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Fusion of Regularization Terms
For Image Restoration

Max Mignotte

Abstract— In this paper, we propose an efficient regularized
restoration model associating a spatial and a frequential regu-
larizer in order to better model the intrinsic properties of the
original image to be recovered and to obtain a better restoration
result. An adaptive and rescaling scheme is also proposed
to balance the influence of these two different regularization
constraints, preventing an overwhelming importance for one
of them from prevailing over the other, enabling them to be
efficiently fused during the iterative deconvolution process. This
hybrid regularization approach, mixing these two constraints and
more precisely, favoring a solution image that is both efficiently
denoised (due to the denoising ability of a thresholding procedure
in the DCT domain) and edge-preserved (due to the GGMRF
constraint), yields significant improvements in terms of image
quality and higher ISNR results compared to a single GGMRF
or DCT prior model, and leads to competitive restoration results
in benchmark tests, for various levels of blur, BSNR and noise
degradations.

Index Terms— Regularized iterative restoration/deconvolution
methods, fusion of regularization terms, mix of multiple con-
straints, generalized Gaussian Markov random field (GGMRF)
prior model, discrete cosine transform, spatial and frequential
regularizers.

I. I NTRODUCTION

I N regularized restoration approaches, the regularization
term allows us both to stabilize (from the computational

viewpoint) the solution to the ill-conditioning restoration in-
verse problem and to incorporate knowledge or beliefs con-
cerning the types of restorationsa priori defined as acceptable
solutions. That is why the design of efficient image prior
models or a priori regularization terms, and especially their
ability to (locally and globally) summarize the intrinsic prop-
erties of the original image to be recovered, are crucial in the
final image quality and signal-to-noise improvement (ISNR)
restoration result.

Over the last two decades, there have been considerable
efforts to find a regularization term capable of both efficiently
denoising the image and preserving its local discontinuities,
i.e., its edges. To this end, several edge-preserving regular-
ization strategies were proposed (with some notable improve-
ments in the restoration results) in the spatial [1]–[8] domain
via a non-stationary, compound Markov model with possibly
robust estimators or variational approaches, or in the frequency
domain, by also promoting a restored image having a high
sparsity of its spectral coefficients,via thresholding operations
in the wavelet domains [5], [6], [9]–[14].
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In order to circumvent the difficulty of finding a single
regularization term that summarizes all the contradictoryand
intrinsic properties of an undegraded image (such as ho-
mogeneity of the desired solution and local edge model),
another strategy is to find a framework that combines several
(contradictory but complementary) terms of regularization or
prior models. To this end, some attention has been given
to associating/combining two different (but complementary)
regularization terms and/or equivalently to proposing a regu-
larization strategy that enforces simultaneously multiple (and
different) constraints in order to improve the final restoration
result. Indeed, some of the well-known regularization priors
are conceptually very different; either local and expressed in
the spatial domain or more or less global and expressed in
the (DCT, wavelet or Fourier) frequency domain. A hybrid
regularization approach, mixing two or several of these, could
efficiently better model the complex properties of the classof
imagesa priori defined as acceptable solutions for a better
final restoration result.

In this attempt to combine both a regularization approach
exploiting a frequency representation (e.g., wavelet) anda spa-
tial penalty term (such as the one implicitly used in variational
approaches [8]), some hybrid regularization strategies have
already been proposed. In [15], the author proposes to seek a
restored image that has minimum total variation (i.e., whose
integral of the gradient Euclidean norm is minimal) under the
constraint that the residual imager (i.e., x̂ ∗ h − y where
h, x and y are respectively the blur, the estimated image,
and the observed image) belong to a wavelet basisΨ with
|<r, Ψ>| <τ (andτ >0). These latter local constraints aim at
controlling that the residual image is in fact a white noise that
does not contain any structure or detail from the undegraded
image. It is worth mentioning that in this combination of two
regularizers, the total variation (L1 optimization) regularizer
is used to damp ringing artifacts near edges caused by the
oscillations of the wavelet atoms, and on the other hand, the
wavelet decomposition and thresholding alleviates the staircase
effect of L1 optimization. A similar model but exploiting a
curvelet decomposition for a pure denoising application is
also proposed in [16]. In a somewhat similar spirit, Durand
and Froment [17] propose to combine these two regulariza-
tion approaches and thus to address the problem of ringing
artifacts in wavelet denoising by replacing the thresholded
wavelet coefficients by coefficients that minimize the total
variation. Their method is also closely related to approaches by
Chan [18] who post-processed images obtained from wavelet
shrinkage by a total variation-like denoising technique. Let
us also note that these previously mentioned techniques are
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specificallydesignedto combine the total variation approach
and the wavelet thresholding technique and cannot be general-
ized in order to combine several other regularizers or penalty
terms.

