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Non-Local Pairwise Energy Based
Model For The HDR Image
Compression Problem

Max Mignotte

Abstract—We present a new energy based compression modelcolor image) thus using a contrast ratio 246 : 1. This is
for the display of high dynamic range images. The proposed why HDR images are often callestene-referredin contrast
tone mapping method tends to exploit the biologically-insped 15 traditional digital images calledevice-referredor output

dynamic retina concept which is herein mathematically expessed .
via an image representation based on the specification of the referred because they are specifically made for common LDR

statistical distributions of the non-local gradient magniude. In  display devices.
this framework which also operates the notion of non-local In the past decade, there have been a number of research

gradient recently put forward by Gilboa and Osher, the detai- . .. . . :
preserving contrast reduction problem is therefore expresed by initiatives undertaken by the CG community concerned with

a energy based model with non-local pairwise pixel interasons ~ displaying HDR images on LDR display devices (i.e., tone
defined on a complete graph whose cost function is locally mapping methods). They can be classified into two broad

minim_ized by a con_juga_te gradient descent procedure. The groups (and an overview is given in [4]), namely global (spa-
experiments reported in this paper demonstrate that the prposed tially invariant) or local (spatially variant) mappingsi@arlo

compression method is efficient and provides pleasing regsl| talls fer to the f t ducti
on various images with different scene contents and performs et al. [5] refer to the former as tone reproduction curves

competitively compared to the best existing state-of-thewt tone  (TRC) and to the latter as tone reproduction operators (TRO)
mapping methods recently proposed in the literature. Amongst the existing (simple and computational efficiency)
Index Terms—High dynamic range (HDR) image display, T_RC methods, vv_hich use the same m_apping functiqn for all
compression, tone mapping, contrast reduction, Gibbs engy Pixels, we can cite the simple stretching and the histogram
based model, conjugate gradient minimization/optimizaton, non- equalization techniques which both suffer from severe tdss
local gradient distribution, dynamic retina concept. contrast and visibility on the final LDR display. An interigsf
TRC model is the global histogram adjustment proposed by
Ward Larsoret al. [6] that can be viewed as an improvement
of the classical histogram equalization technique. Inrthei
method, the empty portions of the histogram are cleverly dis
Y their ability to directly store the amount of lightregarded in order to save more local contrast. This tecleniqu
measured by the camera and thus to acquire the wh@enevertheless limited since it does not work efficientlyhié
dynamic range of radiance that can be observed in the rel@minance distribution is almost uniform. Another TRC mbde
world scenes (which is close to a contrast ratio with an uppirthe approach proposed in [7] in which the tone reproductio

bound of 10° : 1), High Dynamic Range (HDR) images areis achieved by histogram equalization of macro edges.
nowadays beco_mlng increasingly popula_r _and Important InSpatially variant or local TROs are more interesting (and
computer graphics (CG) and computer vision (CV) appllca'erhaps more appropriate), since they take local spatiaégd
tions. HDR images, which can be easily constructed [1], [2] '

o L : i.e., a spatial neighborhood) into account thus trying tmim
[3] by compiling/combining different standard photograjuf the Human Visual System (HVS) that is mainly sensitive to

xgsaggvzzigeevgtgva; 'Snt(;r:;asr'ggl_tg\?veéagg?ng ;anossrzig?\éal contrast. In our opinion, these TRO methods (some of
y 9 y 9 I"Pem have been compared in terms of visual differences in

images. They can more accurately represent the wide ral e . .
. . ) . : E?ﬁ can be classified into four main categories.
of intensity levels found in real scenes ranging from dire . . . . .
sunlight to faint starlight or deep shadows, simultanepus| The first category is based on the interesting multi-scale
preserving fine textural details of an object both in highlig image decomposition based technique initially proposed by
and shadow areas: a characteristic which remains impegsibl Tumblin et al.in [9]. This approach consists of: decomposing
capture in a single photograph or with traditional LDR degic @n image into a piecewise smooth base layer or inpagéle
(monitors, projector, printers, etc.) displaying a tradial (Capturing large scale variations in intensity) and a nesid
digital 8-bits image per color channel (i.e., a 24-bits per pixéletail layer (capturing the details in the image), strongly
compressing the contrasts of this profile to fit it into the
IMax Mignotte is with the Département d’Informatique et decRerche LDR display range and finally adding back all small details
Opérationnelle (I?IRO), l/Jniversité de Montréal, C.P281Succ. Centre-ville, ith little or no compression. To this end, Tumbkn al. use
H3C 3J7, Montréal (Québec). . . . . . . . . ..
E-MAIL : MIGNOTTE@IRO.UMONTREAL.CA partial differential equations inspired by anisotropitfulion
http://www.iro.umontreal.ca/“mignotte/ in order to extract details from the image at various spatial

