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Abstract
Three-dimensional (3D) reconstruction of lower limbs is of great interest in surgical planning, computer assisted surgery, and
for biomechanical applications. The use of 3D imaging modalities such as computed tomography (CT) scan and magnetic
resonance imaging (MRI) has limitations such as high radiation and expense. Therefore, three-dimensional reconstruction
methods from biplanar X-ray images represent an attractive alternative. In this paper, we present a new unsupervised 3D
reconstruction method for the patella, talus, and pelvis using calibrated biplanar (45- and 135-degree oblique) radiographic
images and a prior information on the geometric/anatomical structure of these complex bones. A multidimensional scaling
(MDS)-based nonlinear dimensionality reduction algorithm is applied to exploit this prior geometric/anatomical information.
It represents relevant deformations existing in the training set. Our method is based on a hybrid-likelihood using regions and
contours. The edge-based notion represents the relation between the external contours of the bone projections and an edge
potential field estimated on the radiographic images. Region-based notion is the non-overlapping ratio between segmented
and projected bone regions of interest (RoIs). Our automatic 3D reconstruction model entails stochastically minimizing an
energy function allowing an estimation of deformation parameters of the bone shape. This 3D reconstruction method has
been successfully tested on 13 biplanar radiographic image pairs, yielding very promising results.

Keywords 3D reconstruction · X-ray images · Biplanar radiographies · Nonlinear statistical models · Medical imaging

1 Introduction

Three-dimensional (3D) reconstruction of bones is impor-
tant for diagnosis and treatment of pathologies of the bony
structure of the human body, especially for precise implant
selection. Precise personalized 3D models have great poten-
tial as regards accuracy and reliability in orthopaedics. X-ray
images are often used due to their wide availability, lower
price, and low levels of ionizing radiation compared to
computed tomography (CT) scan and magnetic resonance
imaging (MRI). However, since X-ray images provide only
2D information, some prior knowledge must be incorporated
in order to model the third dimension.

Previous approaches [1–6] use a priori knowledge of the
geometric structure of the object to be reconstructed. Never-
theless, in these methods, the geometric a priori constraint
does not model the set of admissible deformations of the
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anatomical structure to be reconstructed. Consequently, the
3D shape estimation does not reliably correspond to the real-
ity.

Methods using statistical a priori knowledge of the geo-
metric shapes of the objects of interest lead to better constrain
the reconstruction problem [7–11]. These methods use sta-
tistical shapemodels or statistical shape and intensitymodels
for reconstructing bones from X-ray images. However, the
optimization of the deformablemodel parameters canbe slow
and requires a good initialization point to avoid local max-
ima [12, 13]. [14, 15] used the contours of anatomical shapes
detected in the two radiographic images for the 3D recon-
struction of the anatomical object. However, segmentation
or edge detection algorithms are very sensitive to noise, and
this often results in noisy contours, which are difficult to
manage in radiographic images.

[16] used generative adversarial network (GAN) to recon-
struct 3D spine structure from simulated biplanar X-ray
images. Unfortunately, it was a basic prototype model with
constrained training portfolios. In addition, 2D simulated
X-ray images derived from 3D structures lost some exact
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Fig. 1 Example of biplanar
images. The bone structures in
oblique images are less clear
than in a PA image but much
clearer than in a LAT image

information. [17] used convolutional neural network (CNN)
for 3D reconstruction of bones from two biplanar X-ray
images. However, due to the transparent nature of X-ray
images, matching surface points among multi-views for
dense reconstruction is extremely challenging compared to
the standard multi-view setting. Due to the difficulty of
representing a dimensional enlargement in multi-view set-
tings with standard differentiable layers, 3D reconstruction
using a deep learning approach remains a challenging task.
[18] presented a survey on deep learning in medical image
reconstruction. Deep learning methods require considerable
computing power, are expensive to set up, make decisions
that are difficult or not at all understandable, and require a
large database. Maken et al. [19] give a comparative review
on 3D reconstruction from X-ray images for clinical pur-
poses.

The 3D reconstruction approach for bones that we pro-
pose uses calibrated 45- and 135-degree oblique radiographic
images1 and a general a priori knowledge of the geomet-
ric/anatomical structure of each bone. This knowledge comes
from a considerable learning base of surface models. This
a priori knowledge is obtained by applying the variant of
multidimensional scaling (MDS) algorithm [20, 21] and by

1 Due to the physical link between the detector source assemblies, the
position in space of the sensors and X-ray sources are well known: the
radiographic environment is therefore pre-calibrated.

choosing as the metric the most adequate distance to our
learning base. MDS allows finding a small-dimensional sub-
spacewhich preserves the chosenmetric in the original space.
This step of nonlinear dimensionality reduction allows us
to define a mesh of deformation in a reduced dimensional
space in which each point of this mesh will correspond to
a surface model of our learning base. As for the principal
component analysis (PCA) in [14], it allows us to define a
concise 3D parametric reconstruction model in which the
set of statistically admissible (in our case, possibly nonlin-
ear) deformations, confronted with our anatomical learning
database, will be summarized by the values of a reduced vec-
tor of parameters.

