to some obser-
vation fields. Second, because K-means is a deterministic
algorithm, it is sensitive to noise and is likely to converge
toward local minima. Consequently, some authors suggest
refining � with a more realistic model, less sensitive to
noise, and local minima such as the stochastic �and Mar-
kovian� ICE estimation algorithm. Further details on this
algorithm are presented in Ref. 6, while Table 3 presents a
version of ICE adapted to this paper.

7 Graphics Hardware Architecture
As mentioned previously, graphics hardware is highly op-
timized to solve traditional computer graphics problems.
Today, graphics hardware is generally embedded on a
graphics card, which can receive/send data from/to the
CPU and the main memory via the system bus, be it PCI,
AGP, or PCIe �see Fig. 4�. To our knowledge, most graph-
ics hardware are designed to fit the graphics processing
pipeline shown in Fig. 5.22,23 This pipeline is made of vari-
ous stages which sequentially transforms images and geo-
metric input data into an output image stored in a section of

Table 4 Algorithm of a C/C�� application compiling, linking and
loading a shader. Notice that lines 2 to 5 are done by functions
provided by the API driver.

1 Buf ← Copy the shader source code in a 1-D buffer

2 Give Buf to the driver

3 Compile the shader code

4 Link the compiled shader code

5 Send the linked code to the graphics hardware

f a typical shader.
Jul–Sep 2006/Vol. 15(3)6
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graphics memory called the framebuffer. Part of the frame-
buffer �the front buffer� is meant to be visible on the dis-
play device.

Until recently, graphics pipelines have presented a flex-
ible but static interface to application programmers. Al-
though many parameters on each processing stage could be
tweaked to adjust the processing, the fundamental graphics
operations could not be changed. To answer this limitation,
hardware manufacturers have made the vertex and frag-
ment processing stages programmable. These two stages
can now be programmed using C-like languages to process
vertex and fragments with user-defined operations. Note
that a fragment is a per-pixel data structure created at the
rasterization stage and containing data such as color, tex-
ture coordinates, depth, and so on. Each fragment is used to
update a unique location in the framebuffer. For example, a
scene made of a 5-pixel-long horizontal line will generate
five fragments, whereas a 100�100 plan perpendicular to
an orthographic camera will generate 10,000 fragments.

Because of the very nature of graphics applications, the
GPU has been designed as a streaming processor, that is, a
processor with inherent parallel processing abilities. With
such processor, the vertices and the fragments are pro-
cessed in parallel, thus providing all graphics applications a
significant acceleration factor.

7.1 Fragment Programs
With a GPU, general-purpose applications going beyond
traditional computer graphics can now be implemented on
graphics hardware10 to take advantage of its parallel abili-
ties. This is especially true for various image processing
applications. These applications are generally executed
over the fragment processor, mostly because it is the only

Table 5 High-level representation of an ICM hardware segmentation
program.

1 Copy the input images y into texture memory

2 Compile, link, and load ICM shader on the GPU

3 Specify shader parameters ��MD, �ME, or �s, for
example�

4 Render a rectangle covering a window of size
N�M

5 Copy the framebuffer into texture memory

6 Repeat line 4 and 5 until convergence

7 Copy the framebuffer into a C/C++ array if needed

1 x̂s←arg minxs
U�xs ,ys�

2 framebuffers← x̂s

The upper section �lines 1 to 7� is a C/C++ CPU program used to
load the shader, render the scene and manage textures. The sec-
ond program �lines 1 and 2� is the ICM fragment shader launched on
every fragment �pixel� when the scene is rendered �line 4�. Notice
that images x and y are contained in texture memory.
part of the graphics pipeline that has access to both input
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memory �texture memory� and output memory �the frame-
buffer�. It has also traditionally been the most powerful
stage of the GPU.

A fragment processor is designed to load and execute in
parallel a program �also called a shader� on each fragment
generated during the rasterization stage. As shown in Fig.
5�b�, such a program typically has access to three kinds of
input values.22,24 First, a fragment shader has a read-only
access to the texture memory. In this contribution, the tex-
ture memory contains the observation field y and the label
field x�t−1�, estimated during the previous optimization itera-
tion. Second, fragment shaders have access to built-in vari-
ables containing general graphics informations such as the
model view matrix, the light sources, the fog, and the ma-
terial to name a few. The only built-in variable used by our
shaders is the one containing the fragment coordinates
�i , j�. Third, fragment shaders have access to user-defined
variables containing all kinds of application-specific data
such as weighting factors, class parameters, and window
size. These data are typically stored in arrays, vectors, and
integer or floating point variables.