I. INTRODUCTION



JOURNAL OF ELECTRONIC IMAGING, VOL. 21, NO. 1, JANUARY-MARE 2012 2

scales. Durandet al. [10], Farbmanet al. [11] and Xu the HVS is based on two important characteristics described
et al. [12] exploit respectively an edge-preserving bilaterah the well-known Munsell experiments [28]In addition
filter and the level set method in order to obtain the abovis the classical non-linear compression ability of the HVS,
mentioned image profile. Another multiscale decompositidhe second characteristic is that this non-linear compress
based technique using symmetrical analysis-synthesex filis done locally and pixel pairwise (or more precisg@lgnel
banks and automatic gain control has been proposed in [1Bhirwisein the case of the Munsell experiments). In fact, our
The second category is based on a strategy combiningubjective perception of the luminance of a fine and subtle
global and a local tone mapping technique. Examples of thiétail (both in a deep shadow and in highlighted areas) or the
strategy include the approach proposed by Reinlearal. in ~ contour perception by the HVS can only be done compara-
[14] which tends to mimic the photographic process and whotiéely, after multiple pixel pairwise comparisons. Biologlly,
local method is also based on a edge-preserving filter and this phenomena is explained by the fact that our eyes are neve
recent work of Shaet al. [15] that performs (in a final global still, even during fixatio& [29], [30]. The presence of random
optimization procedure) a set of local linear adjustments &ibrations (which follows a Gaussian distribution centeon
small overlapping windows over the entire input image.  the target [31]) in the human eye means that the pairwise

The third category is based on methods that physicanpariSPn process i_s not only locally restricFed to a first.
attempt to model the local sensitivity-adjusting process @rder neighborhood (i.e., the four nearest neighbors) as it
the HVS for high contrast scenes. Amongst these HVS-baséguld be in a computer estimating the contour magnitude
models of local adaptation, Pattanaik [18] al. have used a With @ Ioc_al gradient by mathemancally using a cla_sswaiefln
multiscale decomposition of the image according to comprééntral difference formula. This leads to a straightforvar
hensive psycho-physically-derived filter banks and exwens Model that can be easily adapted for HDR compression. This
psycho-physical data. The retinex model has also recerﬁ[}?’de' consists of fln.dlng a mapping .wh_|ch replacgs _the value
inspired several research projects [17], [18], includihg t Of all (local and spatially Gaussian distributed) pairwgseel
multiscale center/surround retinex model of color pericept differences, existing in the image, close to their respecti
of human vision proposed by Rahma al. [19], [20] and compressed difference value.
the retinex-model-based adaptive filter where the lumisanc L€t us now justify our model for the fourth category. The
channel is defined by the first component of a principinage model which is commonly used for digital image pro-
component analysis [21], [22]. Other interesting aloprea;,Chcessing, CV or CG applications is generally based on the well
include the local-eye adaptation method [23] that comes&nown pixel (or picture element) notion. In this paper, asd a
the dynamic range of the luminance channel by simulating tRéeviously noted, in order to more rightly express the HDR
photoreceptor responses in the retina and the simple furadti compression problem with the above-mentioned biologieall
model of human luminance perception proposed by Ashikhnifspired considerations, we have considered a new image
[24] (whose method can also be categorized in the first THEpPresentation in which the new fundamental and smallest
group since his tone mapping process tendifose details representative element in the image is no longer the pixel bu
back into a scene), the iCAM image-appearance model [g@ther the pixell pair. In t_his transformed model, the corapre
that has been extended to render HDR images for displayS#n Problem is more rightly expressed (because somewhat

the Perceptually inspired TRO model proposed by Getttal. Piologically justified). After the compression process bét
[26]. dynamic range using the transformed image model, our appli-