From this mesh of nonlinear deformations which summa-
rizes all the statistically admissible surface structures, the
proposed reconstruction method consists in adjusting the
projections (45-degree and 135-degree oblique) of a surface
model of bone (contained in this deformation mesh and by
interpolation)with the contours and the regions of segmented
images, containing the corresponding bone. This approach is
based on a likelihood using a prior detection of the contours
(oblique projections of the 3D model) as in [14] but also on
a global constraint using the notion of specificity. This prop-
erty is based on the fact that labels (of classes), given by
a prior textural over-segmentation of the image, inside and
outside the shape, are distinct (or specific in a neighborhood
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of the object). Thanks to this likelihood, using both edge
and region information, our Bayesian reconstruction model
has the property of being particularly robust against noise.
Finally, the 3D reconstruction problem is thus seen as a sim-
ple problem of estimating the deformation parameters of this
3D surface model or, equivalently, as a problem of minimiz-
ing a cost function. This minimization is efficiently carried
out by a stochastic algorithm.

The remainder of this paper is divided into the fol-
lowing sections: Sect. 2 describes our approach with the
pre-processing step made on each X-ray image to enhance
the contours and extract the regions, the statistical deformable
model, energy function, and the optimization algorithm. We
show experimental results in Sect. 3, discuss in Sect. 4, and
conclude in Sect. 5.

2 Proposedmodel

Our 3D reconstruction approach uses two calibrated bipla-
nar oblique 45-degree and 135-degree radiographic images

and a prior global knowledge of the geometric/anatomical
structure of each bone.We reason that the oblique orthogonal
radiologic projections will allow a better identification of the
various components of the bone.

Note that most biplanar 3D reconstruction methods use
postero-anterior (PA) and lateral (LAT) images. The human
bone structures in the PA image are clearly identified, usu-
ally non-overlapping and distinguished fromdense soft tissue
(cartilage, meniscus, and fascia). But in the LAT image, due
to the overlapping of bones and dense soft tissue, much less
information about bone structure can be extracted. In con-
trast, the bone structures in both oblique images appear less
clear than in a PA image but much clearer than in a LAT
image. Bone structure information can be equally extracted
from each of two oblique images (see Fig. 1).

A robust approach consists of a segmentation method
which makes it possible to take into account both the notions
of contour and region (detection of homogeneous zones).
The combination of segmentation by region and contour
contributes to a better appreciation of the bones in the radio-
graphic images and, consequently, to a better segmentation
[22] thanks to the complementary nature of these two types

Fig. 2 The pipeline of the proposed method
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of information [23]. Thus, segmentation by region and con-
tour cooperation/combination can be thought of as mutual
aid between these two concepts in order to improve the end
result [24, 25].

The prior information is obtained by applying FastMap
[26], a variant of the MDS algorithm, on the training set
(in which each 3D shape is represented by a fixed-length
vector, representing the coordinates of its different points).
This algorithm uses an adequate distance metric to find an
adequately low-dimensional space that preserves the chosen
metric in the original space. This nonlinear dimensionality
reduction step allows us to define a mesh of deformations in
a reduced dimensionality space in which each point corre-
sponds to an element of our training set. In our application,
this mesh also defines a concise nonparametric model of the
possible 3D deformations in which the admissible statistical
deformations, extracted from the training set, are given by
the set of values of the different reduced parameter vectors.

From this triangular mesh of nonlinear deformations
which summarizes all the a priori admissible statistical
structures, the objective of the proposed approach is to
(non-parametrically) sample a population of possible (i.e.,
statistically admissible) deformed 3D shapes to be recon-
structed. To this end, a sampling strategy is performed from
this density mesh by using the interpolation of the nearest
(and not dimensionally reduced) k closest elements of this
mesh. An individual fitness value for each candidate shape,
sampled from this population, is calculated from the pro-
jected contours and regions of interest (RoIs) on the biplanar
oblique radiographic images with the corresponding bone in
the preprocessed images (and after the deformation shape is
adjusted by a deterministic optimization algorithm). Finally,
the set of fitness values for this population is used to effec-
tively and iteratively guide a stochastic optimization process
to increasingly promising solutions until the optimal recon-
structed shape is found (see Fig. 2).

