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Abstract— In this paper, we propose an efficient regularized In order to circumvent the difficulty of finding a single
restoration model associating a spatial and a frequential €gu- regularization term that summarizes all the contradictomg
larizer in order to better model the intrinsic properties of the intrinsic properties of an undegraded image (such as ho-
original image to be recovered and to obtain a better restorion . . :
result. An adaptive and rescaling scheme is also proposed mogeneity of thg des!red solution and local ed.ge model),
to balance the influence of these two different regularizatn ~another strategy is to find a framework that combines several
constraints, preventing an overwhelming importance for om (contradictory but complementary) terms of regularizatoy
of them from prevailing over the other, enabling them to be prior models. To this end, some attention has been given
efficiently fused during the iterative deconvolution process. This to associating/combining two different (but complemeyyar

hybrid regularization approach, mixing these two constrants and larization t d valently t .
more precisely, favoring a solution image that is both effi@ntly fegularnzation terms and/or equivaiently 1o proposing gure

denoised (due to the denoising ability of a thresholding proedure  larization strategy that enforces simultaneously mueti@nd

in the DCT domain) and edge-preserved (due to the GGMRF different) constraints in order to improve the final restiom

constraint), yields significant improvements in terms of inage result. Indeed, some of the well-known regularization ysrio

quality and higher ISNR results compared to a single GGMRF are conceptually very different; either local and exprésse

or DCT prior model, and leads to competitive restoration reslts . . ’ .
the spatial domain or more or less global and expressed in

in benchmark tests, for various levels of blur, BSNR and nois - . -
degradations. the (DCT, wavelet or Fourier) frequency domain. A hybrid

. . . . ) regularization approach, mixing two or several of these]do
Index Terms— Regularized iterative restoration/deconvolution e .
methods, fusion of regularization terms, mix of multiple cor-  Efficiently better model the complex properties of the clafss
straints, generalized Gaussian Markov random field (GGMRF) imagesa priori defined as acceptable solutions for a better
prior model, discrete cosine transform, spatial and frequatial final restoration result.
regularizers. In this attempt to combine both a regularization approach
exploiting a frequency representation (e.g., wavelet)aspa-
tial penalty term (such as the one implicitly used in vadaél
approaches [8]), some hybrid regularization strategieg ha
N regularized restoration approaches, the regularizatigiteady been proposed. In [15], the author proposes to seek a
term allows us both to stabilize (from the computationakstored image that has minimum total variation (i.e., veéhos
viewpoint) the solution to the ill-conditioning restomati in-  integral of the gradient Euclidean norm is minimal) under th
verse problem and to incorporate knowledge or beliefs cogonstraint that the residual image(i.e., & *+ h — y where
cerning the types of restoratioaspriori defined as acceptabley, ; and y are respectively the blur, the estimated image,
solutions. That is why the design of efficient image prio&nd the observed image) belong to a wavelet basiwith
models or a priori regularization terms, and especiallyirthg<, | <7 (andr > 0). These latter local constraints aim at
ability to (locally and globally) summarize the intrinsicop-  controlling that the residual image is in fact a white noisatt
erties of the original image to be recovered, are cruciah& tdoes not contain any structure or detail from the undegraded
final image quality and signal-to-noise improvement (ISNRpnage. It is worth mentioning that in this combination of two
restoration result. regularizers, the total variationL{ optimization) regularizer
Over the last two decades, there have been consideraBlgised to damp ringing artifacts near edges caused by the
efforts to find a regularization term capable of both effitien oscillations of the wavelet atoms, and on the other hand, the
denoising the image and preserving its local discontiesiti wavelet decomposition and thresholding alleviates thecstse
i.e., its edges. To this end, several edge-preserving aegukffect of L, optimization. A similar model but exploiting a
ization strategies were proposed (with some notable ingrovcurvelet decomposition for a pure denoising application is
ments in the restoration results) in the spatial [1]-[8] @@m also proposed in [16]. In a somewhat similar spirit, Durand
via a non-stationary, compound Markov model with possiblind Froment [17] propose to combine these two regulariza-
robust estimators or variational approaches, or in thesgaqy tion approaches and thus to address the problem of ringing
domain, by also promoting a restored image having a higfitifacts in wavelet denoising by replacing the thresholde
sparsity of its spectral coefficientsia thresholding operations wavelet coefficients by coefficients that minimize the total
in the wavelet domains [5], [6], [9]-[14]. variation. Their method is also closely related to appready
1 _ o ) i _ Chan [18] who post-processed images obtained from wavelet
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I. INTRODUCTION



