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Non-Local Pairwise Energy Based
Model For The HDR Image

Compression Problem
Max Mignotte

Abstract—We present a new energy based compression model
for the display of high dynamic range images. The proposed
tone mapping method tends to exploit the biologically-inspired
dynamic retina concept which is herein mathematically expressed
via an image representation based on the specification of the
statistical distributions of the non-local gradient magnitude. In
this framework which also operates the notion of non-local
gradient recently put forward by Gilboa and Osher, the detail-
preserving contrast reduction problem is therefore expressed by
a energy based model with non-local pairwise pixel interactions
defined on a complete graph whose cost function is locally
minimized by a conjugate gradient descent procedure. The
experiments reported in this paper demonstrate that the proposed
compression method is efficient and provides pleasing results
on various images with different scene contents and performs
competitively compared to the best existing state-of-the-art tone
mapping methods recently proposed in the literature.

Index Terms—High dynamic range (HDR) image display,
compression, tone mapping, contrast reduction, Gibbs energy
based model, conjugate gradient minimization/optimization, non-
local gradient distribution, dynamic retina concept.

I. I NTRODUCTION

BY their ability to directly store the amount of light
measured by the camera and thus to acquire the whole

dynamic range of radiance that can be observed in the real-
world scenes (which is close to a contrast ratio with an upper
bound of105 : 1), High Dynamic Range (HDR) images are
nowadays becoming increasingly popular and important in
computer graphics (CG) and computer vision (CV) applica-
tions. HDR images, which can be easily constructed [1], [2],
[3] by compiling/combining different standard photographs of
the same scene with an increasing time range of exposure, have
many advantages over standard Low Dynamic Range (LDR)
images. They can more accurately represent the wide range
of intensity levels found in real scenes ranging from direct
sunlight to faint starlight or deep shadows, simultaneously
preserving fine textural details of an object both in highlight
and shadow areas: a characteristic which remains impossible to
capture in a single photograph or with traditional LDR devices
(monitors, projector, printers, etc.) displaying a traditional
digital 8-bits image per color channel (i.e., a 24-bits per pixel
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color image) thus using a contrast ratio of256 : 1. This is
why HDR images are often calledscene-referred, in contrast
to traditional digital images calleddevice-referredor output
referred, because they are specifically made for common LDR
display devices.

In the past decade, there have been a number of research
initiatives undertaken by the CG community concerned with
displaying HDR images on LDR display devices (i.e., tone
mapping methods). They can be classified into two broad
groups (and an overview is given in [4]), namely global (spa-
tially invariant) or local (spatially variant) mappings. DiCarlo
et al. [5] refer to the former as tone reproduction curves
(TRC) and to the latter as tone reproduction operators (TRO).
Amongst the existing (simple and computational efficiency)
TRC methods, which use the same mapping function for all
pixels, we can cite the simple stretching and the histogram
equalization techniques which both suffer from severe lossof
contrast and visibility on the final LDR display. An interesting
TRC model is the global histogram adjustment proposed by
Ward Larsonet al. [6] that can be viewed as an improvement
of the classical histogram equalization technique. In their
method, the empty portions of the histogram are cleverly dis-
regarded in order to save more local contrast. This technique
is nevertheless limited since it does not work efficiently ifthe
luminance distribution is almost uniform. Another TRC model
is the approach proposed in [7] in which the tone reproduction
is achieved by histogram equalization of macro edges.

Spatially variant or local TROs are more interesting (and
perhaps more appropriate), since they take local spatial context
(i.e., a spatial neighborhood) into account thus trying to mimic
the Human Visual System (HVS) that is mainly sensitive to
local contrast. In our opinion, these TRO methods (some of
them have been compared in terms of visual differences in
[8]) can be classified into four main categories.

The first category is based on the interesting multi-scale
image decomposition based technique initially proposed by
Tumblin et al. in [9]. This approach consists of: decomposing
an image into a piecewise smooth base layer or imageprofile
(capturing large scale variations in intensity) and a residual
detail layer (capturing the details in the image), strongly
compressing the contrasts of this profile to fit it into the
LDR display range and finally adding back all small details
with little or no compression. To this end, Tumblinet al. use
partial differential equations inspired by anisotropic diffusion
in order to extract details from the image at various spatial
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scales. Durandet al. [10], Farbmanet al. [11] and Xu
et al. [12] exploit respectively an edge-preserving bilateral
filter and the level set method in order to obtain the above-
mentioned image profile. Another multiscale decomposition
based technique using symmetrical analysis-synthesis filter
banks and automatic gain control has been proposed in [13].