2.1 Training set

We have 3D databases for 654 patella, 380 talus, and
39 pelvis. These databases were obtained from the semi-
automated segmentation of CT images [27]. This semi-
automated segmentation method was based on the propa-
gation of the contours in adjacent slices. An initial contour
was outlined bymanually selecting few high curvature points
and using the Fourier interpolation method to complete the
contour. Then, a deformable image registration method was
applied to map the contour to adjacent slices. Next, for each
bone, the surface models were registered by a rigid regis-
tration approach called Iterative Closest Point (ICP) [28]
that iteratively minimizes the distance metric in the least
squares error. Finally, we calculated the corresponding points

between the models of a bone using descriptors, namely, a
set of features, assigned to a point and describing the local
geometry around it [29]. For each bone, all the models had
the sameN number of 3D points. These points were indexed
in such a way that the detection of RoIs was easy for all
bones.

Figure 3 represents the regions involved in the seg-
mentation process of the patella, the talus, and the pelvis,
respectively. These RoIs were defined by an orthopedic sur-
geon.

2.2 Image preprocessing

Contour detection
Preprocessing is performed on each image to enhance the
visibility of the component contours, and this constitutes
the most important and reliable low-level visual cue in each
radiographic image. First, a histogramequalization technique
increases the global contrast. Second, amedianfilter and non-
local means denoising algorithm [30] are used to remove

Fig. 3 Example of 3D bone regions. 45-degree view is on the left, and
135-degree view is on the right of each bone. The patella has 1 region,
the talus is divided into 3 regions (green: dome, blue: body, red: head),
and the pelvis is divided into 9 regions (pink and red: right and left iliac
spine, cyan and blue: right and left acetabulum, purple and green: right
and left pubis, orange and brown: right and left ischium, grey: rest of
pelvis)
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the noise from the images. The non-local means denoising
method replaces a pixel with a weighted average of pix-
els having a similar neighborhood. More precisely, for each
pixel, it first searches in a large search window (centered on
the pixel to be denoised) for all the neighborhoods of pix-
els that most closely resemble (with a least squares (LSQ)
similarity measure) the neighborhood of the pixel to be fil-
tered. Then, a weighted average (based on the previous LSQ
similarity measure) of all these central pixels (of all these
neighborhoods) allows to estimate the denoised greyscale
value of the pixel. Finally, the edges are detected by using a
Canny edge filter [31] (see Fig. 4).
Region detection
The next part of the preprocessing step is the region extrac-
tion. By using the superpixel andmulti-atlas-based algorithm
[22], the input images are segmented intom RoIs. This algo-

rithm registers each image in the training set to the input
image using a contour-based registration technique. A super-
pixel map is estimated from the first half of the optimally
registered images in the training set by simply taking the
intersection of all the regions existing in this selected sub-
set. Each superpixel represents the (local) variability of bone
regions. This map is adaptive to the input image and takes
into account all the nonlinear and local variability of bone
regions existing in the selected subset. Then, a pruning step
is achieved by finding the set of connected superpixels which
maximize the contour-based similarity between the outer
contour of this superpixel map and the edge map of the input
image. Finally, a label propagation step based on the entropy
concept is used for refining the resulting segmentation map
into the most likely internal regions to the final consensus
segmentation (see Fig. 5).

Fig. 4 Example of bone contour
detection using our Canny
filter-based approach. 45-degree
view is on the left, and
135-degree view is on the right
of each bone
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Fig. 5 Example of bone region
detection using the superpixel
and multi-atlas-based algorithm.
The 45-degree view is on the
left, and 135-degree view is on
the right of each bone

2.3 Statistical deformablemodel

This MDS-based algorithm has been successfully used in
many imaging applications, such as 3D object recognition
[32], human action recognition [33, 34], image segmenta-
tion [35, 36], and image change detection [37]. In our study,
each object in the training set is considered to be a point in
N -dimensional space. These points are then projected onM
mutually orthogonal axes. The goal is to calculate the train-
ing set in anM-dimensional space from the distance matrix
previously computed in the original space (M << N ).
FastMap algorithm
is based on the projections of the objects on a selected line.
This line is created by connecting two furthest pivot objects
Oa and Ob in the training set (see Algorithm 1). Then, the
projections of the objects Oi are computed by applying the
cosine law defined as