Another strategy consists in the estimation/combination of
an image segmentation result with a DCT-based restoration
procedure [2]. In this context, Foiet al. [2] propose to apply a
DCT filtering computed on several polygonal supports whose
shape are defined by a preliminary segmentation technique
estimated on a (deblurred) image. The segmentation technique,
which was preliminarily used in this restoration procedure,
implicitly exploits an image prior model expressing that any
real-world images can be approximated by a union of a
number of nonoverlapping and distinct regions (of uniform
grey level value). The restoration procedure proposed in [2]
thus indirectly combines this segmentation-based prior model
with a regularization prior expressed in the DCT domain.
However, let us also note that this strategy is also specifically
designedto combine a segmentation result and a DCT filtering
technique and cannot be generalized in order to combine
several other regularizers or penalty terms.

A simple strategy to combine two different penalty functions
consists of introducing these two regularizing terms directly
in the cost function to be optimized with, for example, two
adaptive weights, generally proportional to the residual image
r [19]. Another strategy consists of the combination of the
two penalty termsvia an edge indicator function (controlled
by the observed image) switching between them, such as that
defined (somewhat similarly) in [20], [21] in which the total
variation penalty term and a fourth-order filter are conjointly
used in order to preserve edges while avoiding the staircase
effect in smooth regions. In a more general way, to fuse several
constraints or equivalently several prior knowledges for the
image to be recovered, a Bayesian strategy has been recently
proposed in [22]–[24] which uses a statistical prior in product
form. Such product type priors combine multiple image prior
models by assuming that the local discontinuities of the image
(i.e., its edges) given by different local edge models (i.e.,
different high-pass filters) are Student-t distributed. Inorder to
bypass the difficulty of evaluating the normalization constant
of this product type prior, the authors in [22]–[24] proposeto
use a constrained variational approximation methodology to
infer the restored image.

The approach proposed in this paper is different and uses
another fusion strategy. More precisely, our model simply
exploits an additional constraint (called in the following
“rescaling operation”) whose goal is to iteratively balance
the influence of two (but possibly several) different penalty
functions, expressed by each image prior model, during a
simple iterative Landweber deconvolution process. In addition,
compared to [22], [23], our approach tends to enforce two
different regularization strategies, respectively expressed in
the spatial and frequential domain, by promoting a restored
solution both efficiently denoised due to a DCT denoising
procedure [25]–[27] and edge-preserved due to a GGMRF
prior model [28].

More generally, the concept of combining several classifiers,

models or constraints for the improvement of the performance,
or (in our application) to better model the complex properties
of the class of images to be recovered by a restoration algo-
rithm, is known, in the machine learning field, as a committee
machine or mixture of experts [29], [30]. In this recent field
of research, two major categories of committee machines are
generally found in the literature. Our fusion approach is in
the category of the committee machine model that utilizes an
ensemble of models or experts with a dynamic structure type.
In this class of committee machines, the set of constraints is
combined by means of a mechanism that involves the input
data (contrary to the static structure type-based mixture of
experts).

The remainder of this paper is organized as follows: Section
II describes the proposed model with respectively the edge
sparseness and the sparse representation constraints and last
the proposed fusion approach of these two constraints in an
iterative deconvolution Landweber process. Last, sectionIII
presents a set of experimental results and comparisons with
existing restoration techniques.

