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Abstract: Salient object-detection models attempt to mimic the human visual system’s ability to
select relevant objects in images. To this end, the development of deep neural networks on high-end
computers has recently achieved high performance. However, developing deep neural network
models with the same performance for resource-limited vision sensors or mobile devices remains a
challenge. In this work, we propose CoSOV1net, a novel lightweight salient object-detection neural
network model, inspired by the cone- and spatial-opponent processes of the primary visual cortex
(V1), which inextricably link color and shape in human color perception. Our proposed model is
trained from scratch, without using backbones from image classification or other tasks. Experiments
on the most widely used and challenging datasets for salient object detection show that CoSOV1Net
achieves competitive performance (i.e., Fβ = 0.931 on the ECSSD dataset) with state-of-the-art salient
object-detection models while having a low number of parameters (1.14 M), low FLOPS (1.4 G)
and high FPS (211.2) on GPU (Nvidia GeForce RTX 3090 Ti) compared to the state of the art in
lightweight or nonlightweight salient object-detection tasks. Thus, CoSOV1net has turned out to
be a lightweight salient object-detection model that can be adapted to mobile environments and
resource-constrained devices.

Keywords: lightweight salient object detection; salient object detection; object detection; lightweight
neural network; color opponent; cone-opponent; double-opponent; vision sensing

1. Introduction

The human visual system (HVS) has the ability to select and process relevant infor-
mation from among the large amount that is received. This relevant information in an
image is called salient objects [1]. Salient object-detection models in computer vision try
to mimic this phenomenon by detecting and segmenting salient objects in images. This is
an important task, given its many applications in computer vision, such as object tracking,
recognition and detection [2], advertisement optimization [3], image/video compression [4],
image correction [5], analysis of iconographic illustrations [6], image retrieval [7], aesthetic
evaluation [8], image quality evaluation [9], image retargeting [10], image editing [11] and
image collages [12], to name a few. Thus, it has been the subject of intensive research in
recent years and is still being investigated [13]. Salient object-detection models generally
fall into two categories, namely conventional and deep learning-based models, which differ
by their feature extraction process. The former use hand-crafted features, while the latter
use features learned from a neural network. Thanks to powerful representation learning
methods, deep learning-based salient object-detection models have recently shown superior
performance over conventional models [13,14]. The high performance of these models is un-
deniable; however, generally, they are also heavy if we consider their number of parameters
and the amount of memory occupied, in addition to their high computational cost and slow
detection speed. This makes these models less practical for resource-limited vision sensors

Sensors 2023, 23, 6450. https://doi.org/10.3390/s23146450 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146450
https://doi.org/10.3390/s23146450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1304-9842
https://doi.org/10.3390/s23146450
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146450?type=check_update&version=1


Sensors 2023, 23, 6450 2 of 28

or mobile devices that have many constraints on their memory and computational capa-
bilities, as well as for real-time applications [15,16]. Hence, there is a need for lightweight
salient object-detection models whose performance is comparable to state-of-the-art models,
with the advantages of being deployed on resource-limited vision sensors or mobile devices
and having a detection speed that allows them to be used in real-time applications. Exist-
ing lightweight salient object-detection models have used different methodologies, such
as backbones from nonlightweight classification models [17,18], the imitation of primate
hierarchical visual perception [19], human attention mechanisms [16,19], etc.

In this work, we propose an original approach for a new lightweight neural network
model, namely CoSOV1Net, for salient object detection, that can therefore be adapted to
mobile environments and resource-limited or -constrained devices, with the additional
properties of being able to be trained from scratch without having to use backbones
developed from image-classification tasks and having few parameters, but with comparable
performance with state-of-the-art models.

Given that detecting salient objects is a capability of the human visual system and
that a normal human visual system performs this quickly and correctly, we used images
or scenes encoding mechanism research advances in neuroscience, especially for the early
stage of the human visual system [20–22]. Our strategy in this model is therefore inspired
by two neuroscience discoveries in human color perception, namely:

1. The color-opponent encoding in the early stage of the HVS (human visual sys-
tem) [23–26];

2. The fact that color and pattern are linked inextricably in human color perception [20,27].

Inspired by these neuroscience discoveries, we propose a cone- and spatial-opponent
primary visual cortex (CoSOV1) module that extracts features at the spatial level and
between color channels at the same time to integrate color in the patterns. This process
is applied first on opposing color pair channels two by two and then to grouped feature
maps through our deep neural network. Thus, based on the CoSOV1 module, we build
a novel lightweight encoder–decoder deep neural network for salient object detection:
CoSOV1Net, which has only 1.14 M parameters but comparable performance with state-
of-the-art salient object-detection models. CoSOV1Net predicts salient maps at a speed
of 4.4 FPS on an Intel CPU, i7-11700F and 211.2 FPS on a Nvidia GeForce RTX 3090 Ti
GPU for 384× 384 images and it has a low FLOPS = 1.4 G. Therefore, CoSOV1net is a
lightweight salient object-detection model that can be adapted for mobile environments
and limited-resource devices.

Our contribution is threefold:

• We propose a novel approach to extract features from opposing color pairs in a neural
network to exploit the strength of the color-opponent principle from human color
perception. This approach permits the acceleration of neural network learning;

• We propose a novel strategy to integrate color in patterns in a neural network by
extracting features locally and between color channels at the same time in successively
grouped feature maps, which results in a reduction in the number of parameters and
the depth of the neural network, while keeping good performance;

• We propose—for the first time, to our knowledge—a novel lightweight salient object-
detection neural network architecture based on the proposed approach for learning
opposing color pairs along with the strategy of integrating color in patterns. This model
has few parameters, but its performance is comparable to state-of-the-art methods.

The rest of this work is organized as follows: Section 2 presents some lightweight
models related to this approach; Section 3 presents our proposed lightweight salient object-
detection model; Section 4 describes the datasets used, evaluation metrics, our experimental
results and the comparison of our model with state-of-the-art models; Section 5 discusses
our results; Section 6 concludes this work.
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2. Related Work

Many salient object-detection models have been proposed and most of the influential
advances in image-based salient object detection have been reviewed by Gupta et al. [13].
Herein, we present some conventional models and lightweight neural network models
related to this approach.