A fragment shader can return color, alpha, and depth
values. The first two values are stored in the framebuffer
where as the last one is copied in the depth buffer. In this
contribution, only the values copied in the framebuffer are
taken into account.

In short, a fragment shader is a program executed on the
fragment processor that processes in parallel every frag-
ment �see pixel� returned by the rasterization stage. This
shader has access to user-defined parameters, has a read-
only access to texture and a write-only access to the frame-
buffer, and cannot exchange information with the neighbor-
ing fragments. Note that while the GPU can be a very
powerful processing tool, sending and receiving data
from/to the CPU across the system bus introduces signifi-
cant latency. As such, data traffic between the CPU appli-
cation and the GPU should be kept at a strict minimum.

7.2 Loading and Executing a Fragment
Shader

As mentioned before, a fragment processor is made to load
and execute in parallel a program called the fragment
shader. As shown in Fig. 6, the shader source code is first
located in a C or C++ application running on the CPU.
Typically, this source code is listed in a 1-D “unsigned
char” array. While the C/C++ application is running, the
shader source code is compiled and linked by the applica-
tion program interface’s �API�s driver. Once the linking has
finished, the linker returns a program object that is loaded
on the graphics hardware for execution. The shader is ex-
ecuted when one or more graphics primitives are rendered.
This procedure is illustrated in Table 4. Notice that most
common APIs such as OpenGL and DirectX provide easy
to use high-level driver functions.22,24

7.3 Markovian Segmentation on the GPU
Although fragment shaders �as well as vertex shaders� can
be written in a C-like procedural languages,22,24 they have
some specificities as compared to ordinary C/C++ pro-

grams. The most important ones are
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1. A fragment shader is made to process every frag-
ment in parallel.

2. The only memory in which a fragment shader can
write into is the framebuffer and the depth buffer.

3. The only data a fragment shader can read is con-
tained in the texture memory, in built-in variables
and in user-defined variables. As such, it cannot
read the content of the framebuffer of the depth
buffer.

4. Since fragments are processed in parallel, frag-
ment shaders cannot exchange information. GPUs
do not provide its shaders with access to general-
purpose memory.

With such specificities, minimizing a global Markovian
energy function such as Eq. �4� can be tricky. In fact, three
main problems must be taken care of. First, when perform-
ing a Markovian segmentation, the fragment operations

Fig. 7 Gray-scale and color image segmented
column� version of ICM �top four images� and S
parameters have been estimated with K-means
should obviously be performed on every pixel of the input
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scene. As such, a perfect 1:1 mapping from the input pixels
to the output buffer pixels is necessary. This is achieved by
rendering a screen-aligned rectangle covering a window
with exactly the same size than the input image. To allevi-
ate all distortion due to perspective, we use an orthographic
camera. In this way, the rasterization stage generates N
�M fragments, one for every pixel of the input images.
This is illustrated by the ICM algorithm presented in Table
5. In this example, the fragment shader is executed when
the rectangle primitive is rendered �line 4�. At that point,
the fragment shader minimizes in parallel the energy func-
tion U�xs ,ys� on each site s�S.

The second problem comes from the fourth limitation.
Since GPUs provide no general-purpose memory, one
might wonder how the prior energy function V	s

can be
implemented on a fragment program since it depends on
the neighboring labels xt contained in the �write-only�

the software �left column� and hardware �right
r lowest images�. In every cases, the Gaussian
online only�.
with
A �fou
�color
framebuffer. As shown in Table 5, after rendering the scene,

Jul–Sep 2006/Vol. 15(3)8
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the CPU program copies the framebuffer into texture
memory �line 5�. In this way, the texture memory �which
can be read by fragment shaders� contains not only the
input images, but also the label field x�t−1� computed during
the previous iteration. Thus, V	s

is computed with labels
iteratively updated and not sequentially updated as it is
generally the case. Such strategy was already proposed by
Besag3 and successfully tested by other authors.14 This it-
erative updating scheme corresponds to the Jacobi-type ver-
sion of the initial Gauss-Seidel ICM procedure. However,
as mentioned by Besag,3 such parallel updating scheme can
induce small oscillations. In fact, it turns out that for some
examples, energy oscillations can occur after 10 or 20 it-
erations �see Fig. 8�a��. These oscillations are caused by
some labels �rarely more than a few dozen, sparsely distrib-
uted in the label field� that endlessly switched between two
classes. Although the Gauss-Seidel and the Jacobi versions
of ICM do not strictly converge toward the same minima,
the results they return are similar both visually and energy-