D2(Ob, Oi ) = D2(Oa, Oi ) + D2(Oa, Ob) − 2xiD(Oa, Ob) (1)

where D(Oi , Oj ) (for i, j = 1, ...,N ) is the distance between Oi

et Oj . From the Pythagorean theorem, Eq.1 can be solved for xi , the
first coordinate of object Oi :

xi = D2(Oa, Oi ) + D2(Oa, Ob) − D2(Ob, Oi )

2D(Oa, Ob)
(2)

For M > 1, the objects are projected on a hyper-plane H which
is perpendicular to the line OaOb. A new distance D′ between two
projections O ′

i et O
′
j on H is deduced from the original distance D

as follows:

D′2(O ′
i O

′
j ) = D2(Oi O j ) − (xi − x j )

2 (3)

Then, Eq.2 (with new distance functionD′, and new pivot objects)
is applied to obtain the next coordinate of objects (i.e., dimension
M > 1).

The efficiency of FastMap, in terms of preserving information in
reduced dimensionality, can be evaluated by calculating a correlation
metric [38]. This metric is the correlation of Euclidean distance of
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Algorithm 1 Heuristic to choosing two distant objects
begin

• Chose arbitrarily an object and declare it to be the second pivot
object Ob

• Oa ← the farthest object from Ob according to the distance
function D

• Ob ← the farthest object from Oa according to the distance
function D

• return Oa and Ob as the desired pair of object

end

each object pair in the original space and their corresponding pair in
reduced dimensionality space:

correlation(X , Y ) = covariance(X , Y )

σXσY
=

Xt Y
|X | − XY

σXσY
(4)

where XandY are respectively the vector of distance in the original
space and in the reduced dimensionality space. Xt , |X |, X , and σX

are the transpose, the cardinal, the mean, and the standard deviation
of X , respectively.

This correlation specifically quantifies the degree of dependence
between X andY and shows howFastMap is able to give a cartography
in the reduced dimensionality space in which each point is placed
such as the inter-point distances (in the original space) are preserved
as much as possible [39]. A perfect correlation of 1 gives a perfect
(positive) linear correlation or relation between the high dimensional
data and the low dimensional data (i.e., no loss of information), and a
correlation of 0 means a total loss of information (e.g., a correlation
of 0.80 means that the FastMap technique succeeds in keeping 80%
identical in terms of distance of the object pairs between the two
[original and reduced] spaces).

Figures 6, 7, and 8 show the cartographies or density mappings of
patella, talus, and pelvis shapes at dimensionM = 1 and atM = 2,
respectively, and showing for a complex shape like the pelvis, several
modes of deformation.

Fig. 6 Distribution of patella in low dimensionality space
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Table 1 shows the correlation metric of patella, talus, and pelvis at
different reduced dimensions.

For each possible (or statistically admissible) candidate 3D
deformed shape, which will be sampled from the preliminary esti-
mated shape mappings (in reduced dimensionality), the proposed
model will find the k nearest neighbors of this sample in the low-
dimensional data and then will use these k corresponding objects in
the high-dimensional space to generate, by interpolation (by apply-
ing the inverse distance weighting (IDW) function), a new instance of

the S bone shape. The weight w is an inverse distance of a point to
its nearest neighbors and is computed in the reduced dimensionality
space. The new bone shape is calculated in the original space.

S(z) =
∑k

i wi ∗ Zi
∑k

i wi
(5)

wi = 1

dist(z, zi )�
(6)

Fig. 7 Distribution of talus in low dimensionality space
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Fig. 8 Distribution of pelvis in low dimensionality space

where z is a point in the reduced dimensionality space, dist is the
distance between 2 points, � ≥ 0 is the power parameter, and Z is an
object in the (original) high dimensional space.

2.4 Energy function term

2.4.1 Likelihood energy term

Edge potential field-based similarity

An edge potential field-based similarity measure evaluates the
concordance or the similarity between the external contours of the
bone silhouette projections on the two biplanar X-ray images and an
edge potential field, calculated from the previously detected contours.
This edge potential field attracts the bone contours and aligns them on

the edgeof the input image, bygiving (concretely) a similaritymeasure
proportionally greater as the projected contours coincide well with the
edges existing in the images. In addition, a directional component is
added to complete the measurement of the correspondence between
the projected contours of the human bone and the edges in the two
views. This measure is computed on the preprocessed image and is
defined as [40]:

ξ(S) = 1

n

∑

n

(�(x, y)|cos(α(x, y))|) (7)

�(x, y) = exp(−ρ

√
δ2x + δ2y) (8)

where (δx , δy) is the displacement to the nearest edge point in the
image, ρ is a smoothing factor which controls the degree of smooth-
ness of the potential field �, α(x, y) is the angle between the tangent
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Algorithm 2 FastMap
O set of objects in original dimensional space
M reduced dimensionality
Y set of objects in reduced dimensional space