II. PROPOSEDAPPROACH

A. Edge Preserving Constraint in the Spatial Domain

The first regularization term used in our restoration model
is formulated in the (image) spatial domain and promotes a
(regularized) restored imagêx with spatial smoothness and
edge-preserving properties. To this end, we have considered
the GGMRF prior model proposed by Bouman and Sauer
in tomographic reconstruction [28], [31]. This prior has a
density function of the formPX(x) ∝ exp

{
−γ Ω(x)

}
with

the following regularization term

Ω(x) =
∑

<s,t>

βst|xs − xt|q (1)

where1 ≤ q ≤ 2 is a parameter controlling the smoothness of
the image to be recovered and/or the sharpness of the edges
to be formed in the restored image.βst = (2

√
2 + 4)−1 or

(4 + 4
√

2)−1) depends on whether the pair of neighboring
sites (relative to the second order neighborhood system), or
binary clique<s, t> is horizontal/vertical or right diagonal/left
diagonal. This prior model has the advantage of including
a Gaussian MRF prior forq = 2 and a more interesting
edge-preserving absolute-value potential function withq = 1
somewhat similar to theL1 regularizer proposed by Rudinet
al. in [8]. In the regularization framework and under this first
constraint a restored image can be seen as a solution to the
following penalized likelihood cost function to be optimized

x̂ = arg min
x

{

‖y − h ∗ x‖2 + γ Ω(x)
}

(2)

where y and x represent respectively, the observed blurred
and noisy image (degraded by an additive and white Gaussian
noise with varianceσ2) and the undistorted true image.h is the
Point Spread Function (PSF) of the imaging system2 and∗ is
the linear convolution operator. For the convolution procedure,
we herein assume that the image is toroidal, i.e., periodically
repeated. The first term of this cost function expresses the
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fidelity to the available datay and the second encodes the
spatial smoothness and the local edge-sparsity constraint(i.e.,
the expected properties) of the true undegraded image.γ is
the regularization parameter controlling the contribution of the
two terms. A maximum penalized likelihood estimate of the
undegraded imagêx, under this GGMRF constraint, can be
found by a classical gradient descent method. To this end,
the derivative ofΩ(x) at sites, has the following analytical
expressionΩ′(xs) = q

∑

<s,t> βst|xs − xt|q−1sgn(xs − xt)
and leads to the following iterative steepest descent procedure,
which moves the penalized likelihood estimates in the negative
gradient direction

x̂[n+1] = x̂[n] + α[n] h#∗ (y − h ∗ x̂[n])
︸ ︷︷ ︸

x̂
[n+1]
ML

−γ[n] Ω′(x̂[n]) (3)

whereh#(i, j) = h(−i,−j) (the coordinates(i, j) represent
the discrete pixel locations and forh symmetric, we have
h# = h). After derivation of Eq. (2),α[n] is a constant equal
to 1 for all n. Nevertheless we can easily speed up this iterative
search procedure by adaptively changingα[n] at each iteration
according to the following equations [32]

α[n] =
‖q[n]‖2
‖h ∗ q[n]‖2 with q[n] = h#∗ (y − h ∗ x̂[n]) (4)

where, in this notation, pixels are organized inq[n] and in
h ∗ q[n] in lexicographic order as one large column-vector.
For γ[n] = 0, the iterative procedure defined in Eq. (3) is the
(accelerated) well-known Landweber algorithm [33].

B. Denoising Constraint in the Frequential Domain

The second constraint used in our restoration model is
formulated in the Discrete Cosine Transform (DCT) domain by
promoting a restored image efficiently denoised. To this end, a
convenient way to impose this constraint consist of applying to
each of these coefficients (of each individual block of size8×8
pixels ofx̂[n]), a simple thresholding operation. An example of
such constraint in the frequency domain is the so-called soft-
thresholding operation classically used in the wavelet based
denoising approach [14], [34], [35]) of each DCT coefficient,
according to the following rule

λsoft
T = sgn

(
w

)
(|w| − T )+ (5)

where (.)+ is defined as(x)+ = max{x, 0} and sgn(.) is
the sign function (sgn(x) = 1, if x ≤ 0, and sgn(x) =
−1, otherwise). Another example is the hard version of this
soft-thresholding operation, leading to the following hard -
thresholding rule

λhard
T =

{
0 if |w| ≤ T
w otherwise

in which T is a threshold level that acts as a regularization
parameter and we recall thatw is one of the coefficients
obtained by the DCT transform of the block (of size8 × 8

2We assume throughout this paper that the degradation model (PSF and
variance of the white Gaussian noise) is known. It might be given analytically
or given numerically based on previous estimations or calibration experiments.

pixels) extracted from the current image estimate. These two
thresholding rules enables thea priori sparse representation
(in the DCT domain) of the solution image to be recovered,
or equivalently favors a generalized Gaussian law for the
distribution of these DCT coefficients [35].