The second category is based on a strategy combining a
global and a local tone mapping technique. Examples of this
strategy include the approach proposed by Reinhardet al. in
[14] which tends to mimic the photographic process and whose
local method is also based on a edge-preserving filter and the
recent work of Shanet al. [15] that performs (in a final global
optimization procedure) a set of local linear adjustments on
small overlapping windows over the entire input image.

The third category is based on methods that physically
attempt to model the local sensitivity-adjusting process of
the HVS for high contrast scenes. Amongst these HVS-based
models of local adaptation, Pattanaik [16]et al. have used a
multiscale decomposition of the image according to compre-
hensive psycho-physically-derived filter banks and extensive
psycho-physical data. The retinex model has also recently
inspired several research projects [17], [18], including the
multiscale center/surround retinex model of color perception
of human vision proposed by Rahmanet al. [19], [20] and
the retinex-model-based adaptive filter where the luminance
channel is defined by the first component of a principal
component analysis [21], [22]. Other interesting approaches
include the local-eye adaptation method [23] that compresses
the dynamic range of the luminance channel by simulating the
photoreceptor responses in the retina and the simple functional
model of human luminance perception proposed by Ashikhmin
[24] (whose method can also be categorized in the first TRO
group since his tone mapping process tends toinfusedetails
back into a scene), the iCAM image-appearance model [25]
that has been extended to render HDR images for display or
the Perceptually inspired TRO model proposed by Gattaet al.
[26].

Finally, the fourth category can be considered as asymbolic
compression technique. This group of techniques consists of
the HDR image compression in a transformed space, repre-
sentation or domain, in which the tone mapping problem is
easier (or more rightly expressed) to solve. An image inverse
transform leads back into the original (generally luminance)
domain. We classify the excellent work of Fattalet al. [27]
into this category since the authors use, as transformed space,
the gradient domain and as inverse transform, the solution of
a Poisson equation on the modified (i.e., compressed) gradient
field.

Our work can be classified into the third and/or the fourth
categories of the tone mapping method, i.e., one that attempts
to model the local adaptation process of the HVS for high
contrast scenes and one that tries to solve the problem in a
transformed representation/space.

Let us now justify our model for the third category. First
let us mention that constructing a local adaptation visual
model is not easy due to our insufficient understanding of
the HVS. Nevertheless, we know that the local adaptation of

the HVS is based on two important characteristics described
in the well-known Munsell experiments [28]2. In addition
to the classical non-linear compression ability of the HVS,
the second characteristic is that this non-linear compression
is done locally and pixel pairwise (or more preciselypanel
pairwise in the case of the Munsell experiments). In fact, our
subjective perception of the luminance of a fine and subtle
detail (both in a deep shadow and in highlighted areas) or the
contour perception by the HVS can only be done compara-
tively, after multiple pixel pairwise comparisons. Biologically,
this phenomena is explained by the fact that our eyes are never
still, even during fixation3 [29], [30]. The presence of random
vibrations (which follows a Gaussian distribution centered on
the target [31]) in the human eye means that the pairwise
comparison process is not only locally restricted to a first
order neighborhood (i.e., the four nearest neighbors) as it
would be in a computer estimating the contour magnitude
with a local gradient by mathematically using a classical finite
central difference formula. This leads to a straightforward
model that can be easily adapted for HDR compression. This
model consists of finding a mapping which replaces the value
of all (local and spatially Gaussian distributed) pairwisepixel
differences, existing in the image, close to their respective
compressed difference value.

Let us now justify our model for the fourth category. The
image model which is commonly used for digital image pro-
cessing, CV or CG applications is generally based on the well-
known pixel (or picture element) notion. In this paper, and as
previously noted, in order to more rightly express the HDR
compression problem with the above-mentioned biologically-
inspired considerations, we have considered a new image
representation in which the new fundamental and smallest
representative element in the image is no longer the pixel but
rather the pixel pair. In this transformed model, the compres-
sion problem is more rightly expressed (because somewhat
biologically justified). After the compression process of the
dynamic range using the transformed image model, our appli-
cation resorts to a non-linear optimization problem in order to
lead back into the original image representation domain using
the classical pixel, as fundamental picture element.