2.1. Lightweight Salient Object Detection

In recent years, lightweight salient object-detection models have been proposed with
different strategies and architectures. Qin et al. [28] designed U2net, a lightweight salient
object-detection model with a two-level nested Unet [29] neural network able to capture
more contextual information from different scales, thanks to the mixture of receptive
fields of different sizes. Its advantages are threefold: first, it increases the depth of the
whole architecture without increasing the computational cost; second, it is trained from
scratch without using pretrained backbones, thus being able to keep feature maps high-
resolution; third, it has high accuracy. Its disadvantage is its number of parameters. Other
models are based on streamlined architecture to build lightweight deep neural networks.
MobileNets [30,31] and ShuffleNets [32,33], along with their variants, are among the latter
models. MobileNets [30] uses architecture based on depthwise separable convolution.
ShuffleNets [32] uses architecture based on pointwise group convolution and channel
shuffle, as well as depthwise convolution, to greatly reduce computational cost while
maintaining accuracy. Their advantages are their computational cost, accuracy and speed,
while their disadvantages are their number of parameters and their input resolution.
Other authors have been inspired by primate or human visual system processes. Thus,
Liu et al. [19] designed HVPNet, a lightweight salient object-detection network based on
a hierarchical visual perception (HVP) module that mimics the primate visual cortex for
hierarchical perception learning, whereas Liu et al. [16] were inspired by human perception
attention mechanisms in designing SAMNet, another lightweight salient object-detection
network, based on a stereoscopically attentive multiscale (SAM) module that adopts a
stereoscopic attention mechanism for effective and efficient multiscale learning. Their
advantages are their computational cost and accuracy, while their disadvantages are their
number of parameters and their input resolution.

2.2. Color-Opponent Models

Color opponency, which is a human color perception propriety, has inspired many
authors who have defined channels or feature maps to tackle their image-processing tasks.
Frintrop et al. [34] used three opponent channels—RG, BY and I—to extract features for
their salient object-detection model.

To extract features for salient object detection, Ndayikengurukiye and Mignotte [1]
used nine (9) opponent channels for RGB color space (RR: red–red; RG: red–green; RB: red–
blue; GR: green–red; GG: green–green; GB: green–blue; BR: blue–red; BG: blue–green; BB:
blue–blue) with a nonlinear combination, thanks to the OCLTP (opponent color local ternary
pattern) texture descriptor, which is an extension of the OCLBP (opponent color local binary
pattern) [35,36] and Fastmap [37], which is a fast version of MDS (multidimensional scaling).

Most authors apply the opponent color mechanism to the input image color space
channels and not on the resulting feature maps. However, Jain and Healey [38] used
opponent features computed from Gabor filter outputs. They computed opponent features
by combining information across different spectral bands at different scales obtained via
Gabor filters for color texture recognition [38]. Yang et al. [39] proposed a framework based
on the color-opponent mechanisms of color-sensitive double-opponent (DO) cells in the
human visual system’s primary visual cortex (V1) in order to combine brightness and
color to maximize the boundary-detection reliability in natural scenes. The advantages of
hand-crafted models are their computational cost, number of parameters, speed and input
resolution, while their disadvantage is accuracy.
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In this work, we propose a model inspired by the human visual system but different
from other models, because our model uses the primary visual cortex (V1) cone- and spatial-
opponent principle to extract features at channels’ spatial levels and between color channels
at the same time to integrate color into patterns in a manner allowing for a lightweight
deep neural network design with performance comparable with state-of-the-art lightweight
salient object-detection models.

3. Materials and Methods
3.1. Introduction

Our model for tackling the challenge of lightweight salient object detection is inspired
by the human visual system (HVS)’s early visual color process, especially its cone oppo-
nency and spatial opponency in the primary visual cortex (V1). The human retina (located
in the inner surface of the eye) has two types of photoreceptors, namely rods and cones.
Rods are responsible for monochromatic vision under low levels of illumination, while
cones are responsible for color vision at normal levels of illumination. There are three
classes of cones: L, M and S. When light is absorbed by cone photoreceptors, the L, M and
S cones absorb long-, middle- and short-wavelength visible light, respectively [24,25,27].

The cone signals are then processed by single-opponent retina ganglion cells. The
single opponent operates an antagonistic comparison of the cone signals [23,25,26,40]:

• L −M opponent for red–green;
• S − (L + M) opponent for blue–yellow.

The red–green and blue–yellow signals are carried by specific cells (different cells
each for red–green and blue–yellow) through the lateral geniculate nucleus (LGN) to the
primary visual cortex (V1).

Shapley [27] and Shapley and Hawken [20] showed that the primary visual cortex
(V1) plays an important role in color perception through the combined activity of two
kinds of color-sensitive cortical neurons, namely single-opponent and double-opponent
cells. Single-opponent cells in V1 operate in the same manner as those of retina ganglion
cells and provide neuronal signals that can be used for estimating the color of the illumi-
nation [27]. Double-opponent cells in V1 compare cone signals across space as well as
between cones [21,22,24,27]. Double-opponent cells thus have two opponencies: spatial
opponency and cone opponency. These properties permit them to be sensitive to color
edges and spatial patterns. They are thus able to inextricably link color and pattern in
human color perception [20,27].

As the primary visual cortex (V1) is known to play a major role in visual color percep-
tion, as highlighted above, in this work, we propose a deep neural network based on the
primary visual cortex (V1) to tackle the challenge of lightweight salient object detection. In
particular, we use two neuroscience discoveries in human color perception, namely:

1. The color-opponent encoding in the early stage of the HVS;
2. The fact that color and pattern are inextricably linked in human color perception

These two discoveries in neuroscience inspired us to design a neural network archi-
tecture for lightweight salient object detection, which hinges on two main ideas. First, at
the beginning of the neural network, our model opposes color channels two by two by
grouping them (R-R, R-G, R-B, G-G, G-B, B-B) then extracting the features at the channels’
spatial levels and between the color channels from each channel pair at the same time, to
integrate color into patterns. Therefore, instead of performing a subtractive comparison or
an OCLTP (opponent color linear ternary pattern) like Ndayikengurukiye and Mignotte [1],
we let the neural network learn the features that represent the comparison of the two color
pairs. Second, this idea of grouping and then extracting the features at the channels’ spatial
levels and between the color channels at the same time is applied on feature maps at each
neural network level until the saliency maps are obtained. This process allows the proposed
model to mimic the human visual system’s capability of inextricably linking color and
pattern in color perception [20,27].
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It is this idea that differentiates our model from other models that use depthwise
convolution followed by pointwise convolution [30,31] to extract features at each individual
color channel level (or feature map) first, not through a group of color channels (or feature
maps) at the same time, as our model does. This idea also differentiates our model from
models that combine a group of color channels (or feature maps) pixel by pixel first and
apply depthwise convolution afterwards [32,33]. The idea of grouping color channels in
pairs (or feature map groups) differentiates our model from models that consider all color
channels (or feature maps) as a single group while extracting features at color channels’
spatial levels and between color channels at the same time.

Our model takes into account nonlinearities in the image at the beginning as well as
through our neural network. For this purpose, we use an encoder–decoder neural network
type whose core is a module that we call CoSOV1 (cone- and spatial-opponent primary
visual cortex).