Finally, the fourth category can be considered agrbolic cation resqrts toa nqn_-line_ar optimization prqblem in o_rtdne _
compression technique. This group of techniques consfsts' R4 bacl§ Into .the original image representatlon domaingusi
the HDR image compression in a transformed space, repta€ classical pixel, as fundamental picture element.
sentation or domain, in which the tone mapping problem is The remainder of this paper is organized as follows : Section
easier (or more rightly expressed) to solve. An image ireverl describes the proposed energy based HDR compression
transform leads back into the original (generally lumirgncmodel. Section Il describes the optimization strategyduse
domain. We classify the excellent work of Fat&tl al. [27] to minimize the objective cost function related to our model
into this category since the authors use, as transformegespdrinally, Section IV presents the set of experimental resarid
the gradient domain and as inverse transform, the solutionammparisons with existing dynamic range reduction models.

a Poisson equation on the modified (i.e., compressed) griadie
field. 2In this experiment, an observer is shown a sehgfanels, of which the
leftmost panel is black and the rightmost panel is white anithén invited to
Our work can be classified into the third and/or the fourtdjust the luminance of each of the in-between panels uatis Isatisfied that

. . . he panels form steps of equal-brightness (the brightnessui subjective
categories of the tone mapping method, i.e., one that atEm&Rizrception of the luminous intensity). The observer willanably set the

to model the local adaptation process of the HVS for highanel luminances so that the ratio between each pair of pamahances is
contrast scenes and one that tries to solve the problem igaga!, thus defining a logarithmic serie. _
transformed representation/space SThe involuntary small vibrations of the eyes and the natsmtcadic
= ' ] ~eye movements process (now well-known under the nameyeftremoror

Let us now justify our model for the third category. Firsticrosaccadesinder thedynamic retinaconcept) play this important role in
let us mention that constructing a local adaptation visuminance compression but also in fine detail and edge deteand robust

del i d . ffici d di &? noise) restoration process [29], [30], [31]. It is clgaestablished that
model Is not easy due to our Insufricient understanding thout these microscopic movements the photo-receptoraad compress,

the HVS. Nevertheless, we know that the local adaptation gfturate and the retinal images disappear [31].
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Il. PROPOSEDCOMPRESSIONMODEL I

A. A Pairwise Energy-Based Model Memmooey SermnoR
As already noted and previously justified (see Section 1),
given an HDR image with luminanc¥ to be compressed, our
tone mapping model consists simply of locally searchingva ne
luminance mappingX in which all the local pairwise pixel
differences (between sitesandt), existing in the luminance
image, are close to their respective compressed difference
value (3,.). If this mapping is estimated in a minimal mean %0 0002 0004 0005 0008 ool
square sense, thet is the solution image that minimizes the Variance of the mean absolute value of the 1st difference
following objective function:

Occurence Number
B
o
T
L

) Fig. 1. Repartition of the mean gradient magnitude (absolatue of the first
5 . 2 2 order difference, averaged over the image) on the Berketegé database.
X = arg min Z Gs,t (5s,t - (X5 — X3) ) (1) This histogram shows us what must be a reasonable valugg,of which
ER is ultimately also the stopping criterion of our energydzhscompression
) ) ) ) algorithm related to an image with a photo realistic look aligblaying a
where X; denotes the luminance mapping at site (or pixel) lot of details.

and the summatiop . , . is over all the pair of sites (i.e., for

all sitess and for all thé pair of sites including) existing in - o ) )

X. As already said, the set 6 ; stores the set of compressedj'ﬁerem' the statistical (_jlstrlbunon o_f _the grad|entgnaude
difference values related to each existing pairwise pixgl dfollows a (well-known in the denoising community) long-
ference. They,; positive weighting factor thus simulates thdail dl_strlbutmrf" mathematically expressed by a two-parameter
(spatial) decreasing (somewhat Gaussian) distributiéecef density function of the formP(k) oc exp (—[k/A|") [33]

of the pairwise comparison process by simply giving mopiherep and A are respectively a shape and a scale factor.
importance for pairwise comparisons involving pixels taet ) )

close together. In our applicatio, ; = d; ; whered,, isthe A rapid study on the Berkeley real image database [34]
L., norm of the distance vector between siteandt. This §h0ws that the shape faciovaries approximately between the
decreasing function acts as a degree of locality since irosn interval[0.1: 0.5, depending on the image content (exhibiting
the number of considered pairwise pixels taken into accodttural or man-made objects). The variance of the gradient
for each site and allowed us to not consider a complete gradpggnitude (absolute value of the first order differencejegar
but a square neighbourhood window of fixed si¥e pixels Petween[0.0005 : 0.009], respectively ranging from very
(i.e., by just considering thé N2 — 1) nearest neighbors of c0arse to highly detailed image (with a nearly quasi flat

each sites). In our applications, ; andg, ; are pre-computed gradien.t mggnitude distribution) and a variance distriyut
off line (i.e., before the optimization process). shown in Fig. 1. These two properties remains true for the

distribution of the absolute value of difference involvisiges
) far away from more than one pixel (with the variance slightly
B. Compression Model increasing as the distance between sites increases).