The remainder of this paper is organized as follows : Section
II describes the proposed energy based HDR compression
model. Section III describes the optimization strategy used
to minimize the objective cost function related to our model.
Finally, Section IV presents the set of experimental results and
comparisons with existing dynamic range reduction models.

2In this experiment, an observer is shown a set ofn panels, of which the
leftmost panel is black and the rightmost panel is white and is then invited to
adjust the luminance of each of the in-between panels until he is satisfied that
the panels form steps of equal-brightness (the brightness is our subjective
perception of the luminous intensity). The observer will invariably set the
panel luminances so that the ratio between each pair of panelluminances is
equal, thus defining a logarithmic serie.

3The involuntary small vibrations of the eyes and the naturalsaccadic
eye movements process (now well-known under the name ofeye tremoror
microsaccadesunder thedynamic retinaconcept) play this important role in
luminance compression but also in fine detail and edge detection and robust
(to noise) restoration process [29], [30], [31]. It is clearly established that
without these microscopic movements the photo-receptors do not compress,
saturate and the retinal images disappear [31].
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II. PROPOSEDCOMPRESSIONMODEL

A. A Pairwise Energy-Based Model

As already noted and previously justified (see Section I),
given an HDR image with luminanceX to be compressed, our
tone mapping model consists simply of locally searching a new
luminance mappingX̂ in which all the local pairwise pixel
differences (between sitess and t), existing in the luminance
image, are close to their respective compressed difference
value (βs,t). If this mapping is estimated in a minimal mean
square sense, then̂X is the solution image that minimizes the
following objective function:

X̂ = arg min
X

∑

s,t
s 6=t

gs,t

(

β2

s,t − (Xs − Xt)
2

)2

(1)

whereXs denotes the luminance mapping at site (or pixel)s
and the summation

∑

s,t
s 6=t

is over all the pair of sites (i.e., for
all sitess and for all the pair of sites includings) existing in
X . As already said, the set ofβs,t stores the set of compressed
difference values related to each existing pairwise pixel dif-
ference. Thegs,t positive weighting factor thus simulates the
(spatial) decreasing (somewhat Gaussian) distribution effect
of the pairwise comparison process by simply giving more
importance for pairwise comparisons involving pixels thatare
close together. In our application,gs,t = d−1

s,t whereds,t is the
L∞ norm of the distance vector between sitess and t. This
decreasing function acts as a degree of locality since it controls
the number of considered pairwise pixels taken into account
for each site and allowed us to not consider a complete graph
but a square neighbourhood window of fixed sizeNs pixels
(i.e., by just considering the(N2

s − 1) nearest neighbors of
each sites). In our applicationβs,t andgs,t are pre-computed
off line (i.e., before the optimization process).

B. Compression Model

Let us underline that the HDR compression model is, in fact,
completely expressed by the set ofβs,t which will correspond,
as close as possible (after the local optimization process), to
the value of the pairwise pixel difference|Xs−Xt| in the new
luminance mappinĝX to be recovered.

The common approach generally used in tone compres-
sion methods consists of the redistribution of the radiance
values with a sigmoidal transformation (somewhat justified
by electrophysiological studies which have found that the
neurones in the vertebrate retina have an intensity-response
functions with a sigmoid shape [32]). Equivalently in the
gradient domain [27], tone compression techniques consistof
the attenuation of large magnitude gradients (i.e., greater than
the mean magnitude) along with the amplification of small
magnitude gradients. These compression strategies usually
involve considering an arbitrary value of the mean radiance
or gradient magnitude (which will remain unchanged by the
compression scheme) and above all, without considering the
inherent statistical properties of the resulting output LDR
image (compared to the statistical properties of any natural
and real-world images). Indeed, if the statistical distribution
of the luminance value of any real images may be very
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Fig. 1. Repartition of the mean gradient magnitude (absolute value of the first
order difference, averaged over the image) on the Berkeley image database.
This histogram shows us what must be a reasonable value ofσ2

∇x
which

is ultimately also the stopping criterion of our energy-based compression
algorithm related to an image with a photo realistic look anddisplaying a
lot of details.

different, the statistical distribution of the gradient magnitude
follows a (well-known in the denoising community) long-
tail distribution4 mathematically expressed by a two-parameter
density function of the formP (k) ∝ exp (−|k/λ|p) [33]
where p and λ are respectively a shape and a scale factor.