1. Initialization
t ← 0

2. Algorithm Fastmap(M, D(), O)
if M ≤ 0 then

return
end if
t ← t + 1
Choose pivots 0a , 0b by Algorithm 1
if D(0a, 0b) == 0 then

Y[i, t] = 0 for every i
return

end if
for each Oi ∈ O do

Compute xi using Eq. 2
Y[i, t] = xi

end for
Call Fastmap(M − 1, D′(), O)

direction of the projected external contours at (x, y) and the tangent
of the nearest edge, and n is the number of pixels on projected external
contours of the human bone S (see Fig. 9).
Non-overlapping ratio-based similarity
The non-overlapping ratio evaluates the matching between regions of
the segmented image and the bone silhouette projection on biplanar
X-ray images. This ratio is simply the number of pixels of segmented
and projected regions that are missing from their intersection on the
number of pixels of their union. A ratio of 0 means a perfect overlap
of two regions, and 1 means completely dissimilarity. This ratio for
m RoIs is defined as [41]:

ϑ(S) =
m∏

i=1

( |Ri ∪ Ri (S)| − |Ri ∩ Ri (S)|
|Ri ∪ Ri (S)|

) 1
m

(9)

where S is the 3D bone model, Ri is the set of pixels in i th RoI in
segmented image, Ri (S) is the set of pixels of the projection of i th

RoI in 3D model S, and |R| indicates the number of pixels in region
R (see Fig. 10).

The likelihood energy term is defined as

El(S) = (1 − ξ(S)) + ϑ(S) (10)

Table 1 Correlations of patella, talus, and pelvis at different reduced
dimensions. The higher the reduced dimension, the lesser information
is lost in the data

M = 1 M = 2 M = 3

Patella 0.753 0.84 0.896

Talus 0.847 0.92 0.94

Pelvis 0.682 0.734 0.819

Fig. 9 Directional component used in Eq. (7)

2.4.2 Prior energy term

In order to favor statistically admissible surface structures in our train-
ing base, our prior energy term will favor a candidate shape in a
high-density area of our shape density mapping and will be simply
defined as the average distance between it and its k nearest neighbors:

Ep(s) = 1

k

k∑

i

(s − si )
2 (11)

Fig. 10 Overlap of segmented and projected regions
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Fig. 11 Initialization step is the
registration of the reference box
on the input box

Fig. 12 Example of bone
images after initialization (see
Sect. 2.5.1) step. The 45-degree
view is on the left, and
135-degree view is on the right
of each bone
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Table 2 Results on comparison of 5 patellae

Model RMS Maximum error Errors < 1mm 1mm ≤ Errors < 2mm Errors ≥ 2mm
(mm) (mm) (%) (%) (%)

1 0.8 2.6 81.4 18.2 0.4

2 0.9 3.3 74.9 21.9 3.2

3 0.6 2.0 89.7 10.3 0.0

4 1.0 3.0 69.6 26.7 3.7

5 1.3 4.1 59.9 28.4 11.7

Average ± SD 0.9 ± 0.2 3.0 ± 0.7 75.1 ± 10.1 21.1 ± 6.5 3.8 ± 4.2

where si is a point in the k nearest neighbourhood of s in the reduced
dimensionality space.

2.5 3D reconstruction

2.5.1 Initialization

From biplanar oblique (45 and 135 degree) X-ray images (I45 and
I135), we construct a box which contains the bone to be reconstructed.
The dimensions of the box are the width of the 45-degree image, the
width of the 135-degree image, and the height of the highest image of
the bone. Then, wemanually position a 3Dmodel of the bone (patella,
talus, pelvis) in this box in such a way that the projections of these
3D models coincide with their corresponding bone in the two images.
This re fbox box constitutes a reference box, and these bone mod-
els (re f patella, re ftalus , re f pelvis ) constitute reference models. These
references are computed offline and only once.

The initialization step of our approach is simply the registration
of re fbox on inbox which is created by using the aforementioned
method on biplanar input images. The transformation from this reg-
istration is then applied to the re fbox and the reference models
(re f patella, re ftalus , re f pelvis ). Figure11 well illustrates the initial-
ization step, and Fig. 12 shows a result example. This step can be
refined by using a 3D/2D registration. The registered reference mod-
els will be used for the next step.

2.5.2 Optimization

Our method is based on the optimization of an objective function E
that contains both a contour/region-based similarity term El and a

shape prior term Ep:

E(S(θ)) = El(S, I45) + El(S, I135) + βEp(s) (12)

where θ is the deformation parameters, S and s are the bone shape in
the original and reduced dimensionality space, and β is a weighting
factor which indicates the importance of the prior information.