specificallydesignedto combine the total variation approachmodels or constraints for the improvement of the perforreanc
and the wavelet thresholding technique and cannot be deneaa (in our application) to better model the complex promsrti
ized in order to combine several other regularizers or pgnabf the class of images to be recovered by a restoration algo-
terms. rithm, is known, in the machine learning field, as a committee

Another strategy consists in the estimation/combinatibn 81achineé or mixture of experts [29], [30]. In this recent field
an image segmentation result with a DCT-based restorati@hresearch, two major categories of committee machines are
procedure [2]. In this context, Fet al. [2] propose to apply a generally found in the Iltgrature. Ogr fusion approagh is in
DCT filtering computed on several polygonal supports whodle category of the committee ma}chlne modgl that utilizes an
shape are defined by a preliminary segmentation techni emble of models or experts with a dynamic structure type.

estimated on a (deblurred) image. The segmentation teg&nid" this_ class of committee machings, the se_t of constra,iajts i
which was preliminarily used in this restoration procedur€®mpinéd by means of a mechanism that involves the input
implicitly exploits an image prior model expressing thayandata (contrary to the static structure type-based mixtdre o
real-world images can be approximated by a union of &Perts).

number of nonoverlapping and distinct regions (of uniform The remainder of this paper is organized as follows: Section
grey level value). The restoration procedure proposed jn [R describes the proposed model with respectively the edge
thus indirectly combines this segmentation-based priodeho sparseness and the sparse representation constraintasand |
with a regularization prior expressed in the DCT domainhe proposed fusion approach of these two constraints in an
However, let us also note that this strategy is also speltyficaiterative deconvolution Landweber process. Last, sectibn
designedo combine a segmentation result and a DCT filteringresents a set of experimental results and comparisons with
techniqgue and cannot be generalized in order to combiegisting restoration techniques.

several other regularizers or penalty terms.

A s.,implefsftratedgy to corr;nbine two diffelrer_n_penalty fur:;;éon Il. PROPOSEDAPPROACH
consists of introducing these two regularizing terms diyec . o . .
in the cost function to be optimized with, for example, twéA' Edge Preserving Constraint in the Spatial Domain
adaptive weights, generally proportional to the residomaige The first regularization term used in our restoration model
r [19]. Another strategy consists of the combination of thié formulated in the (image) spatial domain and promotes a
two penalty termsvia an edge indicator function (controlled(regularized) restored image with spatial smoothness and
by the observed image) switching between them, such as tRelge-preserving properties. To this end, we have consldere
defined (somewhat similarly) in [20], [21] in which the totathe GGMRF prior model proposed by Bouman and Sauer
variation penalty term and a fourth-order filter are corijgin in tomographic reconstruction [28], [31]. This prior has a
used in order to preserve edges while avoiding the stairc&ggnsity function of the formPx (z) o< exp{—vQ(x)} with
effect in smooth regions. In a more general way, to fuse sévethe following regularization term
constraints or equivalently several prior knowledges fog t
image to be recovered, a Bayesian strategy has been recently 2(x) = Z Bstlzs — 2! (1)
proposed in [22]-[24] which uses a statistical prior in prod stz
form. Such product type priors combine multiple image prig¥herel < ¢ < 2 is a parameter controlling the smoothness of
models by assuming that the local discontinuities of thegenathe image to be recovered and/or the sharpness of the edges
(ie., its edges) given by different local edge models ,(i.¢0 be formed in the restored image,; = (2v2 4 4)~! or
different high-pass filters) are Student-t distributedoider to (4 + 4v/2)~') depends on whether the pair of neighboring
bypass the difficulty of evaluating the normalization canst Sites (relative to the second order neighborhood system), o
of this product type prior, the authors in [22]—[24] propase binary clique<s, ¢> is horizontal/vertical or right diagonal/left

use a constrained variational approximation methodolmgy €iagonal. This prior model has the advantage of including
infer the restored image. a Gaussian MRF prior foy = 2 and a more interesting