A rapid study on the Berkeley real image database [34]
shows that the shape factorp varies approximately between the
interval[0.1 : 0.5], depending on the image content (exhibiting
natural or man-made objects). The variance of the gradient
magnitude (absolute value of the first order difference) varies
between [0.0005 : 0.009], respectively ranging from very
coarse to highly detailed image (with a nearly quasi flat
gradient magnitude distribution) and a variance distribution
shown in Fig. 1. These two properties remains true for the
distribution of the absolute value of difference involvingsites
far away from more than one pixel (with the variance slightly
increasing as the distance between sites increases).

In contrast to these natural LDR images belonging to the
Berkeley database, the gradient magnitude of a HDR image
exhibit approximately a very sharped distribution (which also
belongs to the above-mentioned two-parameter density func-
tion but with a shape factorp >> 1) and therefore a variance
of the gradient magnitude close to zero.

In order to take into account these statistical remarks,
and the richness of details that any HDR image is able to
render, our compression scheme will be designed to finally
obtain an LDR output image with a nearly flat gradient
magnitude distribution, whose flattening factor (which controls
the richness of details desired in the output LDR image), is
adjusted via a simple control parameter namely the previously
mentioned variance value of the gradient magnitude. To this
end, before the local optimization process, we set theβs,t as
being the values given by a histogram specification method
of the gradient magnitude with the uniform distribution (for
capturing both the high contrast appearance of the scene andits

4This is due to the intrinsic stationary property of real-world images,
containing smooth areas interspersed with occasional sharp transitions (i.e.,
edges). The smooth regions produce small amplitude gradient magnitude and
the transitions produce sparse large-amplitude gradient magnitude [33].
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small low-contrast details) and also by considering a classical
256 LDR of bin values (for the luminance and the gradient
magnitude values, thus ensuring a usual contrast ratio for
the output LDR image). In order to overcome the error due
to the classical discrete implementation of this specification
algorithm, we have used the recent histogram specification
method described in [35] which is based on the definition of
an ordering relation on the values to be histogram-specified.

More precisely, the set ofβs,t values are computed using
the method described in [35] in the following way. LetI be
an HDR image withN × M (length× width) pixels and let
W = 8 · N · M be the number of absolute values of the first
order difference|Xs −Xt| in the original HDR image and let
also H = {h0, h1, ...hZ−1} be the (a priori imposed) target
non-normalized uniform distribution (i.e.,hi = W/Z ∀ 0 ≤
i <Z) with Z = 256 bins. Let finally≺ be a strict ordering
relation, defined among the|Xs − Xt|. The βs,t estimation
then proceeds as follows

• Order theW =8NM pairwise pixel absolute differences:

|Xs − Xt ≺ |Xu − Xv| ≺ . . . ≺ |Xx − Xy|

• Split this pixel absolute difference ordering relation from
left to right inZ groups, such as groupj hashj elements,
i.e., hj couples of pixels.

• For all pair of pixels or pair of sites(s, t) whose the
absolute difference is in a groupj, assignβs,t = j.

C. Discussion

To summarize, our local search (or minimization)-based
compression scheme aims at flattening,via an iterative gra-
dient descent procedure, the gradient magnitude distribution
of an input HDR image, as long as the desired level of details
in the output image is reached. This desired level of detailsof
the output image content is controlled by an internal parameter
which is simply the variance of the gradient magnitude. Fig.
1 shows that highly detailed images are related to variance
parameters between[0.005 : 0.009]. This provides a good
indication of a range of variance related to images displaying
a lot of details.

There are three points worth mentioning concerning the
local search-based HDR compression model expressed by Eq.
(1).

• Since gs,t is a symmetric weight (gs,t = gt,s) and is
defined here as a decreasing function of a positive mea-
sure defined between sitess and t, the objective func-
tion expressed by Eq. (1) thus exploits the interesting
concept of non-local gradient (herein,g

1/4

s,t (Xs − Xt))
recently put forward by Gilboa and Osher in [36] as a
generalization of the gradient operator.

• Secondly, the objective functions to be locally mini-
mized can be easily viewed as a Gibbs energy field
related to a nonstationary (and non-local) Markovian
model defined on a graph with possibly long-range pair-
wise interactions, i.e., binary cliques<s, t> (or pairwise
of pixels). Each binary clique of this MRF model is
associated to a nonstationary potential since this model

is spatially variant and depends on the distance between
the sitess and t.