3.2. CoSOV1 : Cone- and Spatial-Opponent Primary Visual Cortex Module

The CoSOV1 (cone- and spatial-opponent primary visual cortex) module is composed
of two parts (see Figure 1).

Figure 1. The CoSOV1 (cone- and spatial-opponent primary visual cortex) module is the core of our
neural network model.

In the first part, input color channels (or input feature maps) are split into groups of
equal depth. Convolution (3× 3) operations are then applied to each group of channels (or
feature maps) in order to extract features from each group as opposing color channels (or
opposing feature maps). This is performed thanks to a set of filters that convolve the group
of color channels (or feature maps). Each filter is applied to the color channels (or input
feature maps) through a convolution operation that detects local features at all locations on
the input. Let I g ∈ RW×H×S be an input group of feature maps, whereW andH are the
width and the height of each group’s feature map, respectively, and W ∈ R3×3×S, a filter
with learned weights, with S being the depth of each group or the number of the channels
in each group g, with g ∈ {1, . . . ,G} (where G is the number of groups). The output feature
mapOg ∈ RW×H for this group g has a pixel value in the (k, l) position, defined as follows:

Og
k,l =

S

∑
s=1

2

∑
i=0

2

∑
j=0

Wi,j,sI
g
k+i−1,l+j−1,s (1)

The weight matrix W ∈ R3×3×S is the same across the whole group of channels
or feature maps. Therefore, each resulting output feature map represents a particular
feature at all locations in the input color channels (or input feature maps) [41]. We
call the 3 × 3 convolution on grouped channels (or grouped feature maps) groupwise
convolution. The zero padding is applied during the convolution process to keep the input
channel size for the output feature maps. After groupwise convolution, we apply the batch
normalization transform, which is known to enable faster and more stable training of deep
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neural networks [42,43]. Let B = {X1, . . . , XK} be a minibatch that contains K examples
from a dataset. The minibatch mean is

µB =
1
K

K

∑
k=1

Xk (2)

and the minibatch variance is

σ2
B =

1
K

K

∑
k=1

(Xk − µB)2 (3)

The batch normalization transform BNγ,β : {X1, . . . , XK} −→ {Y1, . . . , YK} (γ and β
are parameters to be learned):

Yk = γX̂k + β (4)

where k ∈ {1, . . . , K} and

X̂k =
Xk − µB√

σ2
B + ε

(5)

and ε is a very small constant to avoid division by zero.
In order to take into account the nonlinearities present in the color channel input (or

feature map input), given that groupwise convolution is a linear transformation, batch
normalization is followed by a nonlinear function, exponential linear unit (ELU), defined
as follows:

ELU(x) =

{
x if x ≥ 0,
α× (exp(x)− 1) otherwise

(6)

where α = 1 by default.
The nonlinear function, which is the activation function, is placed after batch normal-

ization, as recommended by Chollet [44].
The second part of the module searches for the best representation of the obtained

feature maps. It is similar to the first part of the module, except for the groupwise convolu-
tion, which is replaced by point-wise convolution, but the input feature maps for pointwise
convolution in this model are not grouped. Pointwise convolution allows us to learn the
filters’ weights and thus obtain feature maps that best represent the input channels (or
input feature maps) for the salient object-detection task, while having few parameters.

Let O ∈ RW×H×M be the output of the first part of the module, with M being the
number of feature maps in this output and W and H being the width and the height,
respectively. Let a filter of the learned weights V ∈ RM and FM ∈ RW×H be its output
feature map by pointwise convolution. Its pixel value FMk,l in (k, l) position is:

FMk,l =
M

∑
m=1

VmOk,l,m (7)

Thus, V ∈ RM is a vector of learned weights that associates the input feature maps
O ∈ RW×H×M to the feature map FM ∈ RW×H, which is the best representation of the
latter-mentioned input feature maps. The pointwise convolution in this module uses many
filters and thus it outputs many feature maps that are the best representation of the input
feature map O. As pointwise convolution is a linear combination, we again apply batch
normalization followed by a exponential linear unit function (ELU) on the feature map
FM to obtain the best representation of the input feature maps for the learned weights
V ∈ RM, which takes into account nonlinearities in the feature maps O ∈ RW×H×M.

Our scheme is different from depthwise separable convolution in that it uses the
convolution of a group of channels instead of each channel individually [30,45].
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In addition, after the nonlinear function, noise is injected in the resulting feature maps
during the neural network learning stage thanks to the dropout process (but not in the
prediction stage) to facilitate the learning process. In this model, we use DropBlock [46] if
the width of the feature map is greater than 5; otherwise, we use the common dropout [47].

The CoSOV1 module allows our neural network to have few parameters but
good performance.

3.3. CoSOV1Net Neural Network Model Architecture

Our proposed model is built on the CoSOV1 module (see Figure 1). It is a neural
network of the U-net encoder–decoder type [29] and is illustrated in Figure 2. Thus, our
model consists of three main blocks:

1. The input RGB color channel pairing;
2. The encoder;
3. The decoder.

Figure 2. Our model CoSOV1 neural network architecture consisting of 5 blocks : Pairing_Color_Unit,
Encoder_Unit, Middle_Unit, Dec_Res_Block and Dec_Dconv_Block.

3.3.1. Input RGB Color Channel Pairing

At this stage, through Pairing_Color_Unit, the input RGB image is paired in six
opposing color channel pairs: R-R, R-G, R-B, G-G, G-B and B-B [1,35,48]. These pairs are
then concatenated, which gives 12 channels, R, R, R, G, R, B, G, G, G, B, B, B, as illustrated in
Figure 3. This is the step for choosing the color channels to oppose. The set of concatenated
color channels is then fed to the encoder.
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Figure 3. Pairing_Color_Unit: input RGB color image is transformed in 6 opposing color channel
pairs; these are then concatenated to obtain 12 color channels.

3.3.2. Encoder

The encoder, in our proposed neural network model, is a convolutional neural network
(CNN) [49] where an encoder unit (see Figure 2) is repeated eight times. Each encoder unit
is followed by a max pooling (2× 2) with strides = 2, except for the eighth neural network
level, where the max pooling is 3× 3 with strides = 3 (the max pooling is a downsampling
operation, like a filtering with a maximum filter). While the size of each feature map is
reduced by half, the depth of the feature maps is doubled, except for the first level, where it
is kept at 12 and the last two levels, where it is kept at 128 to have few parameters.

The encoder unit (see Figure 4a) is composed of a residual block (Figure 4b) repeated
three (3) times.

We used the residual block because this kind of block is known to improve the training
of deeper neural networks [50]. The residual block consists of two CoSOV1 modules with a
residual link. The reason for all these repetitions is to encode more information and thus
allow our network performance to increase.