The approach proposed in this paper is different and us%%ge-preservmg absolute-value potential function wita 1

: . . omewhat similar to thé,; regularizer proposed by Rudat
another fusion strategy. More precisely, our model simply ", L L
) " . . . dl. in [8]. In the regularization framework and under this first
exploits an additional constraint (called in the followm% ; ) .
. ) S : . . onstraint a restored image can be seen as a solution to the
rescaling operation”) whose goal is to iteratively balanc . ) . : o
: ; : following penalized likelihood cost function to be optirat:
the influence of two (but possibly several) different penalt
fqnchops, egpressed by each image prior model, cpn_ng a 5= argmin{Hy — hx |2 +79(x)} 2)
simple iterative Landweber deconvolution process. In taatuli z
compared to [22], [23], our approach tends to enforce tvwsherey and = represent respectively, the observed blurred
different regularization strategies, respectively egpegl in and noisy image (degraded by an additive and white Gaussian
the spatial and frequential domain, by promoting a restoredise with variance?) and the undistorted true imageis the
solution both efficiently denoised due to a DCT denoisingoint Spread Function (PSF) of the imaging systemd « is
procedure [25]-[27] and edge-preserved due to a GGMRe linear convolution operator. For the convolution pdhae,
prior model [28]. we herein assume that the image is toroidal, i.e., peritigica

More generally, the concept of combining several classifierepeated. The first term of this cost function expresses the



fidelity to the available data and the second encodes th@ixels) extracted from the current image estimate. These tw
spatial smoothness and the local edge-sparsity cons{ra&nt thresholding rules enables tlzepriori sparse representation
the expected properties) of the true undegraded imags. (in the DCT domain) of the solution image to be recovered,
the regularization parameter controlling the contribatd the or equivalently favors a generalized Gaussian law for the
two terms. A maximum penalized likelihood estimate of thdistribution of these DCT coefficients [35].

undegraded image, under this GGMRF constraint, can be In order to reduce blocky artifacts across the 8 block

found t_’y a classical gra(_Jllent descent methpd. To th'_s erE)‘?Jundaries, a standard approach (already used in the wavele
the derivative of((z) at sites, has the following analytical denoising community) is to make this transform translation

H / _ —1
expressiontY'(x) = ¢ 3 i Bstlrs — @] "'89Mzs —24)  jnvariant, ie., to use the DCT of all (circularly) trangldt
and leads to the following iterative steepest descent pureg versions of the image herein assumed to be toroidal [36],

which moves the penalized likelihood estimates in the rie@at[37]' This thus implies (for a set of x 8 blocks extracted

gradient direction from the image) computing a set &f horizontal shifts and
gl = g oI p#s (y — hos M) —A M /217y (3) 8 vertical §hifts @ 64) translated images Whigh will then be
DCT-denoised with the soft or hard thresholding rule andthe
e averaged in a final step (see Algorithm 1).
It is worth mentioning that a possible restoration procedur

whereh# (i, j) = h(—i,—j) (the coordinategi, j) represent R e ; )
the discrete pixel locations and fdr symmetric, we have using th|s single DCT_den0|S|ng constraint WOUId consist of
h# = h). After derivation of Eq. (2)n[" is a constant equal alternating an ML estimate (see Eg. (3) with= 0, i.e.,

to 1 for all n. Nevertheless we can easily speed up this iterati\(;ésentia”y a deblurring procedure) followed by a thresing

search procedure by adaptively changinyy at each iteration operation in_ the DCT domain (-i.e.., mginly a denoising pro-
according to the following equations [32] cedure) until a convergence criterion is met. This procedur

(called DCT-gradient in Tables 4 and 5 and also defined in
Section [lI-A.2) will be compared (in Section IlI) with a
restoration procedure combining this DCT constraint along
with the GGRMF penalty term.