• Thirdly, it is possible to view this model as (somewhat)
the generalization of the compression model proposed
by Fattalet al. [27] in that it also uses the first order
gradient domain to do the HDR compression task. Let
us also mention that our method also consists of the
amplification and attenuation of non-local magnitude
gradients. Nevertheless, this crucial step is achieved by
considering the statistical properties of the non-local
gradient magnitude of any real images and without
considering an ad-hoc empirical compression formula
(and/or an arbitrary value of the mean radiance or
gradient magnitude which will remain unchanged by this
ad-hoc empirical compression formula).

III. O PTIMIZATION STRATEGY

In our framework, our tone mapping model is thus cast as
an optimization problem of a complex (non-convex) Gibbs
energy functionE. The simplest local minimization technique
is probably the Iterative Conditional Modes (ICM) introduced
by Besag [37]. This method, which is simply a gradient
descent alternating the directions, i.e., that selects a variable
while keeping all other variables fixed, is deterministic and
simple (it does not even require an analytical expression
of the derivative of the energy function to be optimized).
Nevertheless, it requires a good initialization of the image
to be recovered (sufficiently close to the optimal solution).
Otherwise it will converge towards a bad localminima (i.e.,
in our application, an image solution which does not flatten
enough the gradient magnitude distribution). In order to be
less dependent on the initial guess, and since an analytical
expression of the derivative of the energy function to be
minimized is easily available, we have herein used a conjugate
gradient procedure with derivative

∇E(X) = −4 gs,t

∑

s,t
s 6=t

(Xs − Xt)
(

β2

s,t−
[

Xs−Xt

]2
)

(2)

For the initial guess, we use a simple redistribution of the
radiance value with a histogram specification method [35]
with a Gaussian distribution with mean̂µBerk = 0.5 and
variance σ̂2

Berk = 0.05 and 256 bin values (µBerk and σ2

Berk

denoting approximately the maximum likelihood estimation
of the Gaussian distribution parameter vector fitting the aver-
age of the luminance distribution within the Berkeley image
database). This initial image allows us to simply both ensure
an initial LDR of bin values and an initial solution close to an
optimal (i.e., with the adequate level of details) tone mapping
result (see Fig. 2).

For the conjugate gradient, the step size is fixed to0.5
and adaptively decreased by a factor of two if the energy to
be minimized increases between two iterations. We stop the
procedure if either a fixed number of iterations (IterMax=10)
or the variance of the gradient magnitude (controlling the
desired level of details) in the output image is reached or
if the energy of the gradient descent does not decrease any
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Fig. 2. From top to bottom: initial luminance map obtained after the
redistribution of the radiance value with a histogram specification method [35]
(with a Gaussian distribution with parametersµBerk = 0.5 andσ2

Berk = 0.05)
and luminance map obtained after the conjugate gradient optimization routine
on the HDR image STANFORD MEMORIAL CHURCH (768 × 512 radiance
map, courtesy of P. Debevec). Evolution of the energy function E and the
variance of the magnitude gradient along the iterations of the gradient descent.

more. Concretely, if the variance criterion is not met afterthe
maximal number of iterations it means that no more details can
be extracted in the image with our method (local minima). Fig.
2 shows an example of the result of our optimization process
on our initial luminance map.

A. Color Treatment

After the optimization process, we must now assign colors
R,G,B to the pixels of the compressed HDR image from
the luminance mapX̂. To this end, we use the conversion
procedure proposed by [9] and also exploited by [27] in which5

Rout, Gout, Bout =
(Rin, Gin, Bin

X

)ǫ

· X̂ (3)

where we recall thatX and X̂ denote the luminance respec-
tively before and after HDR compression andǫ is a parameter
controlling the color saturation of the resulting image.

The final R,G,B maps are stretched between0 and 255,
but instead of linearly scaling, we authorize that0.25% of the
pixels at the beginning (i.e., channel level0) and/or at the end

5Alternatively, we can use the following conversion formula[38] which
gives approximately the same output result

Rout, Gout, Bout =

(

[Rin, Gin, Bin

X
− 1

]

ǫ + 1

)

· X̂

Fig. 3. HDR compression with different values ofNs (σ2

∇x
= 0.005).

From top to bottom, magnified regions extracted from the HDR image shown
in this paper with respectivelyNs = 3, andNs = 7. We can notice some
aliasing effects or artifacts in color transitions or unrealistic too sharp edges
with a small neighborhoodNs = 3.