In the encoder, schematically, as explained above (Section 3.2), the CoSOV1 mod-
ule (Figure 4c) splits the input channels into groups and applies groupwise convolution
(3× 3 convolution). Then, pointwise convolution is applied to the outputs of the concate-
nated groups (see Figure 5 for the first-level input illustration). Each of these convolutions
is followed by batch normalization and a nonlinear function (ELU: exponential linear unit
activation). After these layers, during the model training, regularization is performed in
the CoSOV1 module using the dropout [47] method for small feature maps (dimensions
smaller than 5× 5) and DropBlock [46]—which is a variant of dropout that zeroes a block
instead of pixels individually as dropout does—for feature maps with dimensions greater
than 5× 5.
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Figure 4. Encoder unit: (a) encoder unit; (b) the residual block; (c) CoSOV1 module.

At its end, the encoder is followed by the middle unit (see Figure 6a), which is the
CoSOV1 module (see Figure 6b), where we remove the groupwise convolution—since at
this stage, the feature maps are 1× 1× 128 in size—and add a residual link.

3.3.3. Decoder

The decoder transforms the features from the encoder to obtain the estimate of the
salient object(s) present in the input image. This transformation is achieved through a
repeating block, namely the decoder unit (see Figure 7a). The decoder unit consists of two
parts: the decoder residual block (see Figure 7b) and the decoder deconvolution block (see
Figure 7c). The decoder residual block is a modified CoSOV1 module that allows the model
to take into account the output of the corresponding level in the encoder. The output of
the decoder residual block takes two directions. On the one hand, it is passed to the next
level of the decoder; and on the other, to the second part of the decoder unit, which is the
decoder deconvolution block. The latter deconvolves this output, obtaining two feature
maps having the size of the input image (384× 384× 2 in our case). At the last level of
the decoder, all the outputs from the deconvolution blocks are concatenated and fed to a
convolution layer followed by a softmax activation layer, which gives the estimation of the
salient object-detection map.
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Figure 5. Simplified flowchart in CoSOV1 module for processing pairs of opposing color pairs (or
group of feature maps).

Figure 6. (a) The middle unit, (b) the CoSOV1 module.
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Figure 7. (a) The decoder unit; (b) the decoder residual block; (c) the decoder deconvolution block.

4. Experimental Results
4.1. Implementation Details

For our proposed model implementation, we used the deep learning platform Tensor-
Flow with the Keras deep learning application programming interface (API) [51]. All input
images were resized to 384× 384 and pixel values were normalized (each pixel channel
value ∈ [0.0, . . . , 1.0] and ground truth pixels ∈ {0, 1}). Experiments were conducted on a
single GPU, Nvidia GeForce RTX 3090 Ti (24 GB) and an Intel CPU, i7-11700F.

4.2. Datasets

Our proposed model’s experiments were conducted on public datasets, which are
the most widely used in the field of salient object detection [52]. Thus, we used the
Extended Complex Scene Saliency dataset (ECSSD) [53] and the DUT-OMRON (Dalian
University of Technology—OMRON Corporation) [54], DUTS [55], HKU-IS [56] and
THUR15K [57] datasets.

ECSSD [53] contains 1000 natural images and their ground truths. Many of its images
are semantically meaningful but structurally complex for saliency detection [53].

DUT-OMRON [54] contains 5168 images and their binary masks, with diverse varia-
tions and complex backgrounds.
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The DUTS dataset [55] is divided into DUTS-TR (10,553 training images) and DUTS-TE
(5019 test images). We trained and validated our proposed model on the DUTS-TR and
DUTS-TE was used for tests.

HKU-IS [56] is composed of 4447 complex images, which contain many disconnected
objects with different spatial distributions. Furthermore, it is very challenging for similar
foreground/background appearances [58].

THUR15K is a dataset of images taken from the “Flickr” website, divided into five
categories (butterfly, coffee mug, dog jump, giraffe, plane), which contains 3000 images.
The images of this dataset represent real-world scenes and are considered complex for
obtaining salient objects [57] (6232 images with ground truths).

4.3. Model Training Settings

For the reproducibility of the experiments, we set the seed = 123. We trained our
proposed model on DUTS-TR (10,553 training images). We split the DUTS-TR dataset into
a train set (9472 images) and a validation set (1056 images); that is, approximately 90% of
the dataset for the training set and 10% for the validation set. We did not use 25 images
because we wanted the training set and the validation set to be divisible by batch size,
which is 32.

Our proposed model was trained on scratch without pretrained backbones from image
classification (i.e., VGG [59], etc.) or lightweight backbones (i.e., MobileNets [30,31] or
ShuffleNets [32,33]). As DUTS-TR is not a big dataset, we used data augmentation during
training and many epochs in order to overcome this problem. Indeed, the more epochs, the
more the data-augmentation process transforms data. Thus, our proposed model training
has two successive stages:

• The first stage is with data augmentation, which is applied to each batch with ran-
dom transformation (40% zoom in or horizontal flip or vertical flip). This stage has
480 epochs: 240 epochs with learning rate = 0.001 and 240 epochs with learning
rate = 0.0001;

• The second stage is without data augmentation. It has 620 epochs: 240 epochs
with learning rate = 0.001, followed by 140 epochs with learning rate = 0.0001 and
240 epochs with learning rate = 0.00005.

We also used the same initializer for all layers in the neural network: the HeUni-
form Keras initializer [60], which draws samples from a uniform distribution within

[−limit, limit], where limit =
√

6
f an_in ( f an_in is the number of input units in the weight

tensor). The dropout rate was set to 0.2. We used the RMSprop [61] Keras optimizer with
default values except for the learning rate; the centered, which was set to true; and the
clipnorm = 1. The loss function used was the “sparse_categorical_crossentropy” Keras
function; the Keras metric was “SparseCategoricalAccuracy; the Keras check point monitor
was “val_sparse_categorical_accuracy”.

4.4. Hyperparameters

Hyperparameters such as the ELU activation function, the optimizer, the batch size,
the filter size and the learning rates were chosen experimentally by observing the results.

The other hyperparameters were chosen as follows:

• Image size: The best image size was 384 × 384. We did not choose a small size
because we expected to have a small salient object. As we also wanted to have a low
computational cost, we did not go beyond this size.

• Number of levels for the encoder: We empirically obtained eight levels as the best
number. The choice of image size permitted us to have a maximum of eight levels for
the encoder part, given that 384 = 27 × 3. The size of the feature maps of each level
corresponds to the size of those of the previous level divided by 2, except the last level,
where the division is by 3.
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• Number of levels for the decoder: Eight levels. The number of levels is the same for
the encoder part and the decoder part.

• Number of layers: At each level, we chose to use an encoder unit that has an equal
number of layers for all levels and a decoder unit that has an equal number of layers
for all levels. The number of layers was obtained experimentally.