[n]12
o ]

L S | i (n] — p# _ o [n]
= Thx g2 with ¢ hs (y — hx 2'™) (4)

where, in this notation, pixels are organizedqt! and in
h % ¢I™ in lexicographic order as one large column-vecto : -
For " = 0, the iterative procedure defined in Eq. (3) is thg' Fusion of Regularization Terms

(accelerated) well-known Landweber algorithm [33]. The goal of this work is to propose a restoration procedure
which promotes an acceptable restored image combining thes

two previously mentioned regularization constraints ehil
ensuring the likelihood fidelity, i.e., by finding an estimat

The second constraint used in our restoration model dsensuring an acceptable minimum for the likelihood energy
formulated in the Discrete Cosine Transform (DCT) domain by — h * z||? under these two constraints. Equivalently, we
promoting a restored image efficiently denoised. To this andwould like to restrict the types of restorationa (riori)
convenient way to impose this constraint consist of applyin defined as acceptable solutions as those combining these two
each of these coefficients (of each individual block of §z& complementary spatio-frequential regularizing constsai

pixels of z[")), a simple thresholding operation. An example of The problem is not trivial since, the simple solution which

such constraint in the frequency domain is the so-callet S%ould consists of alternating the two regularization syés,

thresholding operation classically used in the waveleedasl_e” an iteration of the gradient descent of the penalized

denoising approach [14], [34], [35]) of each DCT coefficienfyqjingod function (Eq. (3)) followed by a DCT denoising
according to the following rule step (Algorithm 1), leads to restoration results equal tws¢h
X2 = sgn (w) (Jw| — T4 (5) obtaine_d in_ the case of either the exclusive use (_)f the GGM_RF
. _ ~ regularization term or the DCT-based constraint, accgrdin
Whef? ()4 is Qeflned as(z)+ = max{z,0} and sgii.) is to the value given to the two regularization parameters, (i.e
the sign function (sgix) = 1, if < 0, and sgfr) = ~ for the GGMRF regularization term arifl for the DCT
—1, otherwise). Another example is the hard version of thi’ﬁ)nstraint).

soft-thresholding operation, leading to the following dhar A rescaling problem, inherent to the fusion of these two

B. Denoising Constraint in the Frequential Domain

thresholding rule regularization terms exists and must be treated. To this end
. 0 if |w<T we have to balance the influence of these two different
A0 = { w  otherwise regularization strategies (in the sense of a criterion othr

. _ _ ~_constraint), during the iterative search process of thatiswi

in which 7" is a threshold level that acts as a regularizatighage. This rescaling will avoid generating an overwhefmin

parameter and we recall that is one of the coefficients importance for one of the two regularization constraintsrov

obtained by the DCT transform of the block (of si2ex 8  the second (thus making the fusion of the two regularization
) _ _ terms inefficient). This rescaling problem is somewhat
We assume throughout this paper that the degradation me&H and id ical h . . | ificati h

variance of the white Gaussian noise) is known. It might ergianalytically ! _ent'ca to the One. ocgurrlng n Pattem classification whe

or given numerically based on previous estimations or caiitn experiments. different features with different units are blended togetlin



this case, the rescaling step prevents the similarity nreasu
(used to evaluate the distance between feature vectons) fro
(wrongly) giving an overwhelming importance to a feature
having a larger unit range. In this work, in order to avoid
generating an overwhelming importance for one of these| | #” Inputimage to be denoised at iteration
two penalty terms over the second (and thus making thel | #"] Denoised estimated image at iteration
fusion of these two regularization strategies inefficiemtg T Threshold

adaptively balance the two regularizers by adding, to the
iterative search process of the restored image, the fallgwi for All (8 horiz. and8 vert.) shifts ofz[" do
adaptive empirical constraint:

Algorithm 1
DCT-Based Denoising Step (- (z™))

for All [8 x 8] blocks extracted from[”) do

CONSTRAINTA1: 1. DCT Transform
“The residual image added to the likelihood image, to each 2. Threshold the obtained DCT coefficients
iteration of the iterative search process, by the GGMRFeloas with the hard thresholding rule
constraint and the DCT-based constraints should be equal in )
a norm sensé. A 0 if |wl <T

T w otherwise

In our application, the likelihood imagé@) is the solution or the soft thresholding rule
image obtained at iteration, without the n'th constraint, soft _ sgn(w)(|w| 7).
i.e., the image obtained by Eq. (3) with™ = 0 or the r _
so-called Landweber estimate. The residual image designat 3. Inverse DCT of these thresholded coeffi-
the additive correction image added (at each iterationhéo t | clents
likelihood image by the presence of each constraint. In #8sec | > Unshift the filtered image and store it

of the GGMRF constraint, the regularization adds, at iterat
n, to the image likelihood the corrective tery!™ Q' (z1") ||
(see EqQ. (3) and Algorithm 2). In the case of the DCT-
based denoising constraint (without the GGMRF-constyaint
this residual image is simply (at each iteratiorthe difference
image between the DCT-denoised likelihood image minus the
likelihood image, i.e.,|Yr(zl™) — 2. In this ex-
pression,Yr(.) designates thEDCT-THRESHOLDING INVERSE T _{ 020 if 02<10 7
DCT] operator with the thresholding operation according to ) 060 if 02>10

the rule given by Equations (6) or (5) with the regularizatio
parameter valud .. 4% is then estimated at the first iteration of our restoration

#[" — Averaging of thes&4 denoised images

or, for the soft-thresholding rule, by

‘ 1

To summarize, our iterative procedure (see Algorithm Zjgorithm and adaptively change in order to adaptively ada
thus alternates between an ML estimation of the image {®r each iteration of our iterative algorithm) the resitinzage
be restored (i.e., a classical Landweber iteration) ples tRdded to the likelihood image between the two sparseness
GGMRF penalty term and an ML estimation plus the hargonstraints. Giver’, v} is thus estimated by
thresholding constraint in the DCT domain (see Algorithm
2). The threshold level,,., (or the regularization parametery[”}_argm[ir]l{wTT(iWL”) — i?HEH]H —Hv[”} Q' (2 }
in the DCT domain) is set according to the noise variamce i L
(herein assumed to be known) and the regularization pasamet Bocr Boomrr
~ of the spatial GGMRF penalty term is adaptively estimated (8)
at each iteration of thg restoration procgdure, in or.der \t/v%ere I is the £1-norm and Bee: and Beowe represent
respect equality constraint Al (this estimation proceduite . : . IRF
be made explicit in Section 11-D). The following section dse respectively the residual image added to the likelihoochahe
i " ) s . """ jteration of the restoration process. In our applicatighi! is
this additional constraint A1 in order to adaptively estiena . : . .
("] as a function ofl" during the iterative search restorationeStImateOI by a dichotomy search algorithm based on the sign
7 9 of (Boer — Beowre)- We stop the procedure when the relative

procedure. distance between two successive values is less tigar.
During the iterative restoration procedusé is then refined,
_ at each step: of the iterative restoration process, with the
D. Parameter Selection following procedure
In our restoration modell” is preliminary and empirically ]
set according to the noise standard variatioof the consid- ian :{ 0'957[71} if BGG_MRF > Bocr 9)
ered degradation model by the following procedure 105~ otherwise

T .60 if o02<10 ©6) Determination of Number of IterationsThe convergence
P 220 if 02> 10 criterion of the proposed restoration procedure is emgiisic



Algorithm 2
GGMRF-DCT-based restoration algorithm

o Variance of the noise

Threshold value of the sparsity constraint
DCT denoising (see Algo )

~lm Regularization value of the GGMRF
model at iteratiom

Yy==z Observed (blurred and noisy) image
[n]12
O ] pth(y— hail)
al™ = FrRIE and ¢"™ = A7 (y—hxz'™)
T 1.60 if o2<10
Hard 220 if 02>10

|. Estimation of ~!°!