(i.e., channel level255) of the color channel are saturated in
order to enhance the contrast when this is necessary (color
maps whose number of pixels are greater than0.25% at each
side of its color channel range remain unchanged).

IV. EXPERIMENTAL RESULTS

A. Set Up and HDR Image Used

In all the experiments, we have thus considered the fol-
lowing set-up. βs,t and gs,t are pre-computed before the
optimization process. For the model, we have thus considered
gs,t = d−1

s,t whereds,t is theL∞ norm of the distance vector
between sitess andt. For each sites, a square neighbourhood
window of fixed sizeNs = 7 pixels (i.e., the48 nearest
neighbors) have been considered for HDR images with less
than2× 106 pixels and (for computational reasons), a square
neighbourhood window of fixed sizeNs = 5 pixels (i.e., the24
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Fig. 4. From top to bottom HDR radiance maps respectively called the STANFORD MEMORIAL CHURCH (768 × 512 radiance map, courtesy of P. Debevec
[39] dynamic range exceeding250.000 : 1) and STREETLIGHT ON A FOGGY NIGHT (1130 × 751 radiance map, courtesy of J. Tumblin [9] dynamic range
exceeding100.000 : 1) with from left to right, the method of Fattalet al. [27] and Durandet al. [10] and our method.

nearest neighbors) for large images with greater than2 × 106

pixels. We treat the image as toroidal (i.e., wrapping around
at the edges). Experiments have shown that the compression
results are better when the neighbourhood size is large but
at the expense of computational time and memory space.
We have used256 bins for the histogram of the magnitude
gradient (ranging from[0.0 : 0.5] and for the radiance values
of an HDR image ranging from[0.0 : 1.0]). Experiments have
shown that there is a relationship between the upper bound
of the histogram of the magnitude gradient (herein set to
0.5 and corresponding, in fact, to the maximal value of the
gradient magnitude that will belong to the output mapping)
and the level of details desired in the output image. For
the initial guess of the gradient descent, we use a simple
redistribution of the radiance value with an exact histogram
specification method [35] with a Gaussian distribution with
mean µ̂Berk = 0.5 and varianceσ̂2

Berk = 0.05 (experiments

have shown that the output result is not very sensitive to
these parameters). For the conjugate gradient, the step size,
the maximal number of iterations and the variance of the
gradient magnitude (controlling the desired level of details)
in the output image is set respectively toγ = 0.5, IterMax=10
and σ2

∇x = 0.005. Finally, for the color treatment, we have
set ǫ to 0.6 and when necessary, we use a final stretching of
the R, G and B map between0 and255 with a maximum of
0.25% pixels saturating at the beginning and at the end of its
color channel.
We have tested our model on popular and publicly avail-
able HDR radiance images (with dynamic range exceeding
100.000 : 1) already compressed by the state-of-the-art tone
mapping methods recently proposed in the literature [40],
namely the method of Fattalet al. [27] and Durandet al.
[10].



JOURNAL OF ELECTRONIC IMAGING, VOL. 21, NO. 1, JANUARY-MARCH 2012 7

Fig. 5. Some magnified regions extracted from some HDR compression results obtained by our reduction model using, from top to bottom; at top row, a
larger neighborhood system, namelyNs = 13 pixels (for comparisons with the results given in the secondcolumn of Fig. 3) and at bottom row; a slower
decreasing weighting functiongs,t(= d−1

s,t
) obtained by settingds,t = constant= 1.0 for all < s, t > (with a neighborhood size setting to the default value

Ns = 7).

B. Discussion

As previously mentioned, the most important internal pa-
rameter is the neighbourhood size. A value greater than8
(Ns = 3) makes the compression results better with less
artifacts (such as halos, aliasing effects or artifacts in color
transitions or unrealistic too sharp edges for some HDR
images).Ns = 7 pixels (i.e., the48 nearest neighbors) is a
good compromise between high quality of the compression
results and computational time (and memory requirement).
Fig. 3 shows different HDR compression results with different
values ofNs. The second most important internal parameter
is our stopping parameter, i.e., the variance of the gradient
magnitudeσ2

∇x which controls the desired level of details in
the output compressed image. Fig. 7 shows different HDR
compression results with different values ofσ2

∇x. Experiments
have also shown that our decreasing positive weighting factor
gs,t decreases the halo effect around light sources. Fig. 5
illustrates the effect of a larger neighborhood (Ns = 13 pixels)
and a slower decreasing weighting factor functiongs,t on some
(magnified regions extracted from some) compression results.
We can notice that a larger neighborhood does not sensibly
improve the results (while increasing the computational time)
and the weighting factorgs,t should not decrease too slowly.
Inversely, as already said, a weighting factorgs,t decreasing
faster, and thus equivalent to a small neighbourhood sizeNs,
is not also recommended (see Fig. 3 withNs = 3 pixels).