• Number of filters: We also experimentally chose the number of filters keeping in
mind the minimum parameters; the encoder’s number of filters was 12, 16, 32, 64,
128, 128, 128 and 128, respectively, for the first, second, . . ., seventh and eighth levels;
the decoder residual bloc number of filters was 128, 128, 128, 128, 64, 32, 16 and 8,
respectively, for the eighth, seventh, sixth, . . ., second and first levels. For the decoder
deconvolution blocs, at each level, the number of filters was 2.

• The use of batch normalization: Batch normalization is known to enable faster and
more stable training for deep neural networks [42,43]. So, we decided to use it.

• Use of dropout: The dropout process injects noise in the resulting feature maps during
the neural network learning stage (but not in the prediction stage) to facilitate the
learning process. In this model, we used DropBlock [46] if the width of the feature
map was greater than 5; otherwise, we used the common dropout [47]. The best
results were obtained for DropBlock size = 5× 5 and rate = 0.1 (the authors’ paper
suggested a value between 0.05 and 0.25). For the common dropout, the best rate was
0.2, obtained experimentally.

As our proposed model, CoSOV1Net does not use pretrained backbones and the input
image is resized to 384× 384; it has the advantage of good resolution.

4.5. Evaluation Metrics
4.5.1. Accuracy

The metrics used to evaluate our proposed model accuracy were Fβ measure, MAE
(mean absolute error) and weighted Fw

β measure [62]. We also used precision, precision–
recall and Fβ measure curves.

Let M be the binary mask obtained for the predicted saliency probability map, given a
threshold in the range of [0, 1) and with G being the corresponding ground truth:

Precision =
|M ∩ G|
|M| (8)

Recall =
|M ∩ G|
|G| (9)

∩ : set intersection symbol; |.| : the number of pixels whose values are not zeros.
The Fβ-measure (Fβ ) is the weighted harmonic mean of precision and recall:

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
(10)

During evaluation, β2 = 0.3, as it is often suggested [16,58].
Let S be the saliency map estimation with pixel values normalized in order to be in

[0.0, . . . , 1.0] and G; its ground truth also normalized in {0; 1}. The MAE (mean absolute
error) is:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|S(x, y)− G(x, y)| (11)

where W and H are the width and the height, respectively, of the above maps (S and G).
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The Fw
β measure [62] fixes the interpolation flaw, dependence flaw and equal impor-

tance flaw in traditional evaluation metrics and its value is:

Fw
β = (1 + β2)

Precisionw × Recallw

β2 × Precisionw + Recallw (12)

Precisionw and Recallw are the weighted precision and the weighted recall, respectively.

4.5.2. Lightweight Measures

Since we propose a lightweight salient object-detection model in this work, we there-
fore also evaluate the model with lightweight measures: the number of parameters, the
saliency map estimation speed (FPS: frames per second) and the computational cost by
measuring the FLOPS (the number of floating-point operations). The FLOPS is related to the
device’s energy consumption (the higher the FLOPS, the higher the energy consumption).
The floating-point operation numbers are computed as follows [63]:

• For a convolution layer with n filters of size k× k applied to W × H × C feature maps
(W: width; H: height; C: channels), with P: number of parameters:

FLOPS = W × H × P (13)

• For a max-pooling layer or an upsampling layer with a window of size sz× sz on
W × H × C feature maps (W: width; H: height; C: channels):

FLOPS = W × H × C× sz× sz (14)

4.6. Comparison with State of the Art

We compare our proposed model with 20 state-of-the-art salient object detection
and 10 state-of-the-art lightweight salient object-detection models. We divided these
methods because the lightweight methods outperform others with respect to lightweight
measures. However, the lightweight methods’ accuracy is lower than the accuracy of
those with huge parameters. We mainly used the salient object-detection results provided
by Liu et al. [16], except for the Fβ measure and precision–recall curves, where we used
saliency maps provided by these authors. We also used saliency maps provided by the
HVPNet authors [19] to compute HVPNet Fω

β measures.
In this section, we describe the comparison with the 20 salient object-detection models,

namely DRFI [64], DCL [65], DHSNet [66], RFCN [67], NLDF [68], DSS [69], Amulet [18],
UCF [70], SRM [71], PiCANet [17], BRN [72], C2S [73], RAS [74], DNA [75], CPD [76],
BASNet [77], AFNet [78], PoolNet [79], EGNet [80] and BANet [81].

Table 1 shows that our proposed model CoSOV1Net outperforms all 20 state-of-the-art
salient object-detection models for lightweight measures (#parameters, FLOPS and FPS) by
a large margin (i.e., the best among them for FLOPS is DHSNet [66], with FLOPS = 15.8 G
and Fβ = 0.903 for ECSSD; the worst is EGNet [80], with FLOPS = 270.8 G and Fβ = 0.938
for ECSSD; meanwhile, our proposed model, CoSOV1Net, has FLOPS = 1.4 G, and its
Fβ = 0.931 for ECSSD) (see Table 1).

Table 1 also shows that CoSOV1Net is among the top 6 models for ECSSD, among
the top 7 for DUT-OMRON and around the top 10 for the other three datasets for the
F-measure. Tables 2 and 3 compare our model with the state-of-the-art models for the
MAE and Fω

β measures, respectively. From this comparison, we see that our model is
ranked around the top 10 for all four datasets and is ranked 15th for the HKU-IS dataset.
This demonstrates that our model is also competitive with respect to the performance of
state-of-the-art models.

Tables 1–3 show that our proposed model, CoSOV1Net, clearly has the advantage
of the number of parameters, computational cost and speed over salient object detection.
They also show that its performance is closer to the best among them.
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Table 1. Our proposed model F-measure (Fβ ↑, β2 = 0.3) compared with 20 state-of-the-art models
(best value in bold) [# Param: number of parameters, ↑: great is best, ↓: small is the best].