Let us underline that the HDR compression model is, in fact, In contrast to these natural LDR images belonging to the
completely expressed by the set/&f; which will correspond, Berkeley database, the gradient magnitude of a HDR image
as close as possible (after the local optimization procéss) exhibit approximately a very sharped distribution (whidboa
the value of the pairwise pixel differen¢&; — X;| in the new belongs to the above-mentioned two-parameter density-func
luminance mappingk to be recovered. tion but with a shape factgr >> 1) and therefore a variance

The common approach generally used in tone compred-the gradient magnitude close to zero.
sion methods consists of the redistribution of the radianceln order to take into account these statistical remarks,
values with a sigmoidal transformation (somewhat justifieahd the richness of details that any HDR image is able to
by electrophysiological studies which have found that thrender, our compression scheme will be designed to finally
neurones in the vertebrate retina have an intensity-responbtain an LDR output image with a nearly flat gradient
functions with a sigmoid shape [32]). Equivalently in themagnitude distribution, whose flattening factor (whichtcols
gradient domain [27], tone compression techniques coosistthe richness of details desired in the output LDR image), is
the attenuation of large magnitude gradients (i.e., grehtsn adjusted via a simple control parameter namely the preljious
the mean magnitude) along with the amplification of smathentioned variance value of the gradient magnitude. To this
magnitude gradients. These compression strategies wsuatid, before the local optimization process, we set@heas
involve considering an arbitrary value of the mean radianteing the values given by a histogram specification method
or gradient magnitude (which will remain unchanged by thef the gradient magnitude with the uniform distributionr(fo
compression scheme) and above all, without considering t@pturing both the high contrast appearance of the sceniésand
inherent statistical properties of the resulting outputRLD
image (compared to the statistical properties of any nhtura’This is due to the intrinsic stationary property of real-doimages,
and real-world images). Indeed, if the statistical disttitn containing smooth areas interspersed with occasionapsinansitions (i.e.,

X . edges). The smooth regions produce small amplitude gradiagnitude and
of the luminance value of any real images may be venmye transitions produce sparse large-amplitude gradiegnitude [33].
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small low-contrast details) and also by considering a @laks is spatially variant and depends on the distance between
256 LDR of bin values (for the luminance and the gradient the sitess andt.

magnitude values, thus ensuring a usual contrast ratio fore Thirdly, it is possible to view this model as (somewhat)
the output LDR image). In order to overcome the error due the generalization of the compression model proposed
to the classical discrete implementation of this specificat by Fattalet al. [27] in that it also uses the first order
algorithm, we have used the recent histogram specification gradient domain to do the HDR compression task. Let
method described in [35] which is based on the definition of  us also mention that our method also consists of the
an ordering relation on the values to be histogram-specified amplification and attenuation of non-local magnitude

More precisely, the set of, ; values are computed using gradients. Nevertheless, this crucial step is achieved by
the method described in [35] in the following way. LEthe considering the statistical properties of the non-local
an HDR image withV x M (length x width) pixels and let gradient magnitude of any real images and without
W =8N - M be the number of absolute values of the first considering an ad-hoc empirical compression formula
order differencéX; — X;| in the original HDR image and let (and/or an arbitrary value of the mean radiance or
also H = {hg, h1,...hz_1} be the & priori imposed) target gradient magnitude which will remain unchanged by this
non-normalized uniform distribution (i.eh; = W/Z V 0 < ad-hoc empirical compression formula).

1 < Z) with Z = 256 bins. Let finally < be a strict ordering
relation, defined among theX, — X;|. The 3, estimation
then proceeds as follows I1l. OPTIMIZATION STRATEGY

In our framework, our tone mapping model is thus cast as
an optimization problem of a complex (non-convex) Gibbs
X — Xi < | Xu — Xo| <. < | X — Xy energy function®. The simplest local minimization technique
is probably the Iterative Conditional Modes (ICM) introeac
by Besag [37]. This method, which is simply a gradient
descent alternating the directions, i.e., that selectsriahla
while keeping all other variables fixed, is deterministiddan
simple (it does not even require an analytical expression
of the derivative of the energy function to be optimized).
Nevertheless, it requires a good initialization of the imag
C. Discussion to be recovered (sufficiently close to the optimal solution)