In order to reduce blocky artifacts across the8 × 8 block
boundaries, a standard approach (already used in the wavelet
denoising community) is to make this transform translation-
invariant, i.e., to use the DCT of all (circularly) translated
versions of the image herein assumed to be toroidal [36],
[37]. This thus implies (for a set of8 × 8 blocks extracted
from the image) computing a set of8 horizontal shifts and
8 vertical shifts (= 64) translated images which will then be
DCT-denoised with the soft or hard thresholding rule and then
averaged in a final step (see Algorithm 1).

It is worth mentioning that a possible restoration procedure
using this single DCT denoising constraint would consist of
alternating an ML estimate (see Eq. (3) withγ = 0, i.e.,
essentially a deblurring procedure) followed by a thresholding
operation in the DCT domain (i.e., mainly a denoising pro-
cedure) until a convergence criterion is met. This procedure
(called DCT-gradient in Tables 4 and 5 and also defined in
Section III-A.2) will be compared (in Section III) with a
restoration procedure combining this DCT constraint along
with the GGRMF penalty term.

C. Fusion of Regularization Terms

The goal of this work is to propose a restoration procedure
which promotes an acceptable restored image combining these
two previously mentioned regularization constraints while
ensuring the likelihood fidelity, i.e., by finding an estimate
x̂ ensuring an acceptable minimum for the likelihood energy
‖y − h ∗ x‖2 under these two constraints. Equivalently, we
would like to restrict the types of restorations (a priori)
defined as acceptable solutions as those combining these two
complementary spatio-frequential regularizing constraints.

The problem is not trivial since, the simple solution which
would consists of alternating the two regularization strategies,
i.e., an iteration of the gradient descent of the penalized
likelihood function (Eq. (3)) followed by a DCT denoising
step (Algorithm 1), leads to restoration results equal to those
obtained in the case of either the exclusive use of the GGMRF
regularization term or the DCT-based constraint, according
to the value given to the two regularization parameters (i.e.,
γ for the GGMRF regularization term andT for the DCT
constraint).

A rescaling problem, inherent to the fusion of these two
regularization terms exists and must be treated. To this end,
we have to balance the influence of these two different
regularization strategies (in the sense of a criterion or another
constraint), during the iterative search process of the solution
image. This rescaling will avoid generating an overwhelming
importance for one of the two regularization constraints over
the second (thus making the fusion of the two regularization
terms inefficient). This rescaling problem is somewhat
identical to the one occurring in pattern classification when
different features with different units are blended together. In
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this case, the rescaling step prevents the similarity measure
(used to evaluate the distance between feature vectors) from
(wrongly) giving an overwhelming importance to a feature
having a larger unit range. In this work, in order to avoid
generating an overwhelming importance for one of these
two penalty terms over the second (and thus making the
fusion of these two regularization strategies inefficient), we
adaptively balance the two regularizers by adding, to the
iterative search process of the restored image, the following
adaptive empirical constraint:

CONSTRAINT A1:
“The residual image added to the likelihood image, to each
iteration of the iterative search process, by the GGMRF-based
constraint and the DCT-based constraints should be equal in
a norm sense.”

In our application, the likelihood image (x̂
[n]
ML ) is the solution

image obtained at iterationn, without the n’th constraint,
i.e., the image obtained by Eq. (3) withγ[n] = 0 or the
so-called Landweber estimate. The residual image designates
the additive correction image added (at each iteration) to the
likelihood image by the presence of each constraint. In the case
of the GGMRF constraint, the regularization adds, at iteration
n, to the image likelihood the corrective term‖γ[n] Ω′(x̂[n])‖
(see Eq. (3) and Algorithm 2). In the case of the DCT-
based denoising constraint (without the GGMRF-constraint),
this residual image is simply (at each iterationn) the difference
image between the DCT-denoised likelihood image minus the
likelihood image, i.e.,‖ΥT (x̂

[n+1]
ML ) − x̂

[n+1]
ML ‖. In this ex-

pression,ΥT (.) designates the[DCT-THRESHOLDING-INVERSE

DCT] operator with the thresholding operation according to
the rule given by Equations (6) or (5) with the regularization
parameter valueTHard.