3 =argmin{ || ()42~ o @)}
v

with 20 = 200 4 [0 p#s (y — b 2[0)
Il. Restoration

while n < max{4007 %} do

1. U ginl g ol gy (y — b+ 2"
« if nis odd
lnt1)  glnt] —~"l a2y (see Eq. (3))
> Booure :HV[”] ' (zl)

,
o if n is even

L P N

> Boer = ML ML

TT(jj[n-ﬁ-l]) _ plnt1] H
1

2. Iterative rescaling of v »

0.954™ if Booure > Bocr
A+l

otherwise

1.05

n_<—n+1

defined by

1500}

Number of iterations= max{400, — (10)
(o

IIl. EXPERIMENTAL RESULTS

A. Set Up

TABLE |

BLUR, NOISE VARIANCE AND BSNR (DB) FOR EACH EXPERIMENT

[ Blur | o> | BsNR

Expl || 9 x 9 uniform .308 || 40
[CAMERAMAN 256 x 256]

EXp2 || hij=(14+i%4+52) "1, 5= —7,. .., 7 2 32
[CAMERAMAN 256 x 256]

Exp3 || hij=(14+i%4+52)"1, 5= —7,. .., 7 8 26
[CAMERAMAN 256 x 256]

Exp4 || [1,4,6,4,1]t[1,4,6,4,1]/256 49 16.5
[LENA 512 x 512]

EXp5 || 5 x 5 uniform 33.3 || 20
[CAMERAMAN 256 x 256]

EXp6 || o[14+(i2+5%)/16]72 i,j=-9,..., 9 || 62.5 || 17
[CAMERAMAN 256 X 256]

given in [38]. In order to compare the efficiency of our

restoration model using a regularization term fusion-dase
procedure to a restoration model using a single GGMRF or
DCT prior model, we have considered the following

1)

2)

3)

The restoration algorithm using only the GGMRF prior
model ¢ = 1). In this case, the regularization parameter
~ that controls the contribution of the likelihood and
prior terms is given byy = 02 /6.0, which ensures (after
several trials and errors) a nearly optimal restoration
result for all the experiments tested in this paper.

The restoration procedure using only the DCT-based
complexity prior model. More precisely, this procedure
simply leads to the iterative Landweber [33] procedure
(Eg. (3) with v = 0), each iterative step of which is
regularized by the DCT denoising step (using the hard-
thresholding rule and the estimation procedure given by
Eq. (6)). For our tests, this algorithm is called the DCT
gradient.

The proposed restoration method (summarized in pseudo
code in Algorithm 2), i.e., the combined GGMRk

and DCT-based (with the hard-thresholding rule) de-
noising constraints with the adaptive scheme to weight
the two different regularization terms and the parameter
estimation procedure given by Equations (6), (8), (9) and
(20).

B. Comparison with State-of-the-Art Methods

We now present a set of experimental results and compar-
isons illustrating the performance of the proposed appgroac

To this end, we have replicated the degradation models (see
Table 1) generally used by several authors [1]-[7], [9]}+[14

[39]-[42] [43]-[45] and we have compared the ISNR result

For the implementation of the DCT-based denoising step,

we have used the fa8tx 8 FFT2D DCT package implemented

given by our approach, i.e.,

|z -yl

[l — &[>

ISNR = 101log; (11)

in C code by Takuya Ooura (functiom>CT8Xx8s tested in and the other published state-of-the-art methods respécti
program SHRTDCT.C) and available online at http addressn Tables 2 and 3. In these experiments, original images are



Fig. 1. From top to bottom, original image, Noisy-blurredage for Expl
(see Table I) and restored image using the proposed rastorapproach
ISNR=9.02 dB (see Table II).

Fig. 2.

ISNR=5.33 dB (see Table II).