Methods # Param
(M) ↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON DUTS-TE HKU-IS THUR15K

DRFI [64] - - 0.1 0.777 0.652 0.649 0.774 0.670
DCL [65] 66.24 224.9 1.4 0.895 0.733 0.785 0.892 0.747

DHSNet [66] 94.04 15.8 10.0 0.903 - 0.807 0.889 0.752
RFCN [67] 134.69 102.8 0.4 0.896 0.738 0.782 0.892 0.754
NLDF [68] 35.49 263.9 18.5 0.902 0.753 0.806 0.902 0.762
DSS [69] 62.23 114.6 7.0 0.915 0.774 0.827 0.913 0.770

Amulet [18] 33.15 45.3 9.7 0.913 0.743 0.778 0.897 0.755
UCF [70] 23.98 61.4 12.0 0.901 0.730 0.772 0.888 0.758
SRM [71] 43.74 20.3 12.3 0.914 0.769 0.826 0.906 0.778

PiCANet [17] 32.85 37.1 5.6 0.923 0.766 0.837 0.916 0.783
BRN [72] 126.35 24.1 3.6 0.919 0.774 0.827 0.910 0.769
C2S [73] 137.03 20.5 16.7 0.907 0.759 0.811 0.898 0.775
RAS [74] 20.13 35.6 20.4 0.916 0.785 0.831 0.913 0.772
DNA [75] 20.06 82.5 25.0 0.935 0.799 0.865 0.930 0.793
CPD [76] 29.23 59.5 68.0 0.930 0.794 0.861 0.924 0.795

BASNet [77] 87.06 127.3 36.2 0.938 0.805 0.859 0.928 0.783
AFNet [78] 37.11 38.4 21.6 0.930 0.784 0.857 0.921 0.791
PoolNet [79] 53.63 123.4 39.7 0.934 0.791 0.866 0.925 0.800
EGNet [80] 108.07 270.8 12.7 0.938 0.794 0.870 0.928 0.800
BANet [81] 55.90 121.6 12.5 0.940 0.803 0.872 0.932 0.796

CoSOV1Net (OURS) 1.14 1.4 211.2 0.931 0.789 0.833 0.912 0.773

Table 2. Our proposed model MAE (↓) compared with 20 state-of-the-art models (best performance
in bold) [# Param: number of parameters, ↑: great is the best, ↓: small is the best].

Methods # Param
(M) ↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON DUTS-TE HKU-IS THUR15K

DRFI [64] - - 0.1 0.161 0.138 0.154 0.146 0.150
DCL [65] 66.24 224.9 1.4 0.080 0.095 0.082 0.063 0.096

DHSNet [66] 94.04 15.8 10.0 0.062 - 0.066 0.053 0.082
RFCN [67] 134.69 102.8 0.4 0.097 0.095 0.089 0.080 0.100
NLDF [68] 35.49 263.9 18.5 0.066 0.080 0.065 0.048 0.080
DSS [69] 62.23 114.6 7.0 0.056 0.066 0.056 0.041 0.074

Amulet [18] 33.15 45.3 9.7 0.061 0.098 0.085 0.051 0.094
UCF [70] 23.98 61.4 12.0 0.071 0.120 0.112 0.062 0.112
SRM [71] 43.74 20.3 12.3 0.056 0.069 0.059 0.046 0.077

PiCANet [17] 32.85 37.1 5.6 0.049 0.068 0.054 0.042 0.083
BRN [72] 126.35 24.1 3.6 0.043 0.062 0.050 0.036 0.076
C2S [73] 137.03 20.5 16.7 0.057 0.072 0.062 0.046 0.083
RAS [74] 20.13 35.6 20.4 0.058 0.063 0.059 0.045 0.075
DNA [75] 20.06 82.5 25.0 0.041 0.056 0.044 0.031 0.069
CPD [76] 29.23 59.5 68.0 0.044 0.057 0.043 0.033 0.068

BASNet [77] 87.06 127.3 36.2 0.040 0.056 0.048 0.032 0.073
AFNet [78] 37.11 38.4 21.6 0.045 0.057 0.046 0.036 0.072
PoolNet [79] 53.63 123.4 39.7 0.048 0.057 0.043 0.037 0.068
EGNet [80] 108.07 270.8 12.7 0.044 0.056 0.044 0.034 0.070
BANet [81] 55.90 121.6 12.5 0.038 0.059 0.040 0.031 0.068

CoSOV1Net (OURS) 1.14 1.4 211.2 0.051 0.064 0.057 0.045 0.076
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Table 3. Our proposed model weighted F-measure (Fω
β ↑, β2 = 1) compared with 20 state-of-the-art

models (best value in bold) [# Param: number of parameters, ↑: great is the best, ↓: small is the best].

Methods # Param
(M) ↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON DUTS-TE HKU-IS THUR15K

DRFI [64] - - 0.1 0.548 0.424 0.378 0.504 0.444
DCL [65] 66.24 224.9 1.4 0.782 0.584 0.632 0.770 0.624

DHSNet [66] 94.04 15.8 10.0 0.837 - 0.705 0.816 0.666
RFCN [67] 134.69 102.8 0.4 0.725 0.562 0.586 0.707 0.591
NLDF [68] 35.49 263.9 18.5 0.835 0.634 0.710 0.838 0.676
DSS [69] 62.23 114.6 7.0 0.864 0.688 0.752 0.862 0.702

Amulet [18] 33.15 45.3 9.7 0.839 0.626 0.657 0.817 0.650
UCF [70] 23.98 61.4 12.0 0.805 0.573 0.595 0.779 0.613
SRM [71] 43.74 20.3 12.3 0.849 0.658 0.721 0.835 0.684

PiCANet [17] 32.85 37.1 5.6 0.862 0.691 0.745 0.847 0.687
BRN [72] 126.35 24.1 3.6 0.887 0.709 0.774 0.875 0.712
C2S [73] 137.03 20.5 16.7 0.849 0.663 0.717 0.835 0.685
RAS [74] 20.13 35.6 20.4 0.855 0.695 0.739 0.849 0.691
DNA [75] 20.06 82.5 25.0 0.897 0.729 0.797 0.889 0.723
CPD [76] 29.23 59.5 68.0 0.889 0.715 0.799 0.879 0.731

BASNet [77] 87.06 127.3 36.2 0.898 0.751 0.802 0.889 0.721
AFNet [78] 37.11 38.4 21.6 0.880 0.717 0.784 0.869 0.719
PoolNet [79] 53.63 123.4 39.7 0.875 0.710 0.783 0.864 0.724
EGNet [80] 108.07 270.8 12.7 0.886 0.727 0.796 0.876 0.727
BANet [81] 55.90 121.6 12.5 0.901 0.736 0.810 0.889 0.730

CoSOV1Net (OURS) 1.14 1.4 211.2 0.861 0.696 0.731 0.834 0.688

We also compared CoSOV1Net with the state-of-the-art lightweight salient object-
detection models MobileNet [30], MobileNetV2 [31], ShuffleNet [32], ShuffleNetV2 [33],
ICNet [82], BiSeNet R18 [83], BiSeNet X39 [83], DFANet [84], HVPNet [19] and SAM-
Net [16].

For the comparison with state-of-the-art lightweight models, Table 4 shows that
our proposed model outperforms these state-of-the-art lightweight models in parameter
numbers and the Fβ measure for the ECSSD dataset and is competitive for other measures
and datasets. Table 5 shows that our model outperforms these state-of-the-art lightweight
models for the MAE measure for the ECSSD and DUTS-TE datasets and is ranked first ex
aequo with HVPNet for DUT-OMRON, first ex aequo with HVPNet and SAMNet for the
HKU-IS dataset and second for the THUR15K dataset. Our model also outperforms these
state-of-the-art lightweight models for the Fω

β measure for ECSSD and DUTS-TE and is
competitive for the three other datasets (see Table 6).