Fig. 8 Plot of Eq. �15� when segmenting a color
�b� SA and �c� the influence of variable � on the
wise �see Figs. 7 and 8�. Notice that the iterative nature of
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ICM is reproduced with multiple renderings of the rect-
angle �lines 4 through 6 of Table 5�, the fragment shader
containing no iteration loop.

The last problem with shaders comes from their inability
to generate random numbers such as needed by the stochas-
tic SA and ICE algorithms. We thus implemented a
workaround that goes as follows. First, in the C/C++ ap-
plication, an image with random values was created. This
random image was then copied in texture memory where
the shader can access it. In this way, a stochastic shader
processing a site �i , j� has access to an array of random
numbers. This procedure is illustrated by the algorithms of
Tables 6–8. Please remark that the shaders are fed with a
vector �= ��I ,�J� whose value is between −� and �. This is
done to ensure that the same random value is not reused at
each iteration.

Although this workaround is not as efficient as a good
random number generator, the results obtained with our
hardware programs are very close to the ones obtain with

ay-scale image �see Fig. 7� with �a� ICM or with
l energy after 500 SA iterations.
or a gr
the software programs. To illustrate the effectiveness of our
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workaround, we have segmented a gray-scale and a color
image with a good software random number generator and
with our hardware method. As can be seen in Fig. 7 and
Fig. 8�b�, our hardware method generates results very close
to the ones obtained with the traditional software method,
both visually and energywise. Note that this random value
problem will surely be solved when hardware graphics
companies will include a pseudorandom number generator
in their shading language library. But in the mean time, our
workaround can be used will little loss of precision.

7.4 Energy-Based Segmentation on GPU
With the techniques described in the previous section, per-
forming motion detection, motion estimation, and stereovi-
sion on a GPU is fairly straightforward. Since the shading
languages �NVIDIA’s Cg language in our case� have a syn-
tax similar to C, the software programs could be almost
directly reused in the shader. The implementation of the
three fragment programs is conceptually very similar, since
they all minimize an energy function composed of a likeli-
hood term and a prior term.

There is one exception, however, that occurs when a

Table 6 High-level representation of an SA hardware segmentation
program.

1 Rnd ← Create and N�M image random values

2 Copy the images y and Rnd into texture memory

3 Compile, link and load the SA shader on the GPU

4 T←Tmax

5 �I, �J← random integers between −� and �

6 Specify shader parameters ��I, �J, T, and �s, for
example�

7 Render a rectangle covering a window of size
N�M

8 Copy the framebuffer into texture memory

9 T←T * cooling rate

10 Repeat lines 5 to 9 until T�Tmin

11 Copy the framebuffer into a C/C++ array if needed

1 P�xs=ek �ys�←
1
� exp�−1

T U�xs=ek ,ys��, "ek��

2 r←Rnds+�

3 According to r and P�xs �ys�, randomly select ek��

4 Framebuffers← x̂s

The upper section �lines 1 to 11� is a C/C++ CPU program used to
load the shader, render the scene and manage textures. The sec-
ond program �lines 1 to 4� is the fragment shader launched on every
fragment �pixel� when the scene is rendered �line 7�. Since shaders
are not equipped with a random number generator, random value
are stored in the texture memory �Rnd�. Notice that the result were
obtained with �=5.
prefiltering step is required by the stereovision application.
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To handle this situation, the cost function C�s ,x ,y� is first
precomputed and stored in a 3-D DSI table located in tex-
ture memory. Then, the DSI table is filtered by w, after
which the optimization procedure �be it ICM, SA, or WTA�
is launched. In the context of a typical GPU, these opera-
tions can be done with one fragment shader made of three
functions: one to compute the matching cost C�s ,x ,y�, one
to filter C�s ,x ,y� with w, and one to minimize the global
energy function U�x ,y�. The first shader function com-
putes, for each site s�S, the cost value C�s ,x ,y� associated
with each disparity ds� �0,Dmax�. The cost values are then
copied in texture memory, which stands for the DSI table.
Immediately after, the second shader function filters the
DSI table ��w*C��s ,x ,y�� and copies the result in texture
memory. At this point, the likelihood values Ws�xs ,ys�,
"s�S, "xs�� are stored in texture memory. The third
shader function is finally used to minimize the energy func-
tion U�xs ,ys� with ICM, SA, or WTA. The overall stereo-
vision hardware algorithm is presented in Table 9.