To summarize, our local search (or minimization)-base_(atherw'se it will converge towards a bad loaainima (i.e.,

compression scheme aims at flattenini@ an iterative gra- in our application_, an imag_e soluti_onlwh?ch does not flatten
dient descent procedure, the gradient magnitude disimih)utenough the gradient ma}g_nlltude dlstrlbuuon_). In order to pe
of an input HDR image, as long as the desired level of detalfSS dependent on the initial guess, and since an analytical
in the output image is reached. This desired level of detdils XP€SSIon of th_e der_lvatlve of the energy function o be
the output image content is controlled by an internal patamem'n('jr_nlzed IS efésny avg”a(;ale_, we have herein used a comjuga
which is simply the variance of the gradient magnitude. Fi@.ra lent procedure with derivative
1 shows that highly detailed images are related to variance
parameters betweef.005 : 0.009]. This pr_ovides a_good. VE(X) = _4gs,tZ(Xs _Xt)( f,t—[Xs—Xt]z) @
indication of a range of variance related to images displgyi
a lot of details. - . N
There are three points worth mentioning concerning the For the initial guess, we use a simple redistribution of the

local search-based HDR compression model expressed by fg§iance value with a histogram specification method [35]
) with a Gaussian distribution with meafls., = 0.5 and

variance 62, = 0.05 and 256 bin values [« and o2,

e Sincey,; is a symmetric weightg,: = g:+s) and is denoting approximately the maximum likelihood estimation
defined here as a decreasing function of a positive me#-the Gaussian distribution parameter vector fitting therav
sure defined between sitgsandt, the objective func- age of the luminance distribution within the Berkeley image
tion expressed by Eg. (1) thus exploits the interestingatabase). This initial image allows us to simply both easur
concept of non-local gradient (hereigﬂ,f (Xs — X)) aninitial LDR of bin values and an initial solution close to a
recently put forward by Gilboa and Osher in [36] as aptimal (i.e., with the adequate level of details) tone magp
generalization of the gradient operator. result (see Fig. 2).

e Secondly, the objective functions to be locally mini- For the conjugate gradient, the step size is fixed)®
mized can be easily viewed as a Gibbs energy fiewhd adaptively decreased by a factor of two if the energy to
related to a nonstationary (and non-local) Markoviabe minimized increases between two iterations. We stop the
model defined on a graph with possibly long-range paiprocedure if either a fixed number of iterations (lterMafy
wise interactions, i.e., binary cliquess, t> (or pairwise or the variance of the gradient magnitude (controlling the
of pixels). Each binary clique of this MRF model isdesired level of details) in the output image is reached or
associated to a nonstationary potential since this modethe energy of the gradient descent does not decrease any

o Order thelW =8N M pairwise pixel absolute differences:

« Split this pixel absolute difference ordering relationrfro
left to right in Z groups, such as groyphash; elements,
i.e., h; couples of pixels.

« For all pair of pixels or pair of sitegs,t) whose the
absolute difference is in a groujp assigngs : = j.

S7ts¢t
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Fig. 2. From top to bottom: initial luminance map obtainedeafthe
redistribution of the radiance value with a histogram siation method [35]
(with a Gaussian distribution with parametgtge = 0.5 and o2, = 0.05)
and luminance map obtained after the conjugate gradieimhizgtion routine
on the HDR image $ANFORD MEMORIAL CHURCH (768 x 512 radiance
map, courtesy of P. Debevec). Evolution of the energy foncf and the
variance of the magnitude gradient along the iterationd@fradient descent.

more. Concretely, if the variance criterion is not met after
maximal number of iterations it means that no more details ca - .
be extracted in the image with our method (local minima). Figlig. 3. HDR compression with different values of, (0%, = 0.005).

2 shows an example of the result of our optimization proce_E@LT] top to bOt_t?]m, magn_lflelc}iNfeglons exg?vcted f;OTvthe HBbRge shown

. . in this paper with respectivelyV, = 3, and N; = 7. We can notice some
on our initial luminance map. aliasing effects or artifacts in color transitions or utigt& too sharp edges
with a small neighborhoodvV, = 3.

A. Color Treatment

After the optimization process, we must now assign colofSe | channel leveRss) of the color channel are saturated in
R,G,B to the pixels of the compressed HDR image frofqer 1o enhance the contrast when this is necessary (color
the luminance mapX. To this end, we use the conversionnns whose number of pixels are greater tha% at each
procedure proposed by [9] and also exploited by [27] in whichjge of its color channel range remain unchanged).