To minimize this complex non-convex energy function, we resort
to Exploration Selection (ES) algorithm [42], a stochastic and effi-
cient optimization algorithm. This algorithm belongs to the class
of evolutionary algorithms and is typically well-suited for this type
of function to be optimized. This class of algorithm is inspired by
the evolution of nature by reflecting the process of natural selec-
tion to provide good approximate solutions to complex problems.
These algorithms have been successfully used in medical imaging
[14, 43, 44].

The ES algorithm can be summarized in two steps: exploration
and selection steps. Let F be a finite discrete subset of the Cartesian
product of h intervals [mi , Mi ] for 1 ≤ i ≤ h, and θ = {θ1, ..., θn}
a set of n candidate solutions (population) randomly chosen. θ̂ is the
optimal element θi of θ such that E(θ j ) > E(θi ) for 1 ≤ j < i , and
E(θ j ) ≥ E(θi ) for i < j ≤ n. In the first step, each solution of θ

is considered as an individual that attempts a random search on the
exploration graph. The exploration process acts independently on each
individual and chooses a random f according to a positive distribution.
We compute θ̂ = argminθ E(.), and for i ≤ f , we replace θi by γi ∈
N (θi )\{θ̂} according to a uniform distribution, where N (b) is defined
by {a ∈ F : for some j, | a j − b j |≤ r(Mj − m j ), ai = bi , i 
= j},
and r ∈ [0, 1] is the radius of exploration. Otherwise, θi is changed
by θ̂ in the second step. This process is run until a stopping criterion
has been met (see Algorithm 3).

Table 3 Results on comparison of 5 tali

Model RMS Maximum error Errors < 1mm 1mm ≤ Errors < 2mm Errors ≥ 2mm
(mm) (mm) (%) (%) (%)

1 1.7 6.5 48.1 29.8 22.1

2 1.2 3.9 56.4 36.4 7.2

3 1.3 4.4 57.8 31.2 11.0

4 1.5 4.8 44.1 39.8 16.1

5 1.5 3.9 51.5 31.3 17.2

Average ± SD 1.4 ± 0.2 4.7 ± 1.0 51.6 ± 5.1 33.7 ± 3.8 14.7 ± 5.2

123



Medical & Biological Engineering & Computing

Table 4 Results on comparison of 3 pelvis

Model RMS Maximum error Errors < 1mm 1mm ≤ Errors < 2mm 2mm ≤ Errors < 4mm Errors ≥ 4mm
(mm) (mm) (%) (%) (%)

1 3.6 14.3 25.8 24.9 25.0 24.3

2 2.5 13.9 40.0 25.6 22.8 11.6

3 4.2 19.3 20.8 21.0 29.3 28.9

Average ± SD 3.4 ± 0.7 15.8 ± 2.5 28.9 ± 8.1 23.8 ± 2.0 25.7 ± 2.7 21.6 ± 7.3

Algorithm 3 ES optimization algorithm

E(.) A h-variable function defined on F to be minimized
N (a) The neighborhood of an element a ∈ F defined by

{b∈F : for some 1 ≤ j ≤ l, |b j − a j | ≤ r (Mj −m j ),

bi =ai , i 
= j}
D (= h/r ) The diameter of the exploration graph F

(endowed with the neighborhood system {N (a)}a∈F )
θ θ =(θ1, . . . , θn), an element of Fn (population)
θ̂ θ̂ ∈ F , θ̂ = argminθi∈(θ1,...,θn) E(θi )

i.e., the minimal point in θ with the lowest label
p The probability of exploration
t The iteration step

F A finite discrete subset of the Cartesian
product 
h

j=1[m j , Mj ] of h compact intervals
n The size of the population (greater than D)
r A real number ∈ [0, 1] called the radius of exploration

(with r greater than the ε-machine)

1. Initialization
Random initialization of θ =(θ1, . . . , θn) ∈ Fn

t←2

2. Exploration/Selection
while a stopping criterion is not met do

1. Compute θ̂ ; θ̂ ←argminθi∈θ E(θi )

2. Draw f according to the binomial law b(n, p)
• For i ≤ f , replace θi by γi ∈ N (θi )\{θ̂} according
• to the uniform distribution (Exploration step)
• For i > f , replace θi by θ̂ (Selection step)