7.5 Probabilistic Segmentation on GPU
Optimizing Eq. �15� with SA or ICM is done the same way
as for energy-based applications. The hardware algorithms
of Table 5 and 7 can be directly reused, with the difference
that shader parameters include the Gaussian mixture pa-
rameters �. The delicate aspect of probabilistic segmenta-
tion concerns more the parameter estimation procedures
K-means and ICE, which are not perfectly suited for

Table 7 High-level representation of a K-means program.

1 Copy the input images y into texture memory

2 Compile, link, and load the K-means shader on the
GPU

3 �← Init Gaussian parameters

4 Specify shader parameters �N and �
�

5 Render a rectangle covering a window of size
N�M

6 E← Copy the framebuffer into
a C/C++ array

7 
k←
1

Nk
�Es=ek

ys, "
k��


8 Repeat lines 4 to 7 until convergence

9 �k
nm←�Es=ek

�ys
n−
k

n��ys
m−
k

m�, "�k���

10 Copy the framebuffer into a C/C++ array if needed

1 xs←arg minek
	ys−
ek

	2

2 framebuffers←xs

The upper section �lines 1 to 10� is the C/C++ CPU program used
to load the shader, render the scene, and compute the Gaussian
parameters �. The second program �lines 1 and 2� is the fragment
shader launched on fragment �pixel� when the scene is rendered
�line 5�.
theGPU architecture. While the first step of these algo-
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rithms �assigning the best cluster for each image pixel for
each site s�S, line 2 of Tables 2 and 3� is perfectly imple-
mentable in parallel, the second step �Gaussian parameters
computation, line 3 of Tables 2 and 3� is not. As such, we
have to take an hybrid approach: execute line 2 on the GPU
�parallel processing� and line 3 on the CPU �sequential
processing�.

At first, the input images y are put in texture memory so
it is accessible by the fragment shaders. Each site s�S are
then assigned the best class ek by the fragment shader, be-
fore the Gaussian parameters of every class are reestimated.
Because this last operation is global and thus cannot be
parallelized, the framebuffer containing the class of each
pixel is read back to the CPU memory, where the compu-
tation takes place. Once the parameters are reestimated,
they are passed back to the GPU, after which a new itera-
tion can begin. The implementation of K-means and ICE is
illustrated in Tables 7 and 8.

8 Experimental Results
Results compare software and hardware implementations of

Table 8 High-level representation of an ICE program.

1 Rnd ← Create an N�M image with random values

2 Copy the input images y and Rnd into texture
memory

3 Compile, link, and load the ICE shader on the GPU

4 �← Init Gaussian parameters

5 �I, �J← random integers between −� and �

6 Specify shader parameters ��I, �J, N, and ��

7 Render a rectangle covering a window of size
N�M

8 E← Copy the framebuffer into a C/C++ array

9 Copy the framebuffer into texture memory

10 
k←
1

Nk
�Es=ek

ys, "
k��


11 �k
nm←�Es=ek

�ys
n−
k

n��ys
m−
k

m�, "�k���

12 Repeat lines 5 to 11 until convergence

13 Copy the framebuffer into a C/C++ array if needed

1 P�ek �ys�= 1
Zs

exp�W�ek ,ys�+V	s
�, "ek��

2 r←Rnds+�

3 xs← according to r and P�xs �ys�, randomly select
ek��

The first section �lines 1 to 13� is a C/C++ CPU program used to
load the shader, render the scene and compute the Gaussian pa-
rameters �. The second program �lines 1 to 3� is the fragment
shader launched on every fragment �pixel� when the scene is ren-
dered �line 7�.
the energy-based and probabilistic applications we have
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discussed so far. The goal being to show how fast a seg-
mentation program implemented on a GPU is compared to
its implementation on a CPU. The software programs were
implemented in C++ �C and C++ are by far the most
utilized languages for hardware programming; empirical
tests have shown that the two languages provides similar
processing times� and the NVIDIA Cg language was used
to implement the fragment programs. Because Cg’s syntax

Table 9 Stereovision program using three shader functions to com-
pute and filter the cost function and segment the scene.