Rim Gim Bin € O
Roun Goun Bout = ( > - X (3)
X
where we recall thafl and X denote the luminance respec- IV. EXPERIMENTAL RESULTS

tively before and after HDR compression ant$ a parameter
controlling the color saturation of the resulting image. A. Set Up and HDR Image Used
The final R,G,B maps are stretched betweeand 255, In all the experiments, we have thus considered the fol-

but instead of linearly scaling, we authorize tha25% of the lowing set-up. 3, ; and g,, are pre-computed before the
pixels at the beginning (i.e., channel leg§land/or at the end optimization process. For the model, we have thus considere

Jst = d;tl whered, ; is the Lo, norm of the distance vector
SAlternatively, we can use the following conversion form(i&8] which petween sites andt. For each sites, a square neighbourhood

gives approximately the same output result window of fixed sizeN, — 7 pixels (i.e., the48 nearest
Rin, Gin, Bin N neighbors) have been considered for HDR images with less
ROUI: GOUI: Bout = [7 - 1] € + 1 o X 6 . .
X than2 x 10° pixels and (for computational reasons), a square

neighbourhood window of fixed siz€; = 5 pixels (i.e., the24
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Fig. 4. From top to bottom HDR radiance maps respectivelledahe SANFORD MEMORIAL CHURCH (768 x 512 radiance map, courtesy of P. Debevec
[39] dynamic range exceeding50.000 : 1) and STREETLIGHT ON A FOGGY NIGHT(1130 x 751 radiance map, courtesy of J. Tumblin [9] dynamic range
exceedingl100.000 : 1) with from left to right, the method of Fattadt al. [27] and Durandet al. [10] and our method.

nearest neighbors) for large images with greater thanl0® have shown that the output result is not very sensitive to
pixels. We treat the image as toroidal (i.e., wrapping adouthese parameters). For the conjugate gradient, the step siz
at the edges). Experiments have shown that the compresdioen maximal number of iterations and the variance of the
results are better when the neighbourhood size is large lguadient magnitude (controlling the desired level of ds}ai
at the expense of computational time and memory spadethe outputimage is set respectivelyto= 0.5, IterMax=10

We have used56 bins for the histogram of the magnitudeand 0%, = 0.005. Finally, for the color treatment, we have
gradient (ranging from0.0 : 0.5] and for the radiance valuessete to 0.6 and when necessary, we use a final stretching of
of an HDR image ranging frorf0.0 : 1.0]). Experiments have the R, G and B map betweénhand 255 with a maximum of
shown that there is a relationship between the upper bound5% pixels saturating at the beginning and at the end of its
of the histogram of the magnitude gradient (herein set twlor channel.

0.5 and corresponding, in fact, to the maximal value of thd/e have tested our model on popular and publicly avail-
gradient magnitude that will belong to the output mappingble HDR radiance images (with dynamic range exceeding
and the level of details desired in the output image. Fa0n0.000 : 1) already compressed by the state-of-the-art tone
the initial guess of the gradient descent, we use a simpt@pping methods recently proposed in the literature [40],
redistribution of the radiance value with an exact histagranamely the method of Fattat al. [27] and Durandet al.
specification method [35] with a Gaussian distribution witfl0].

mean s = 0.5 and variances2, = 0.05 (experiments

Berk
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Fig. 5. Some magnified regions extracted from some HDR cossfme results obtained by our reduction model using, fromttobottom; at top row, a
larger neighborhood system, naméW; = 13 pixels (for comparisons with the results given in the secoaldmn of Fig. 3) and at bottom row; a slower
decreasing weighting functiogs,: (= d;%) obtained by settingls,: = constant= 1.0 for all < s,t > (with a neighborhood size setting to the default value
Ns =7).