To summarize, our iterative procedure (see Algorithm 2)
thus alternates between an ML estimation of the image to
be restored (i.e., a classical Landweber iteration) plus the
GGMRF penalty term and an ML estimation plus the hard-
thresholding constraint in the DCT domain (see Algorithm
2). The threshold levelTHard (or the regularization parameter
in the DCT domain) is set according to the noise varianceσ
(herein assumed to be known) and the regularization parameter
γ of the spatial GGMRF penalty term is adaptively estimated
at each iteration of the restoration procedure, in order to
respect equality constraint A1 (this estimation procedurewill
be made explicit in Section II-D). The following section used
this additional constraint A1 in order to adaptively estimate
γ[n] as a function ofT during the iterative search restoration
procedure.

D. Parameter Selection

In our restoration model,T is preliminary and empirically
set according to the noise standard variationσ of the consid-
ered degradation model by the following procedure

THard=

{
1.6 σ if σ2 < 10
2.2 σ if σ2 ≥ 10

(6)

Algorithm 1
DCT-Based Denoising Step (ΥT(x

[n]))

x[n] Input image to be denoised at iterationn

x̂[n] Denoised estimated image at iterationn

T Threshold

for All (8 horiz. and8 vert.) shifts ofx[n] do

for All [8× 8] blocks extracted fromx[n] do

1. DCT Transform

2. Threshold the obtained DCT coefficientsw
with the hard thresholding rule

λhard
T =

{
0 if |w| ≤ T
w otherwise

or the soft thresholding rule

λsoft
T = sgn

(
w

)
(|w| − T )+

3. Inverse DCT of these thresholded coeffi-
cients

⊲ Unshift the filtered image and store it

x̂[n] ← Averaging of these64 denoised images

or, for the soft-thresholding rule, by

TSoft=

{
0.2 σ if σ2 < 10
0.6 σ if σ2 ≥ 10

(7)

γ[0] is then estimated at the first iteration of our restoration
algorithm and adaptively change in order to adaptively balance
(for each iteration of our iterative algorithm) the residual image
added to the likelihood image between the two sparseness
constraints. GivenT , γ[n] is thus estimated by

γ[n]=arg min
γ[n]

{∣
∣
∣
∣

∥
∥
∥ΥT (x̂

[n+1]
ML )− x̂

[n+1]
ML

∥
∥
∥

1
︸ ︷︷ ︸

BDCT

−
∥
∥
∥γ[n] Ω′(x̂[n])

∥
∥
∥

1
︸ ︷︷ ︸

BGGMRF

∣
∣
∣
∣

}

(8)

where ‖.‖1 is the L1-norm andBDCT and BGGMRF represent
respectively the residual image added to the likelihood at each
iteration of the restoration process. In our application,γ[n] is
estimated by a dichotomy search algorithm based on the sign
of (BDCT − BGGMRF). We stop the procedure when the relative
distance between two successive values is less than10−3.
During the iterative restoration procedure,γ[n] is then refined,
at each stepn of the iterative restoration process, with the
following procedure

γ[n+1] =

{
0.95 γ[n] if BGGMRF > BDCT

1.05 γ[n] otherwise
(9)

Determination of Number of Iterations:The convergence
criterion of the proposed restoration procedure is empirically
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Algorithm 2
GGMRF-DCT-based restoration algorithm

σ2 Variance of the noise

THard Threshold value of the sparsity constraint
ΥTHard DCT denoising (see Algo I)
γ[n] Regularization value of the GGMRF

model at iterationn
y= x̂[0] Observed (blurred and noisy) image

α[n] =
‖q[n]‖2
‖h ∗ q[n]‖2 and q[n] = h#∗(y−h∗x̂[n])

THard =

{
1.6 σ if σ2 < 10
2.2 σ if σ2 ≥ 10

I. Estimation of γ[0]

γ[0] =argmin
γ[0]

{∣
∣
∣

∥
∥ΥT (x̂

[0]
ML )−x̂

[0]
ML

∥
∥

1
−

∥
∥γ[0] Ω′(x̂[0])

∥
∥

1

∣
∣
∣

}

with x̂
[0]
ML = x̂[0] + α[0] h#∗ (y − h ∗ x̂[0])

II. Restoration

while n < max
{

400, 1500
σ2

}

do

1. x̂
[n+1]
ML ← x̂[n] + α[n] h#∗ (y − h ∗ x̂[n])

• if n is odd

x̂[n+1]← x̂
[n+1]
ML −γ[n] Ω′(x̂[n]) (see Eq. (3))

⊲ BGGMRF =
∥
∥
∥γ[n] Ω′(x̂[n])