Tables 4–6 show that CoSOV1Net clearly has the advantage of the number of parame-
ters over the lightweight salient object detection. They also show that its performance is
closer to the best among them. Thus, CoSOV1Net has the advantage of performance.

Regarding computational cost, CoSOV1Net has an advantage over half of the state-of-
the-art lightweight salient object-detection models. Overall, we can conclude that it has an
advantage in terms of computational cost.

4.7. Comparison with SAMNet and HVPNet State of the Art

We chose to compare our CoSOV1Net model specifically with SAMNet [16] and
HVPNet [19] because they are among the best state-of-the-art models.

Figure 8 shows that precision curves for ECSSD and HKU-IS datasets highlight that
CoSOV1Net slightly dominates the SAMNet and HVPNet state-of-the-art lightweight
salient object-detection models and that there is no clear domination for the DUT-OMRON,
DUTS-TE and THUR15K precision curves between the three models. Therefore, the pro-
posed model CoSOV1Net is competitive with these two state-of-the-art lightweight salient
object-detection models with respect to precision.
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Table 4. Our proposed model’s F-measure (Fβ ↑, β2 = 0.3) compared with state-of-the-art lightweight
salient object-detection models (best value in bold) [# Param: number of parameters, ↑: great is the
best, ↓: small is the best].

Methods # Param
(M) ↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON DUTS-TE HKU-IS THUR15K

MobileNet * [30] 4.27 2.2 295.8 0.906 0.753 0.804 0.895 0.767
MobileNetV2 * [31] 2.37 0.8 446.2 0.905 0.758 0.798 0.890 0.766

ShuffleNet * [32] 1.80 0.7 406.9 0.907 0.757 0.811 0.898 0.771
ShuffleNetV2 * [33] 1.60 0.5 452.5 0.901 0.746 0.789 0.884 0.755

ICNet [82] 6.70 6.3 75.1 0.918 0.773 0.810 0.898 0.768
BiSeNet R18 [83] 13.48 25.0 120.5 0.909 0.757 0.815 0.902 0.776
BiSeNet X39 [83] 1.84 7.3 165.8 0.901 0.755 0.787 0.888 0.756

DFANet [84] 1.83 1.7 91.4 0.896 0.750 0.791 0.884 0.757
HVPNet [19] 1.23 1.1 333.2 0.925 0.799 0.839 0.915 0.787
SAMNet [16] 1.33 0.5 343.2 0.925 0.797 0.835 0.915 0.785

CoSOV1Net (OURS) 1.14 1.4 211.2 0.931 0.789 0.833 0.912 0.773

* SAMNet, where the encoder is replaced by this backbone.

Table 5. Our proposed model MAE (↓) compared with state-of-the art lightweight salient object-
detection models (best value in bold) [# Param: number of parameters, ↑: great is the best, ↓: small is
the best].

Methods # Param
(M) ↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON DUTS-TE HKU-IS THUR15K

MobileNet * [30] 4.27 2.2 295.8 0.064 0.073 0.066 0.052 0.081
MobileNetV2 * [31] 2.37 0.8 446.2 0.066 0.075 0.070 0.056 0.085

ShuffleNet * [32] 1.80 0.7 406.9 0.062 0.069 0.062 0.050 0.078
ShuffleNetV2 * [33] 1.60 0.5 452.5 0.069 0.076 0.071 0.059 0.086

ICNet [82] 6.70 6.3 75.1 0.059 0.072 0.067 0.052 0.084
BiSeNet R18 [83] 13.48 25.0 120.5 0.062 0.072 0.062 0.049 0.080
BiSeNet X39 [83] 1.84 7.3 165.8 0.070 0.078 0.074 0.059 0.090

DFANet [84] 1.83 1.7 91.4 0.073 0.078 0.075 0.061 0.089
HVPNet [19] 1.23 1.1 333.2 0.055 0.064 0.058 0.045 0.076
SAMNet [16] 1.33 0.5 343.2 0.053 0.065 0.058 0.045 0.077

CoSOV1Net (OURS) 1.14 1.4 211.2 0.051 0.064 0.057 0.045 0.076

* SAMNet, where the encoder is replaced by this backbone.

Table 6. Our proposed model’s weighted F-measure (Fω
β ↑, β2 = 1) compared with lightweight

salient object-detection models (best value in bold) [# Param: number of parameters, ↑: great is the
best, ↓: small is the best].

Methods # Param
(M) ↓

FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON DUTS-TE HKU-IS THUR15K

MobileNet * [30] 4.27 2.2 295.8 0.829 0.656 0.696 0.816 0.675
MobileNetV2 * [31] 2.37 0.8 446.2 0.820 0.651 0.676 0.799 0.660

ShuffleNet * [32] 1.80 0.7 406.9 0.831 0.667 0.709 0.820 0.683
ShuffleNetV2 * [33] 1.60 0.5 452.5 0.812 0.637 0.665 0.788 0.652

ICNet [82] 6.70 6.3 75.1 0.838 0.669 0.694 0.812 0.668
BiSeNet R18 [83] 13.48 25.0 120.5 0.829 0.648 0.699 0.819 0.675
BiSeNet X39 [83] 1.84 7.3 165.8 0.802 0.632 0.652 0.784 0.641

DFANet [84] 1.83 1.7 91.4 0.799 0.627 0.652 0.778 0.639
HVPNet [19] 1.23 1.1 333.2 0.854 0.699 0.730 0.839 0.696
SAMNet [16] 1.33 0.5 343.2 0.855 0.699 0.729 0.837 0.693

CoSOV1Net (OURS) 1.14 1.4 211.2 0.861 0.696 0.731 0.834 0.688

* SAMNet, where the encoder is replaced by this backbone.
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Figure 8. Precision curves for (a) ECSSD, (b) DUT-OMRON, (c) DUTS-TE, (d) HKU-IS and
(e) THUR15K datasets.
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Figure 9 shows that the three models’ precision–recall curves (for the five datasets used:
ECSSD, DUT-OMRON, DUTS-TE, HKU-IS and THUR15K) are very close to each other.
Therefore, the proposed model is competitive with these two state-of-the-art lightweight
salient object-detection models with respect to precision–recall.

Figure 9. Precision–recall curves for (a) ECSSD, (b) DUT-OMRON, (c) DUTS-TE, (d) HKU-IS and
(e) THUR15K datasets.

Figure 10 shows that the three models’ Fβ measure curves (for the five datasets used:
ECSSD, DUT-OMRON, DUTS-TE, HKU-IS and THUR15K) are very close to each other.
The CoSOV1Net model slightly dominates the two state-of-the-art lightweight salient
object-detection models for thresholds ≤ 150 and the two state-of-the-art models slightly
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dominate for thresholds ≥ 150. Thus, there is no clear dominance for one model among
the three. This proves that our CoSOV1Net model is comparable to these state-of-the-art
lightweight salient object-detection models while having the advantage of a low number of
parameters compared to them.