From top to bottom, original image, Noisy-blurredaige for Exp3
(see Table I) and restored image using the proposed rdstorapproach
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Fig. 3. Evolution of the SNR improvement for ttta MERAMAN image with

the Exp3 and Exp5 degradation models.




TABLE Il
PERFORMANCE COMPARISON BETWEEN OUR ALGORITHM AND OTHER
RESTORATION METHODS FOR EXPERIMENTE&XP1-4

ISNR (dB)
Methods Expl Exp2 Exp3 Exp4
GGMRF-DCT-gradient 9.02 7.76 5.33 4.48
DCT-gradient 8.10 7.01 5.13 4.14
GGMRF-gradient 7.64 6.71 4.61 2.59
(2009) Oliveiraet al. [7] 860 518 7.42 278
(2008) Dabovet al. [39] 8.34 - - 4.81
(2008) Mignotte [4] 781 714 524 384
(2006) G.-Colon & Portilla [9] 7.33 7.45 5.55 -
(2006) Bioucas-Dia%t al. [10][11] 8.52 - 2.97
(2006) Chantat al. [1] 8.91 - - 3.77
(2006) Foiet al. [2] 858 8.29 6.34 455
(2006) Mignotte [3] 823 758 570 1.63
(2006) Bioucas-Dias [13] 8.10 7.40 5.15 2.85
(2005) Figueiredo & Nowak [12] || 8.16 7.46 5.24 2.84
(2004) Katkovniket al. [40] 8.23 - - -
(2004) Neelamanét al. [5] 7.30 - - -
(2003) Figueiredo & Nowak [14] || 7.59 6.93 4.88 2.94
(2001) Jalobeanet al. [41] - 6.75 4.85 -
(1998) Liu & Moulin [42] - - - 1.08
(1996) Banham & Katsaggelos [6]| 6.70 - - -

TABLE IlI
PERFORMANCE COMPARISON BETWEEN OUR ALGORITHM AND OTHER

RESTORATION METHODS FOR EXPERIMENTEXP5-6

ISNR (dB)
Methods Exp5 Exp6
GGMRF-DCT-gradient 3.99 2.96
DCT-gradient 3.93 2.75
GGMRF-gradient 3.35 2.47
(2008) Mignotte [4] 4.24 2.99
(2006) Mignotte [3] 3.50 1.90
(2000) Molinaet al. [43] 2.22 (PsNR=21.1)
(1998) Mayet al. [44] 3.43 -
(1997) Charbonnieet al. [45] (in [43]) 1.86 (PsNR=20.8)

TABLE IV
TIME IN SECONDS AND ITERATION NUMBER FOREXP1-6

| Time (sec)| Iterations
Expl | 525 4869
Exp2 | 117 750
Exp3 | 62 400
Exp4 | 78 400
Exp5 | 74 400
Exp6 | 1068 400

CAMERAMAN (experimentsl, 2, 3, 5 and 6) of size 256 x

256 and LENA of size 512 x 512 (experiment4). Table 1
summarizes the different degradation models used, whieh ar
defined by the blur type, the variance of the additive white
Gaussian noise and the resulting BSNR

VAR (h * )

BSNR= 101log,,, . (12)
ag

i.e., the ratio between the variance of the blurred imagkaout
noise and the variance of the noise for each of the expergnent
The best ISNR results provided by the existing restoration
algorithms and the results provided by our approach for each
degradation level are indicated in bold.