In our opinion, our method seems to yield a more photo-
graphic look than either the gradient domain method [27] or
the toning reduction methods based on the multi-scale image
decomposition based techniques such as [10] for which the
blacks are not very deep (and the lights, as the sun, are not
so bright) and for which almost all the shadows are either
removed (cf. Fig. 4) or sometimes omnipresent (cf. Fig. 8).
With our method, there is a good balance between shadow

and bright light. In addition, the blacks are deep and the
whites are brilliant. Besides, the light is more diffuse without
artifacts showing light rays in our HDR radiance map (see
imageFOGGY NIGHT). The details of the image appear more
visible and the image seems to be more contrasted (see Fig.
6). For example, with our method, one can almost read the
registration number of the leftmost car in theFOGGY NIGHT

image, and we can say, almost surely, that there is a ”24” and
a “3” in this registration number. Identification after reading
is not really possible with the other methods. In addition, in
the MEMORIAL CHURCH image, the interior of the church,
showing some gilding (using gold leaf) is sensibly closer tothe
actual color of gold and the white marble color of the stairs is
more white in our compression result, compared to the results
given by Durand and Fattal’s method, in which any color
seems orange. The photographic appearance provided by our
method is certainly mainly due to our stopping criterion, i.e.,
the control of the gradient magnitude variance (σ2

∇x) which is
adjusted in order to produce a classical digital photographic
look. Nevertheless, a less photographic appearance and a
resulting compressed image with more details can be obtained
if we specify a higher value forσ2

∇x thus specifying more
details in the output compressed image. In our tests, the
exponentǫ which controls the color saturation of the resulting
image is constantly set to0.6. For some images, a slightly
higher value for this parameter (e.g.,0.7 or 0.8) would have
produced more intense colors and a visually more pleasant
image, although possibly at the expense of a less photographic
look.

C. Evaluation

In [40], a thorough evaluation of image preference and
rendering accuracy for six (previously published) HDR ren-
dering algorithms has been conducted through several psycho-
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Fig. 6. Magnified region extracted from the images shown in Fig. 4. From
left to right, the method of Fattalet al. [27] and Durandet al. [10] and our
method.

physical and paired-comparison experiments and over several
scenes. In this latter evaluation, the results have shown that
the bilateral filter significantly and consistently outperforms
with significantly higher rating scale (in regard to overall
contrast, sharpness and colorfulness) other test algorithms for
both preference and accuracy, making it a good candidate for
an obligatory or default algorithm that could be included in
future algorithm evaluation experiments [40]. That is why,in
that spirit, an experiment is herein conducted to judge the
performance and/or preference of our tone mapping algorithm
compared to the so-called bilateral filter [10] in a blind
subjective paired-comparison paradigm. In our experiment, 31

Fig. 7. HDR compression with different variance values of the gradient
magnitudeσ2

∇x
(and withNs = 7). From top to bottom, magnified regions

extracted from the HDR image (see Fig. 4) called STANFORD MEMORIAL
CHURCH (courtesy of P. Debevec with respectivelyσ2

∇x
= 0.02, σ2

∇x
=

0.05 andσ2

∇x
= 0.10.