1 Copy input images ymat, yref in texture memory

2 Compile, link, and load the stereovision shader on
the GPU

// * * ** Compute the DSI table ** * * / /

3 Tell the shader to use the DSI function

4 For d=0 to Dmax

5 Specify shader parameters �d�

6 Render a rectangle covering a window of size
N�M

7 Copy the framebuffer into texture memory

8 d←d+4

/ / * * ** Apply filter w ** * * / /

9 Tell the shader to use the filter function

10 For d=0 to Dmax

11 Specify shader parameters �d and filter parameters�

12 Render a rectangle covering a window of size
N�M

13 Copy the framebuffer into texture memory

14 d←d+4

/ / * * ** Launch ICM to minimize
U�x ,y� ** * * / /

15 Tell the shader to use the ICM function

16 Specify shader parameters �Dmax,�s�

17 Render a rectangle covering a window of size
N�M

18 Copy the framebuffer into texture memory

19 Repeat line 17 and 18 until covergence

20 Copy the framebuffer into a C/C++ array if needed

From lines 3 to 8, matching cost function C�s ,x ,y� is computed and
stored in texture memory, which stands as a DSI table. Then, from
lines 9 to 14, the cost function is filtered �w*C� before the label field
is estimated with ICM.
is very much similar to C and C++, the C++ code of our
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software applications were partly reused to implement the
fragment shaders. As such, the differences between the
software and hardware implementations were kept at a
strict minimum and, thus, could be fairly compared.

Every results were made after varying some variables. In
Figs. 9–13, the lattice size vary between 64�64 and
1024�1024 and the number of classes �or disparities� be-
tween 4 and 32, depending on the application. The number
of iterations was set to 10 for ICM, K-means, and ICE and
to 500 for SA. Thus, because the number of iterations is
fixed for each algorithm, the processing times are indepen-
dent of the image content.

Notice that for ICE and SA, � was set to 5. The reason
for this choice is mostly technical. As shown in Fig. 8�c�,
using a value larger than 5 does not minimize the global
energy much more. Also, because a value larger than 5 adds
a latency to the algorithm, we conclude that 5 is a good
compromise between speed and accuracy.

All results are expressed as an acceleration factor be-
tween the software and hardware programs. However, the
results do not include the time required to load, compile,
and link the shaders, which can vary between 0.05 and 5 s.
Although this might seem prohibitive, this initialization
step is done only once at the beginning of the application.
In this way, when segmenting more than one scene �or
segmenting a scene with a lattice size larger than 128

Fig. 9 Acceleration factor for motion detection programs over
square image sequences.
Fig. 10 Acceleration factor for the
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�128�, this initialization time soon becomes negligible as
compared to the acceleration factor. This is especially true
when SA is used as optimization procedure.

All programs were executed on a conventional home PC
equipped with a AMD Athlon 2.5 GHz, with 2.0 G of
RAM and a NVIDIA 6800 GT graphics card. The NVIDIA
fp40 Cg profile was used in addition to the cgc compiler
version 1.3.

8.1 Energy-Based Segmentation
Figures 9–11 contain the acceleration factor for the three
energy-based applications. In Figs. 9 and 10 are the results
for SA and ICM over gray-scale and color sequences. The
way SA and ICM are initialized varies from one application
to another. For motion detection, a label field obtained after
a trivial thresholding operation is used to initialize the two
optimizers. As for motion estimation, the label field is sim-
ply initialized to zero, whereas for stereovision, ICM and
SA are fed with the disparity map generated by a simple
WTA.

In every case, the hardware implementation is faster
than its software counterpart by a factor between 10 and 60.
Notice that the acceleration factor is more important for
color sequences than for gray-scale sequences. This is ex-
plained by the fact that the likelihood energy function W of
the motion estimation and motion detection programs is
more expensive to compute with RGB values than with
gray-scale values. Thus, distributing this extra load on a
fragment processor results in a more appreciable accelera-
tion factor. In Fig. 10, dmax was set to 4 in the first graphic
and the lattice size was set to 256�256 in the second
graphic.