∥
∥
∥

1

• if n is even

x̂[n+1] ← ΥT (x̂
[n+1]
ML )

⊲ BDCT =
∥
∥
∥ΥT (x̂

[n+1]
ML )− x̂

[n+1]
ML

∥
∥
∥

1

2. Iterative rescaling of γ[n]
◮

γ[n+1] =







0.95 γ[n] if BGGMRF > BDCT

1.05 γ[n] otherwise

n← n + 1

defined by

Number of iterations= max
{

400,
1500

σ2

}

(10)

III. E XPERIMENTAL RESULTS

A. Set Up

For the implementation of the DCT-based denoising step,
we have used the fast8×8 FFT2D DCT package implemented
in C code by Takuya Ooura (functionsDDCT8X8S tested in
program SHRTDCT.C) and available online at http address

TABLE I

BLUR, NOISE VARIANCE AND BSNR (DB) FOR EACH EXPERIMENT

Blur σ2 BSNR

Exp1 9 × 9 uniform .308 40

[CAMERAMAN 256 × 256]

Exp2 hij=(1+i2+j2)−1, i, j = −7, . . . , 7 2 32

[CAMERAMAN 256 × 256]

Exp3 hij=(1+i2+j2)−1, i, j = −7, . . . , 7 8 26

[CAMERAMAN 256 × 256]

Exp4 [1, 4, 6, 4, 1]t[1, 4, 6, 4, 1]/256 49 16.5

[L ENA 512 × 512]

Exp5 5 × 5 uniform 33.3 20

[CAMERAMAN 256 × 256]

Exp6 ∝[1+(i2+j2)/16]−3
i, j = −9, . . . , 9 62.5 17

[CAMERAMAN 256 × 256]

given in [38]. In order to compare the efficiency of our
restoration model using a regularization term fusion-based
procedure to a restoration model using a single GGMRF or
DCT prior model, we have considered the following

1) The restoration algorithm using only the GGMRF prior
model (q = 1). In this case, the regularization parameter
γ that controls the contribution of the likelihood and
prior terms is given byγ = σ2/6.0, which ensures (after
several trials and errors) a nearly optimal restoration
result for all the experiments tested in this paper.

2) The restoration procedure using only the DCT-based
complexity prior model. More precisely, this procedure
simply leads to the iterative Landweber [33] procedure
(Eq. (3) with γ = 0), each iterative step of which is
regularized by the DCT denoising step (using the hard-
thresholding rule and the estimation procedure given by
Eq. (6)). For our tests, this algorithm is called the DCT
gradient.

3) The proposed restoration method (summarized in pseudo
code in Algorithm 2), i.e., the combined GGMRFq=1

and DCT-based (with the hard-thresholding rule) de-
noising constraints with the adaptive scheme to weight
the two different regularization terms and the parameter
estimation procedure given by Equations (6), (8), (9) and
(10).

B. Comparison with State-of-the-Art Methods

We now present a set of experimental results and compar-
isons illustrating the performance of the proposed approach.
To this end, we have replicated the degradation models (see
Table 1) generally used by several authors [1]–[7], [9]–[14],
[39]–[42] [43]–[45] and we have compared the ISNR result
given by our approach, i.e.,

ISNR = 10 log10

‖x− y‖2
‖x− x̂‖2 (11)

and the other published state-of-the-art methods respectively
in Tables 2 and 3. In these experiments, original images are



6

Fig. 1. From top to bottom, original image, Noisy-blurred image for Exp1
(see Table I) and restored image using the proposed restoration approach
ISNR=9.02 dB (see Table II).

Fig. 2. From top to bottom, original image, Noisy-blurred image for Exp3
(see Table I) and restored image using the proposed restoration approach
ISNR=5.33 dB (see Table II).
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TABLE II

PERFORMANCE COMPARISON BETWEEN OUR ALGORITHM AND OTHER

RESTORATION METHODS FOR EXPERIMENTSEXP1-4

ISNR (dB)