Figure 10. Fβ measure curves for (a) ECSSD, (b) DUT-OMRON, (c) DUTS-TE, (d) HKU-IS and
(e) THUR15K datasets.

For qualitative comparison, Figure 11 shows some images highlighting that our pro-
posed model (CoSOV1Net) is competitive with regard to the state-of-the-art SAMNet [16]
and HVPNet [19] models, which are among the best ones.

Images from rows 1 and 2 show a big salient object on a cloudy background and a big
object on a complex background, respectively: CoSOV1Net (ours) performs better than
HVPNet on these saliency maps. Row 3 shows salient objects with the same colors and
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row 4 shows salient objects with multiple colors: the SAMNet and CoSOV1Net saliency
maps are slightly identical and the HVPNet saliency map is slightly better. Row 5 shows n
image with three salient objects with different sizes and colors: two are big and one is very
small; the CoSOV1Net saliency map is better than SAMNet’s and HVPNet’s. Row 6 shows
red salient objects on a black and yellow background; SAMNet’s saliency map is the worst,
while CoSOV1Net and HVPNet perform well on that image. Row 7 shows a complex
background and multiple salient objects with different colors: CoSOV1Net performs better
than SAMNet and HVPNet. Row 8 shows tiny salient objects: the three models perform
well. On row 9, SAMNet has the worst performance, while CoSOV1Net is the best. Row
10 shows colored glasses as salient objects: the CoSOV1Net performance is better than
SAMNet’s and HVPNet’s. On row 11, SAMNet has the worst performance. On row 12 and
13, CoSOV1Net has the best performance. Row 18 shows a submarine image: CoSOV1Net
is better than SAMNet.

No Image GT or HVS SAMNet HVPNet CoSOV1Net

1

2

3

4

5

6

Figure 11. Cont.
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No Image GT or HVS SAMNet HVPNet CoSOV1Net

16

17

18

Figure 11. Comparison between SAMNet [16], HVPNet [19] and our proposed model, CoSOV1Net,
on some image saliency maps: 1st column: images; 2nd column: ground truth or human visual
system saliency map; 3rd column: SAMNet; 4th column: HVPNet; 5th column: CoSOV1Net (ours).

Figures 8–11 confirm that CoSOV1Net has an advantage on performance.

5. Discussion

The results show the performance of our model, CoSOV1Net, for accuracy measures
and lightweight measures. CoSOV1Net’s rank, when compared to state-of-the-art mod-
els, shows that it behaves as a lightweight salient object-detection model by dominating
lightweight measures and having good performance for accuracy measures (see Table 7).

Table 7. Our proposed model (CoSOV1Net)’s ranking with respect to existing salient object detection
[# Param: number of parameters, ↑: great is the best, ↓: small is the best].

Measure # Param
(M) ↓

FLOPS (G)
↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON DUTS-TE HKU-IS THUR15K

Fβ 1st 1st 1st 6th 7th 9th 11th 11th
MAE 1st 1st 1st 10th 10th 11th 11th 10th

Fω
β 1st 1st 1st 11th 9th 11th 15th 11th

The results also show that when CoSOV1Net is compared to state-of-the-art lightweight
salient object-detection models, its measure results are generally ranked among the best
for the datasets and measures used (see Table 8). Thus, we can conclude that CoSOV1Net
behaves as a competitive lightweight salient object-detection model.

Table 8. Our proposed model (CoSOV1Net)’s ranking with respect to lightweight salient object-
detection models [# Param: number of parameters, ↑: great is the best, ↓: small is the best].

Measure # Param
(M) ↓

FLOPS (G)
↓

Speed
(FPS) ↑ ECSSD DUT-

OMRON DUTS-TE HKU-IS THUR15K

Fβ 1st 6th 7th 1st 3rd 3rd 3rd 4th
MAE 1st 6th 7th 1st 1st 1st 1st 2nd

Fω
β 1st 6th 7th 1st 3rd 1st 3rd 3rd
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As we did not use backbones from image classification (i.e., VGG [59], . . .) or lightweight
backbones (i.e., MobileNets [30,31] or ShuffleNets [32,33]), we conclude that CoSOV1Net’s
performance is intrinsic to this model itself.

Finally, putting together the measures for salient object-detection models and lightweight
salient object-detection models in a graphic, we noticed that the CoSOV1Net model is located
for Fβ measures with respect to FLOPS and for the number of parameters in the top left, while
for the FPS measure, it is located in the top right, thus demonstrating its performance as a
lightweight salient object-detection model (see Figure 12). This shows that CoSOV1Net is
competitive with the best state-of-the-art models used.

Figure 12. Example of trade-off between (a) Fβ measure and #parameters; (b) Fω
β measure and

#parameters; (c) Fβ measure and FLOPS; (d ) Fβ measure and FPS, for ECSSD.

The quantitative and the qualitative comparisons with SAMNet [16] and HVPNet [19]
showed that our proposed model has good performance, given that these state-of-the-art
models are among the best ones.

6. Conclusions

In this work, we present a lightweight salient object-detection deep neural network,
CoSOV1Net, with a very low number of parameters (1.14 M), a low floating-point oper-
ations number (FLOPS = 1.4 G) and thus low computational cost and respectable speed
(FPS = 211.2 on GPU: Nvidia GeForce RTX 3090 Ti), yet with comparable performance
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with state-of-the-art salient object-detection models that use significantly more param-
eters, and other lightweight salient object-detection models such as SAMNet [16] and
HVPNet [19].

The novelty of our proposed model (CoSOV1Net) is that it uses the principle of inte-
grating color in pattern in a salient object-detection deep neural network, since according
to Shapley [27] and Shapley and Hawken [20], color and pattern are inextricably linked
in color human perception. This is implemented by taking inspiration from the primary
visual cortex (V1) cells, especially cone- and spatial-opponent cells. Thus, our method
extracts features at the color channels’ spatial level and between the color channels at the
same time on a pair of opposing color channels. The idea of grouping color pushed us to
group feature maps through the neural network and extract features at the spatial level
and between feature maps, as carried out for color channels.

Our results showed that this strategy generates a model that is very promising, com-
petitive with most state-of-the-art salient object-detection and lightweight salient object-
detection models and practical for mobile environments and limited-resource devices.

In future work, our proposed CoSOV1Net model, based on integrating color into
patterns, can be improved by coupling it with the human visual system attention mecha-
nism, which is the basis of many lightweight models, to tackle its speed limitation and thus
produce a more efficient lightweight salient object-detection model.
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