B. Discussion and bright light. In addition, the blacks are deep and the

As previously mentioned, the most important internal pé(yhites are brilliant. Besides, the light is more diffusehaitit
rameter is the neighbourhood size. A value greater tpanartifacts showing light rays in our HDR radiance map (see
(N, = 3) makes the compression results better with le4$§12g€FOGGY NIGHT). The details of the image appear more
artifacts (such as halos, aliasing effects or artifactsdtorc Visible and the image seems to be more contrasted (see Fig.
transitions or unrealistic too sharp edges for some HDR- For example, with our method, one can almost read the
images).N, = 7 pixels (i.e., the48 nearest neighbors) is a'reglstranon number of the leftmost car in theGGY NIGHT
good compromise between high quality of the compressi#fage, and we can say, almost surely, that there is a "24” and
results and computational time (and memory requiremen®.3" in this registration number. Identification after r_a_agj .
Fig. 3 shows different HDR compression results with differe IS not really possible with the other methods. In addition, i
values of N,. The second most important internal parametéf® MEMORIAL CHURCH image, the interior of the church,
is our stopping parameter, i.e., the variance of the gradiéfiowing some gilding (using gold leaf) is sensibly closeh®
magnitudes2,, which controls the desired level of details in2ctual color of gold and the white marble color of the stasrs i
the output compressed image. Fig. 7 shows different HOROT® white in our compression result, cor_npare_d to the result
compression results with different valuesa, . Experiments 9given by Durand and Fattal's method, in which any color
have also shown that our decreasing positive weightingfacf€ems orange. The photographic appearance provided by our
g5 decreases the halo effect around light sources. Fig.Tsthod is certainly mainly due to our stopping criterios, .
illustrates the effect of a larger neighborhodd, (= 13 pixels) the control of the gradient magnitude varianeg () which is
and a slower decreasing weighting factor function on some adjusted in order to produce a classical_ digital photogaph
(magnified regions extracted from some) compression mesulPOk- Nevertheless, a less photographic appearance and a
We can notice that a larger neighborhood does not sensifgpulting compressed image with more details can be olataine
improve the results (while increasing the computatiomati if We specify a higher value fovg,, thus specifying more
and the weighting factog, ; should not decrease too S|0\,\,|y.detalls in the output compressed image. In our tests, the
Inversely, as already said, a weighting factar, decreasing exponent which controls the color saturation of the resulting
faster, and thus equivalent to a small neighbourhood 5ize iMmage is constantly set 10.6. For some images, a slightly
is not also recommended (see Fig. 3 with = 3 pixels). higher value for _thls parameter (e.9.7 or 0.8) would have

In our opinion, our method seems to yield a more phot@roduced more mten;e colors and a visually more pI'easant
graphic look than either the gradient domain method [27] #Page, although possibly at the expense of a less photoigraph
the toning reduction methods based on the multi-scale imd@@k-
decomposition based techniques such as [10] for which the )
blacks are not very deep (and the lights, as the sun, are fotEVvaluation
so bright) and for which almost all the shadows are eitherIn [40], a thorough evaluation of image preference and
removed (cf. Fig. 4) or sometimes omnipresent (cf. Fig. 8)endering accuracy for six (previously published) HDR ren-
With our method, there is a good balance between shaddering algorithms has been conducted through several psych
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Fig. 7. HDR compression with different variance values c# tradient

magnitudeo%z (and with Ny = 7). From top to bottom, magnified regions

extracted from the HDR image (see Fig. 4) callelaSFORD MEMORIAL
CHURCH (courtesy of P. Debevec with respectivelf, = 0.02, 02, =
0.05 ando2, = 0.10.

participants took part in the experiment and all were naive
about its purpose. Each image pair, i.e., the tone mapping
result given by our method and the one given by the bilateral
filter, was shown in random order to a participant, who had
to select the one that he or she preferred (with possibly a
“no difference” option) in terms of overall image qualityg(i,
overall contrast, colorfulness, sharpness, brillianestlzetics
aspect and lack of artifacts). These well known images,
publicly available, covers a wide range of image contenésyp
Fig. 6. Magnified region extracted from the images shown m Bi From and are calledyEMORIAL (Fig. 4 above)BIGFOGMAP (Fig.
left to right, the method of Fattadt al. [27] and Durandet al. [10] and our 4 below),BELGIUM, SYNAGOGUE (Fig. 10),SMALL-DESIGN-
method. CENTER (Fig. 8), SMALL-OFFICE (Fig. 9), ATRIUM-NIGHT,
FOYER, INDOOR and VENICE images (compression results
are given in this paper or in our website at http address
physical and paired-comparison experiments and over aevevww.iro.umontreal.ca/"mignotte/ResearchMaterialgiag.
scenes. In this latter evaluation, the results have showah tiihe results are summarized in Fig. 12 and show that4for
the bilateral filter significantly and consistently outmerms images out of ten, the participants have preferred the tone
with significantly higher rating scale (in regard to overalinapping result given by our algorithm (i.eMEMORIAL,
contrast, sharpness and colorfulness) other test algwifor BIGFOGMAP, INDOOR and VENICE). For 3 images, they
both preference and accuracy, making it a good candidate fave preferred the compression result given by the bilatera
an obligatory or default algorithm that could be included ifilter (i.e., BELGIUM, SMALL-DESIGN-CENTER and SMALL -
future algorithm evaluation experiments [40]. That is wimy, oFricE) and finally for3 images, they have visually noticed
that spirit, an experiment is herein conducted to judge tm® significant difference between these two results or they
performance and/or preference of our tone mapping alguoritthave considered them of similar quality (i.68YNAGOGUE,
compared to the so-called bilateral filter [10] in a blindhTRIUM-NIGHT and FOYER). On average, for this set &fl0
subjective paired-comparison paradigm. In our experiggant paired-comparisonsl( pictures multiply by31 observers),