Methods Exp1 Exp2 Exp3 Exp4

GGMRF-DCT-gradient 9.02 7.76 5.33 4.48
DCT-gradient 8.10 7.01 5.13 4.14

GGMRF-gradient 7.64 6.71 4.61 2.59

(2009) Oliveiraet al. [7] 8.60 5.18 7.42 2.78

(2008) Dabovet al. [39] 8.34 - - 4.81
(2008) Mignotte [4] 7.81 7.14 5.24 3.84

(2006) G.-Colon & Portilla [9] 7.33 7.45 5.55 -

(2006) Bioucas-Diaset al. [10][11] 8.52 - - 2.97

(2006) Chantaset al. [1] 8.91 - - 3.77

(2006) Foiet al. [2] 8.58 8.29 6.34 4.55

(2006) Mignotte [3] 8.23 7.58 5.70 1.63

(2006) Bioucas-Dias [13] 8.10 7.40 5.15 2.85

(2005) Figueiredo & Nowak [12] 8.16 7.46 5.24 2.84

(2004) Katkovniket al. [40] 8.23 - - -

(2004) Neelamaniet al. [5] 7.30 - - -

(2003) Figueiredo & Nowak [14] 7.59 6.93 4.88 2.94

(2001) Jalobeanuet al. [41] - 6.75 4.85 -

(1998) Liu & Moulin [42] - - - 1.08

(1996) Banham & Katsaggelos [6] 6.70 - - -

TABLE III

PERFORMANCE COMPARISON BETWEEN OUR ALGORITHM AND OTHER

RESTORATION METHODS FOR EXPERIMENTSEXP5-6

ISNR (dB)

Methods Exp5 Exp6

GGMRF-DCT-gradient 3.99 2.96
DCT-gradient 3.93 2.75

GGMRF-gradient 3.35 2.47

(2008) Mignotte [4] 4.24 2.99

(2006) Mignotte [3] 3.50 1.90

(2000) Molinaet al. [43] - 2.22 (PSNR=21.1)

(1998) Mayet al. [44] 3.43 -

(1997) Charbonnieret al. [45] (in [43]) - 1.86 (PSNR=20.8)

TABLE IV

TIME IN SECONDS AND ITERATION NUMBER FOREXP1-6

Time (sec) Iterations

Exp1 525 4869

Exp2 117 750

Exp3 62 400

Exp4 78 400

Exp5 74 400

Exp6 1068 400

CAMERAMAN (experiments1, 2, 3, 5 and 6) of size 256 ×
256 and LENA of size 512 × 512 (experiment4). Table 1
summarizes the different degradation models used, which are
defined by the blur type, the variance of the additive white
Gaussian noise and the resulting BSNR

BSNR= 10 log10

VAR(h ∗ x)

σ2
(12)

i.e., the ratio between the variance of the blurred image without
noise and the variance of the noise for each of the experiments.
The best ISNR results provided by the existing restoration
algorithms and the results provided by our approach for each
degradation level are indicated in bold.

C. Comparison with the SA-DCT Regularized Deconvolution

Since the SA-DCT deconvolution algorithm proposed by
Foi et al. in [2] also uses a DCT-based denoising step, a com-
parison and a discussion is herein given concerning difference
of models, estimation/sensitivity of the internal parameters and
computational complexity of the two restoration methods. The
SA-DCT regularized deconvolution algorithm proposed in [2]
is a non-iterative two-step restoration procedure whose first
step is essentially a deblurring stage given by a regularized
Wiener filtering. The second step is a DCT filtering, applied on
this resulting deblurred image, computed on several polygonal
supports whose shape are defined by a preliminary segmenta-
tion technique (called LPA-ICI for local polynomial approxi-
mation - intersection of confidence intervals). To summarize,
the SA-DCT in [2] thus efficiently fuses a DCT-based filtering
and the result of a segmentation applied on the deblurred input
image by a Wiener filtering. The segmentation used in this
method (as in [3]) implicitly exploits an image prior model
expressing that any real-world images can be approximated by
a union of a number of nonoverlapping and distinct regions
(of uniform grey level value). In comparison, our restoration
algorithm aims at fusing a DCT-based sparsity and an edge
preserving GGMRF-constraint which favors edge sparsity in
the recovered image in order to doubly regularize an iterative
deconvolution procedure. The performance of the SA-DCT
regularized deconvolution algorithm depends on two regular-
ization parameters (ǫ1 andǫ2) which are manually tuned and
are different for each experiment. Respectively(0.013, 0.040),
(0.038, 0.045), (0.062, 0.030) and finally(0.10, 0.12) are cho-
sen in [2] by the authors for Exp1, Exp2, Exp3 and Exp4 and
are optimal for these experiments (see the Matlab procedure
demoSADCT deblurringcopy.m available online at http ad-
dress given in [2]). By comparison, our restoration method
relies on one regularization function (see Eq. (6)) which isthe
same for all images and degradation models.