3. t← t + 1 and p← t−1/D

end while

2.5.3 Refinement

We use an additional strategy which consists in associating the
stochastic exploration, selection search with a local optimization
technique. In each generation (i.e., each Exploration/Selection step),
the best individual or solution is used to initialize a gradient
descent-style deterministic minimization technique in which local
deformations are used to refine the bone shape result previously esti-
mated by the stochastic optimizer (at each E/S step). Therefore, the
best individual deterministically explores the local neighborhood in
parameter space to find a point that further minimizes our energy
function. More precisely, this deterministic gradient descent pro-
cedure uses local deformations to refine the bone shape obtained
with θ previously estimated. This procedure can be described as
follows:

• Do

– For each point pi on external contour of bone shape S(θ)

• Find Ki nearest neighbour of pi
• Compute the normal ηi which is the average of the nor-

mal of Ki

• Compute ϑ(S(θ, Ki )), ϑ(S(θ, Ki − εη)), ϑ(S(θ, Ki +
εη))

• Update Ki with the lowest energy ϑ

• While the energy ϑ is not stable.

3 Experiments

3.1 Lower limb (patella, talus, pelvis) database

Our training databases consist of 654 surface models for the patella,
380 for the talus, and 39 for the pelvis. These training surface models
were constructed from binary volumes that were semi-automatically
segmented from CT-datasets of patient [27].

3.2 Radiographic images

In our application, we used biplanar oblique (45 and 135 degree) X-
ray images (I45 and I135) acquired with a low dose imaging device.
This system performs the simultaneous acquisition of two orthogonal
calibrated X-rays, with the patient in a standing position. The radio-
graphic image illustrates the superposition of the various structures on
the same plan and gives place to semi-transparent images. The size of
our radiographic images is approximately 1764× 5932 pixels (coded
on 256 gray levels).

3.3 Comparison protocol

We only had 13 bones (5 patellae, 5 tali, and 3 pelvis) from 13 patients
(13 pairs of radiographic images (I45 and I135 views) of the lower
limbs) to validate our 3D reconstruction method. This comparison
wasmade using the distance (root mean square (RMS) andmaximum)
between the point from the reconstructed lower limb and the nearest
point of the corresponding lower limb obtained with CT-scan, which
was considered as the ground truth and whose accuracy is ±1mm for
the human spine [45].

3.4 Experimental results

In our study, we use the shape density mapping, obtained by the
FastMap, in the reduced space of dimension 3, that preserves 94%
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information for talus and more than 80% information for pelvis and
patella in terms of distance of object pairs.

Based on preliminary test results, we choose k = 12, 8, 18 for the
nearest neighbour and � = 1.2, 2.8, 0.8 for the power parameter in the
IDW interpolation for the patella, talus, and pelvis, respectively. The
prior weighting factor β was set to 0.001, 0.0005, and 0.00005 for
the patella, talus, and pelvis, respectively, to weight the prior energy
term with respect to the likelihood energy term. Finally, we set the
size of the population to 100 and the number of iterations to 380 for
ES algorithm.

We have validated our method on 5 patellae, 5 tali, and 3 pelvis
by using the aforementioned protocol. The results of comparisons are
given in Tables 2, 3, and 4. Figure 13 details the errors of eachmodel of
each bone. Figures14, 15, and 16 show examples of the reconstructed
bone by our method and their projections on both images.

For the patella, the average RMS was 0.9 mm and the average
maximum error was 3.0 mm. 75.1% of points had an error less than 1
mm. 21.1% of points had an error between 1 and 2 mm. The error of
the remaining 3.8% of points was greater than 2 mm.

For the talus, the average RMS was 1.4 mm and the average maxi-
mum error was 4.7 mm. 51.6% of points had an error less than 1 mm.
33.7% of points had an error between 1 and 2 mm. The error of the
remaining 14.7% of points was greater than 2 mm.

For the pelvis, the average RMS was 3.4 mm and the average
maximum error was 15.8 mm. 52.7% of points had an error less than
2 mm. 25.7% of points had an error between 2 and 4 mm. The error
of the remaining 21.6% of points was greater than 4 mm.

4 Discussion

In this paper, we present a new approach for the 3D reconstruction of
human lower limbs (patella, talus, and pelvis) from two radiographic
oblique projections (45 and 135 degrees). This approach efficiently
exploits all the information existing in the image (edges and RoIs)
and the estimation of a FastMap both for the reduction of the dimen-
sionality and to constrain the 3D reconstruction problem. This 3D
reconstruction problem is considered as a cost function optimiza-
tion problem encompassing the information extracted from the image
and the information extracted from the database by FastMap. Our 3D
reconstructionmethod has the advantage ofminimizing theX-ray dose
(only two oblique radiographic images), exploitation of the maximum
amount of information existing in these two images (contours and
RoIs), and the use of the nonlinear FastMap statistical method which
gives a good representation of deformations in the bone database rel-
ative to those used in other 3D reconstruction methods. The results
obtained in our experiments are encouraging and indicate that accurate
unsupervised 3D reconstruction is technically feasible.