JOURNAL OF ELECTRONIC IMAGING, VOL. 21, NO. 1, JANUARY-MARE 2012 9

Fig. 9. Window scene666 x 1000 radiance map, courtesy of Durand
[10], picture calledsmALL-OFFICE) displayed with respectively (from top to
bottom) the method of Duranet al. and our method.

D. Algorithm

The tone mapping procedure takes, on average, approxi-
mately betweer20 and 40 seconds for al025 x 769 HDR
image with an AMD Athlon 64 Processor 350022 GHz,
4435.67 bogomips and non-optimized code running on Linux.
It is undoubtedly the slowest method amongst the two best
state-of-the-art mapping methods presently existing ekibe-
less, it is worth noting that the full multigrid algorithm ec
in [27] is a very optimized algorithm and our code is clearly
non-optimized. Besides, it must be noted than our energy
minimization can be efficiently implemented by using the
parallel abilities of a graphic processor unit (GPU) (endest
on most graphics hardware currently on the market) and can

) = be greatly accelerated (up to a factor200) with a standard
.5, B N L TS 1 S o gt AWVIDIA BGPU i) a natd 41
Cv?tri? rg)spegtrlvely (from toppto bottom) the method of Dura!tcgl [18] :an _The source code (in C++ Ianguag(_a) of our aIgonthr_n
our method, with the set of presented compressed images and other im-
ages are publicly available at the following http address
www.iro.umontreal.ca/"mignotte/ResearchMaterialgiag in
order to make possible eventual comparisons with future ton

_ _ reduction algorithms and visual comparisons.
42% percent of the selected images came from the bilateral

filter algorithm, compared toi8% percent for our com-

pression method wherea% percent of the images was V. CONCLUSION

considered of similar quality. This experiment demonssat In this paper, we have presented a new compression model
that the proposed compression method performs compétitivéor the display of HDR images. This tone mapping method ex-
compared to the best existing state-of-the-art tone mappiploits both the involuntary dynamic retina phenomena, Whic
method proposed in the literature. Let us finally add that owas recently used in image processing for the difficult edge
compression model is also perfectible since more specific @gtection problem [31] and the knowledge of the variance
different distributions shapes can be given for eacbrder of the statistical distributions of the non-local gradiemag-
non-local gradient magnitudes. nitude related to any natural and real world highly-dethile




JOURNAL OF ELECTRONIC IMAGING, VOL. 21, NO. 1, JANUARY-MARE 2012 10

Performance of our algorithm vs the bilateral filter on some test images

Proposed algorithrm oo

Bilateral filter D
0.8 - No difference . |
0.6 - —
04 | :
0.2 B

Fig. 12.  Performance/preference (in terms of percentagethe proposed algorithm versus the bilateral filter on sombewell known test images
with 31 participants (visual comparison for all thed® pairs of images are available in our website at http addressv.ivo.umontreal.ca/"mignotte/
ResearchMaterial/pagetm).

interesting concept of non local gradient recently put famav

by Gilboa and Osher in [36] as a generalization of the
gradient operator. Numerically, our detail-preservingtcast
reduction model is simply ensured by a conjugate gradient
descent based local search, starting from a good initiadgue
given by the initial HDR image whose gradient magnitude
histogram has been specified beforehand, and stopped when
the desired level of details in the output image is reached.
While being simple to implement, and also perfectible (e.g.
more specific or different distributions shapes can be given
for eachn-order non-local gradient magnitudes), the proposed
procedure performs competitively among the state-ofattie-
tone mapping methods recently proposed in the literature.
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