D. Discussion

Table 6 shows the time in seconds and the number of itera-
tions that each restoration took for each one of the considered
degradation models according to Eq. (10) (cf. Table 1) and for
our algorithm (cf. Algorithm 2) (system used: AMD Athlon
64 Processor 3500+,2.2 GHz, 4435.67 bogomips and non-
optimized code running on Linux). The source code (in C++
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language) for our algorithm (with the set of initial, degraded
and restored images) is publicly available at the followinghttp
address www.iro.umontreal.ca/∼mignotte/ResearchMaterial/
in order to make possible eventual comparisons with future
restoration methods. Note that our restoration procedure could
be computationally optimized since numerous fast Very Large
Scale Integration (VLSI) chips exist for computing the DCT
transform more quickly.

We can notice that the proposed method leads to competitive
restoration results for various levels of blur and noise degra-
dations in benchmark tests and provides a good compromise
between restoration results for the high and low BSNR case.
In addition, the proposed restoration method, combining the
GGMRF and DCT constraints always significantly improves
the ISNR result compared to a single GGMRF or DCT prior
model in all the considered degradation models. This tends to
demonstrate the ability of our strategy to efficiently fuse these
two different constraints on the restoration result. Figures 1
and 2 show visually some restoration results for Exp1 and
Exp32. Let us also add that the estimation ofTHard (which then
ensures the estimation ofγ) and the number of iterations could
be improved since better ISNR results can be achieved if we
supervise (by manually tuning) these two values for each tested
experimental result presented in this paper. Fig. 3 shows the
evolution of the ISNR and its convergence as a function of the
number of iterations for respectively the degradation models
Exp3 and Exp4. The soft-thresholding rule (Algorithm 1, step
2) does not improve the ISNR results compared to the hard-
thresholding rule used in our GGMRF-DCT-based restoration
procedure. The ISNR results for the different experiments are
equivalent or not as good. More precisely, we respectively
obtain for the different experiments; Exp1 :7.35 dB Exp2
: 7.25 dB Exp3 : 5.08 dB Exp4 : 3.88 dB Exp5 :
3.51 dB Exp6 : 2.91 dB. Visually and compared to [2],
the restoration results are similar for noisy images with low
BSNR (i.e., degradations exhibiting more noise than blur) and
our restoration method provides visually better restored images
for high BSNR (i.e., degradations exhibiting more blur than
noise), which is also confirmed by a higher improvement SNR
measure.

It is also worth recalling that, contrary to [2], [15]–[21],our
strategy is especially suited to fuse (or combine) several other
(and not only two) regularizers or penalty terms. In addition,
in our method, these penalty terms or regularizers can be very
different in nature (e.g., hard constraints, energy penalty terms,
thresholding in the frequential domain, projection onto convex
sets (POCS), filtering, etc.). To give an example, our fusion
model would easily allow to combine a POCS method as
first regularizer in conjunction with a second wavelet-based
prior/regularizer (using, for example, a shrinkage-thresholding
function). In this context, our constraint A1 would allow to
iteratively adaptγ[n] (see Algorithm 2) in order that for each
iteration of the Landweber (deblurring) algorithm, givingthe
likelihood imagex̂ML , the residual image added tôxML by the
POCS constraint and the residual image added tox̂ML by the

2Additional examples (i.e., degraded and restored image results) are also
given in http: www.iro.umontreal.ca/∼mignotte/ResearchMaterial/

shrinkage-thresholding operation in the wavelet domain should
be equal in a norm sense.

IV. CONCLUSION

In this paper, we have presented an efficient and simple
doubly regularized restoration procedure combining efficiently
two different regularization strategies respectively expressed
in the spatial and frequency domains. Due to an adaptive
and rescaling scheme, used to balance the influence of these
two different regularizers, the resulting restoration strategy
performs competitively among the recently reported state-
of-the-art restoration schemes for different BSNR, blur and
noise levels, while being simple to implement. This fusion of
regularization terms can be a simple way to better model the
intrinsic and complex properties of the original undegraded
image to be recovered by simultaneously incorporating differ-
ent types of knowledge concerning the types of restorationsa
priori defined as acceptable solutions.
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