C. Comparison with the SA-DCT Regularized Deconvolution

Since the SA-DCT deconvolution algorithm proposed by
Foi et al.in [2] also uses a DCT-based denoising step, a com-
parison and a discussion is herein given concerning diffare
of models, estimation/sensitivity of the internal paraengtand
computational complexity of the two restoration methodse T
SA-DCT regularized deconvolution algorithm proposed ih [2
is a non-iterative two-step restoration procedure whoss fir
step is essentially a deblurring stage given by a reguldrize
Wiener filtering. The second step is a DCT filtering, applied o
this resulting deblurred image, computed on several palgfo
supports whose shape are defined by a preliminary segmenta-
tion technique (called LPA-ICI for local polynomial appiex
mation - intersection of confidence intervals). To sumn&riz
the SA-DCT in [2] thus efficiently fuses a DCT-based filtering
and the result of a segmentation applied on the deblurrad inp
image by a Wiener filtering. The segmentation used in this
method (as in [3]) implicitly exploits an image prior model
expressing that any real-world images can be approximated b
a union of a number of nonoverlapping and distinct regions
(of uniform grey level value). In comparison, our restarati
algorithm aims at fusing a DCT-based sparsity and an edge
preserving GGMRF-constraint which favors edge sparsity in
the recovered image in order to doubly regularize an itezati
deconvolution procedure. The performance of the SA-DCT
regularized deconvolution algorithm depends on two regula
ization parameterse{ ande;) which are manually tuned and
are different for each experiment. Respectiv@y13, 0.040),
(0.038,0.045), (0.062, 0.030) and finally(0.10,0.12) are cho-
sen in [2] by the authors for Expl, Exp2, Exp3 and Exp4 and
are optimal for these experiments (see the Matlab procedure
demaSADCT_deblurringcopy.m available online at http ad-
dress given in [2]). By comparison, our restoration method
relies on one regularization function (see Eq. (6)) whicthes
same for all images and degradation models.

D. Discussion

Table 6 shows the time in seconds and the number of itera-
tions that each restoration took for each one of the consitler
degradation models according to Eqg. (10) (cf. Table 1) and fo
our algorithm (cf. Algorithm 2) (system used: AMD Athlon
64 Processor 3500+.2 GHz, 4435.67 bogomips and non-
optimized code running on Linux). The source code (in C++



language) for our algorithm (with the set of initial, degedd shrinkage-thresholding operation in the wavelet domagukh
and restored images) is publicly available at the followhttlp be equal in a norm sense.

address www.iro.umontreal.eahignotte/ResearchMaterial/

in order to make possible eventual comparisons with future
restoration methods. Note that our restoration proceduunélc

be computationally optimized since numerous fast Very earg In this paper, we have presented an efficient and simple
Scale Integration (VLSI) chips exist for computing the DCHoubly regularized restoration procedure combining efitty
transform more quickly. two different regularization strategies respectively resged

Wi tice that th d method leads t t.tin the spatial and frequency domains. Due to an adaptive
€ can notice Ihat the proposed method leads o competitiye, rescaling scheme, used to balance the influence of these

restoration results for various levels of blur and noiserdeg two different regularizers, the resulting restorationatgy

dations in benchmark tests and proyldes a good comprom etforms competitively among the recently reported state-
between restoration results for the high and low BSNR casg. o a1t restoration schemes for different BSNR, blud an

In addition, the proposed restoration method, combinirey trﬁ . . . . . . .
. N ) oise levels, while being simple to implement. This fusidn o
GGMRF and DCT constraints always significantly improve I v ! g Simp Imp 'S Tus

tegularization terms can be a simple way to better model the
the ISNR result compared to a single GGMRF or DCT pri 9 P y

. : . . Shtrinsic and complex properties of the original undegrhde
model in all the con_s_ldered degradation mo_d‘?'s- This te‘ndsiltnage to be recovered by simultaneously incorporatingediff
demonstrate the ability of our strategy to efficiently fusese

. . . ) ent types of knowledge concerning the types of restoratgons
two different constraints on the restoration result. Fegud yp g g yp

and 2 show visually some restoration results for Expl ar?drlorl defined as acceptable solutions.
Exp?. Let us also add that the estimation®f,, (which then
ensures the estimation 9j and the number of iterations could
be improved since better ISNR results can be achieved if weThe author would like to thank the anonymous reviewers for
supervise (by manually tuning) these two values for eadkdestheir many valuable comments and suggestions that helped to
experimental result presented in this paper. Fig. 3 shows improve both the technical content and the presentatiolitgua
evolution of the ISNR and its convergence as a function of tieé this paper.

number of iterations for respectively the degradation n®de

Exp3 and Exp4. The soft-thresholding rule (Algorithm 1 pste
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