This approach has been validated on a sample of 13 bones (5 patel-
lae, 5 tali, and 3 pelvis) from 13 patients (13 pairs of radiographic
images (I45 and I135 views) of lower limbs), by comparing the model
obtained from our approach and those obtained with CT-scan, which
was considered as the ground truth and whose accuracy is ±1mm for
the human spine [45]. The average RMSwas 0.9 mm, 1.4 mm, and 3.4
mm for the patella, the talus, and the pelvis, respectively. The mean
and the standard deviation of the percentages for the points whose
error is less than 1mm for the patella and the talus were 75.1±10.1%
and 51.6 ± 5.1%. Those whose error is less than 2mm for the pelvis
were 52.7 ± 9.8%.

Our results are better than that of the hierarchical statistical model-
ingmethod [14] in case of the patella and talus (see Table 5). The errors

Fig. 13 Detailed errors of each model of each bone
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Fig. 14 Examples of the
reconstructed patellae by our
method and their projections on
both images

Fig. 15 Examples of the
reconstructed tali by our method
and their projections on both
images

Fig. 16 Examples of the
reconstructed pelvis by our
method and their projections on
both images

Table 5 Results of our method versus the hierarchical statistical modeling method [14]

Our method Hierarchical statistical modeling method

Bones Average RMS Average maximum error Bones Average RMS Average maximum error

(mm) (mm) (mm) (mm)

Patella 0.9 3.0 Thoracic vertebra 1.6 4.5

Talus 1.4 4.7 Lumbar vertebra 1.9 5.4

Pelvis 3.4 15.8
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of the pelvis reconstruction were greater than other bone reconstruc-
tions because the pelvis has a very complex structure and its database
was smaller than that of the other bones, limited to 39 objects in our
application. Also, the sacrum and the coccyxwere blurred in the bipla-
nar images, and the L5 S1 junction is hard to identify. Note that the
structural complexity, the anatomical position in the human body, and
the number of elements in the training set of each bone of eachmethod
are different.

Compared to the biplanarmethod [14]which uses only the contours
of anatomical shapes, our likelihood function uses all the informa-
tion of the two images (contours and RoIs). Moreover, the linear
PCA-based dimensionality reduction used in [14] does not perfectly
represent admissible statistical deformations existing in the training
set because linearity is a hypothesis that is not necessarily true in
our context. However, our statistical deformable model requires the
selection of the number of the nearest neighbor (k) to generate a new
instance. This can be a limitation as it can be difficult to determine the
optimal value of k for a given dataset.

The biplanar technique [14] is also limited due to the inher-
ent inaccuracy produced in the segmentation of IL AT (leading to
reconstruction errors). In addition, this method does not use all the
information contained in two X-ray projections, for example, the con-
tours of each bone structure and the geometric structure or statistical
knowledge of the possible deformation of the bone structure to be
reconstructed.

Our approach requires a training representative database. Never-
theless, our proposed reconstruction method remains unsupervised in
the sense that this database is constructed off-line and not during the
3D reconstruction step.

5 Conclusion

Our approach provides an accurate representation of the patella, talus,
and pelvis from just two X-ray views, while the CT-scan requires hun-
dreds of images to achieve the same three-dimensional reconstruction.
Our proposed method is interesting in terms of the quantity of data to
be acquired, processed, and managed.

Our technique constitutes an alternative to CT-scan 3D recon-
struction with the advantage of low radiation. This promises to be of
great interest for the study of bone deformities, simulation of ortho-
pedic treatments, and for reliable geometric models for finite element
studies. Presently, this reconstruction method is not suitable with-
out improvement for surgical navigation applications as compared
to the current standard CT-scan reconstruction with errors of ±1
mm.

To our knowledge, our proposed approach is the first non-CT
3D reconstruction method for the talus. Our technique is suffi-
ciently robust to be applied to other medical reconstruction problems
for which a database of the anatomical structure is available. In
addition, our method, based on the ES optimizer, though slightly
time-consuming, is easily parallelizable and thus remains especially
well-suited for the next-generationGPUormassively parallel comput-
ers andmulti-core processors. Furthermore, FastMap algorithm uses a
distance metric to transform data from a high-dimensional space into
a low-dimensional space. This means that another distance metrics
(other than Euclidean distance) can be applied.
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