participants took part in the experiment and all were naive
about its purpose. Each image pair, i.e., the tone mapping
result given by our method and the one given by the bilateral
filter, was shown in random order to a participant, who had
to select the one that he or she preferred (with possibly a
“no difference” option) in terms of overall image quality (i.e.,
overall contrast, colorfulness, sharpness, brilliance, aesthetics
aspect and lack of artifacts). These well known images,
publicly available, covers a wide range of image content types
and are called;MEMORIAL (Fig. 4 above),BIGFOGMAP (Fig.
4 below),BELGIUM, SYNAGOGUE (Fig. 10),SMALL -DESIGN-
CENTER (Fig. 8), SMALL -OFFICE (Fig. 9), ATRIUM -NIGHT,
FOYER, INDOOR and VENICE images (compression results
are given in this paper or in our website at http address
www.iro.umontreal.ca/˜mignotte/ResearchMaterial/pagetm).
The results are summarized in Fig. 12 and show that, for4
images out of ten, the participants have preferred the tone
mapping result given by our algorithm (i.e.,MEMORIAL ,
BIGFOGMAP, INDOOR and VENICE). For 3 images, they
have preferred the compression result given by the bilateral
filter (i.e., BELGIUM, SMALL -DESIGN-CENTER and SMALL -
OFFICE) and finally for 3 images, they have visually noticed
no significant difference between these two results or they
have considered them of similar quality (i.e.,SYNAGOGUE,
ATRIUM -NIGHT and FOYER). On average, for this set of310
paired-comparisons (10 pictures multiply by31 observers),
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Fig. 8. Interior scene (1000 × 656 radiance map, courtesy of Marsh Part-
nership, Perth, Australia, picture calledSMALL -DESIGN-CENTER) displayed
with respectively (from top to bottom) the method of Durandet al. [10] and
our method.

42% percent of the selected images came from the bilateral
filter algorithm, compared to48% percent for our com-
pression method whereas10% percent of the images was
considered of similar quality. This experiment demonstrates
that the proposed compression method performs competitively
compared to the best existing state-of-the-art tone mapping
method proposed in the literature. Let us finally add that our
compression model is also perfectible since more specific or
different distributions shapes can be given for eachn-order
non-local gradient magnitudes.

Fig. 9. Window scene (656 × 1000 radiance map, courtesy of Durand
[10], picture calledSMALL -OFFICE) displayed with respectively (from top to
bottom) the method of Durandet al. and our method.

D. Algorithm

The tone mapping procedure takes, on average, approxi-
mately between20 and 40 seconds for a1025 × 769 HDR
image with an AMD Athlon 64 Processor 3500+,2.2 GHz,
4435.67 bogomips and non-optimized code running on Linux.
It is undoubtedly the slowest method amongst the two best
state-of-the-art mapping methods presently existing. Neverthe-
less, it is worth noting that the full multigrid algorithm used
in [27] is a very optimized algorithm and our code is clearly
non-optimized. Besides, it must be noted than our energy
minimization can be efficiently implemented by using the
parallel abilities of a graphic processor unit (GPU) (embedded
on most graphics hardware currently on the market) and can
be greatly accelerated (up to a factor of200) with a standard
NVIDIA c©GPU (2004) as indicated in [41].

The source code (in C++ language) of our algorithm
with the set of presented compressed images and other im-
ages are publicly available at the following http address
www.iro.umontreal.ca/˜mignotte/ResearchMaterial/pagetm in
order to make possible eventual comparisons with future tone
reduction algorithms and visual comparisons.

V. CONCLUSION

In this paper, we have presented a new compression model
for the display of HDR images. This tone mapping method ex-
ploits both the involuntary dynamic retina phenomena, which
was recently used in image processing for the difficult edge
detection problem [31] and the knowledge of the variance
of the statistical distributions of the non-local gradientmag-
nitude related to any natural and real world highly-detailed
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Fig. 12. Performance/preference (in terms of percentage) of the proposed algorithm versus the bilateral filter on some10 well known test images
with 31 participants (visual comparison for all these10 pairs of images are available in our website at http address www.iro.umontreal.ca/˜mignotte/
ResearchMaterial/pagetm).

Fig. 10. SYNAGOGUE scene (769 × 1025 radiance map, courtesy of Fattal
[27]) displayed with respectively (from top to bottom) the method of Fattal
et al. and our method.

LDR images. This enables the proposed HDR compression
problem to be expressed as a Gibbs energy based model or
as a nonstationary Markovian model with non-local pairwise
interactions. Alternatively, this model can be viewed as a local
search or a local optimization problem combined with a new
image model, whose fundamental and smallest representative
element is the pair of pixels and which also exploits the

interesting concept of non local gradient recently put forward
by Gilboa and Osher in [36] as a generalization of the
gradient operator. Numerically, our detail-preserving contrast
reduction model is simply ensured by a conjugate gradient
descent based local search, starting from a good initial guess,
given by the initial HDR image whose gradient magnitude
histogram has been specified beforehand, and stopped when
the desired level of details in the output image is reached.
While being simple to implement, and also perfectible (e.g.,
more specific or different distributions shapes can be given
for eachn-order non-local gradient magnitudes), the proposed
procedure performs competitively among the state-of-the-art
tone mapping methods recently proposed in the literature.
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