For stereovision �Fig. 11�, we have tested our programs
for the three tasks presented in Table 9, namely, the com-
putation of the DSI table, the aggregation filtering, and the
optimization procedure �SA, ICM, and WTA�. The three
optimization procedures were tested on scenes of various
size and with different number of disparities. In the left-
most graphics, Dmax was set to 16 and the lattice size was
set to 256�256 in the other graphics. As we can see, the
acceleration factor for ICM and SA is more important than
the one for WTA. This can be explained by the fact that
WTA is a trivial and efficient algorithm �it converges in
motion estimation programs.
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Fig. 11 Acceleration factor for the stereovision programs.
Fig. 12 Acceleration factor for K-means, ICE, SA, and ICM obtained on gray-scale and or color

images and on vector fields �motion segmentation�.
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only one iteration� with a less impressive amount of com-
putation to distribute on the GPU than for ICM and SA.

As for the task of computing the DSI table, we com-
pared our hardware and software implementations over
color and gray-scale input images. Again, since the likeli-
hood cost function C�s ,x ,y� is more expensive to compute
with RGB values than with gray-scale values, and the ac-
celeration factor for the color DSI is more important than
the one for the gray-scale DSI.

8.2 Statistical Segmentation
The statistical applications presented in Secs. 5 and 6 were
also implemented in C++ and in Cg. The performances of
each implementation were evaluated by varying the number
of segmentation classes and the size of the images to be
segmented. The acceleration factor between the software
and hardware version of the programs is presented in Fig.
12. In both cases, ICM and SA are initialized by the label
field returned by ICE.

Notice that the speedup factor between hardware and
software version of ICM and SA �between 20 and 120� is
more important than the one for K-means and ICE �be-
tween 2 and 8�. The reason for this is that K-means and ICE
must exchange information �for the Gaussian parameter es-
timation� with the CPU, which is a major bottleneck for
such hardware programs. Hence, this is why the parameter
estimation programs seem less efficient than ICM and SA.

As we can also see, the speedup factor for K-means is
larger than for ICE. This is explained by the fact that ICE
has to estimate �and invert� the variance-covariance matrix
at each iteration, which is not required for K-means. This
extra load on the CPU makes ICE less efficient than
K-means.

As is the case for most energy-based applications, the
speedup factor for SA and ICM is more important in color
images than in gray-scale images. Again, this is explained
by the fact that the energy function of Eq. �15� is more
expensive to compute for color images than for gray-scale
images. Thus, parallelizing this costly CPU operation leads
to a more important acceleration factor. Notice that the ac-
celeration factor is larger when segmenting large images
and/or segmenting images with many classes.

With our actual hardware implementation, a color image
of size 128�128 is segmented in four classes at a rate of

Fig. 13 Image sequence of size 352�240 se
estimated on the first frame �a� are used to se
segmented with newly estimated Gaussian para
76 frames/s with ICM, 1.4 frames/s with SA, 2.5 frames/s
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with ICE and 14 frames/s with K-means. Although
K-means and ICE estimate parameters at an interactive rate,
they can be seen as slow procedures, at least compared to
ICM. Thus, to save on processing time, when segmenting
an image sequence with frames having mostly the same
color distribution, the Gaussian parameters estimated on the
first frame can be reused for the rest of the sequence. As an
example, Fig. 13 shows an image sequence of size 352
�240 segmented in six classes. At first, the fragment
shader is loaded, compiled, and linked �approximately
1.5 s�. The Gaussian parameters are then estimated on the
first frame with K-means and ICE �approximately 2 s�. As-
suming the color distribution of every frame is similar, the
Gaussian parameters are reused to segment the rest of the
sequence. Segmenting the 30 frames with our hardware
implementation of ICM took approximately 1.5 s for the
entire sequence, i.e., an average of 0.05 s/frame. This rep-
resents a segmentation rate of 20 frames/s. Notice how
little the difference is between the segmentation map of the
last frame �Fig. 13�e�� inferred with the Gaussian param-
eters initially computed and the one obtained with the
Gaussian parameters estimated on the last frame �Fig.
13�f��.

9 Conclusion
This paper exposed how programmable graphics hardware
can be used to performed typical Markovian segmentation
applied to energy-based and statistical problems. The re-
sults show that the parallel abilities of GPUs significantly
accelerate these applications �by a factor of 4 to 200� with-
out requiring any advanced skills in hardware program-
ming. Such a hardware implementation is useful especially
when the image size is large, when the number of labels is
large, or when the observation field y is composed of color
images. Notice that a multiresolution version of every pro-
gram could be implemented on a GPU, at the expense,
however, of a more elaborate setup.
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