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a b s t r a c t 

X-ray image segmentation is an important and crucial step for three-dimensional (3D) bone reconstruc- 

tion whose final goal remains to increase effectiveness of computer-aided diagnosis, surgery and treat- 

ment plannings. However, this segmentation task is rather challenging, particularly when dealing with 

complicated human structures in the lower limb such as the patella, talus and pelvis. In this work, we 

present a multi-atlas fusion framework for the automatic segmentation of these complex bone regions 

from a single X-ray view. The first originality of the proposed approach lies in the use of a (training) 

dataset of co-registered/pre-segmented X-ray images of these aforementioned bone regions (or multi- 

atlas) to estimate a collection of superpixels allowing us to take into account all the nonlinear and local 

variability of bone regions existing in the training dataset and also to simplify the superpixel map prun- 

ing process related to our strategy. The second originality is to introduce a novel label propagation step 

based on the entropy concept for refining the resulting segmentation map into the most likely internal 

regions to the final consensus segmentation. In this framework, a leave-one-out cross-validation process 

was performed on 31 manually segmented radiographic image dataset for each bone structure in order 

to rigorously evaluate the efficiency of the proposed method. The proposed method resulted in more 

accurate segmentations compared to the probabilistic patch-based label fusion model (PB) and the clas- 

sical patch-based majority voting fusion scheme (MV) using different registration strategies. Comparison 

with manual (gold standard) segmentations revealed that the good classification accuracy of our unsu- 

pervised segmentation scheme is, respectively, 93.79% for the patella, 88.3% for the talus and 85.02% for 

the pelvis; a score that falls within the range of accuracy levels of manual segmentations (due to the 

intra inter/observer variability). 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

X-ray images are used by physicians all over the world for the

preliminary diagnosis of several bone diseases, to plan surgical in-

tervention, and for pre and post-operative treatments. In this con-

text, accurate extraction of bone contours or regions from these

2D X-ray images, is often the preliminary, and also crucial, step

for three-dimensional (3D) bone reconstruction which can then be

a great help in determining the extent of a fracture or for improv-
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ng the diagnosis, follow-up, and treatment of major bone diseases,

uch as osteoporosis and osteoarthritis. 

X-ray segmentation of bone structures of the lower limb, es-

ecially of the pelvic region, remains a challenging problem due

oth to intrinsic and extrinsic difficulties. Intrinsic difficulties re-

er to the intrinsic properties of the X-ray imaging systems that

esult in imaging noise. The major source of noise that degrades

mage quality is from the X-ray source and is caused by radiation

cattering and source leakage (quantum noise). Extrinsic difficul-

ies are closely related to the patients. Indeed, bone structures in

adiographic images often overlap with other bones or dense soft

issues, making it difficult to accurately delimit the boundaries of

ifferent bone regions. This is particularly true when neighboring

tructures have similar absorption rates. Also, we must include the

ffects of the density variation of the bone structure being im-

ged, the inter-subject variability in bone morphology, the variabil-

ty in the 3D imaging poses, and the motion unsharpness (caused

https://doi.org/10.1016/j.media.2018.05.006
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y movement of the patient). These problems are all the more dif-

cult when dealing with large and complex bone shapes such as

he human pelvis or small bone structures such as the talus or

atella. In these cases, the segmentation of complex bones is usu-

lly still done manually or semi-automatically, which is time con-

uming and tedious. 

In order to propose a fully automatic segmentation method of

one structures in X-ray images, some a priori anatomical knowl-

dge of the region to be extracted is necessary and must be in-

egrated in the segmentation model. This can be done in dif-

erent ways, for example by modeling the grey level distribu-

ions associated with each tissue or region class to be segmented

 Mignotte et al., 20 0 0 ), in the form of deformable shape templates

onstrained by a family of parametric or non-parametric curves

 Mignotte et al., 2001; Mignotte and Meunier, 2001 ), or by one or

everal prototype templates together with the set of admissible de-

ormations ( Destrempes et al., 2007 ). 

Recently, an efficient example-based segmentation strategy has

een proposed, which turns out to be an interesting alterna-

ive in order to incorporate prior information into the segmenta-

ion model. This alternative uses a training dataset of X-ray im-

ges with the corresponding pre-segmentations called a multi-atlas

 Artaechevarria et al., 2009; Aljabar et al., 2009; Dowling et al.,

011 ). In this strategy, the unsupervised segmentation process is

ivided into two stages; a first registration procedure is conducted

etween the target image to be segmented and each image and/or

egmentation of the multi-atlas. Next, from the set of co-registered

egmentations (and possibly its corresponding X-ray image), a sec-

nd fusion or label propagation step is finally achieved to estimate

oth the segmentation into regions and also to infer the most

ikely internal region labels to the final consensus segmentation re-

ult. Regarding the second stage of any multi-atlas based segmen-

ation scheme, also called label propagation or decision fusion step,

he commonly used techniques, already proposed in this context,

re generally based on different types of voting rules, such as the

ajority voting ( Rohlfing et al., 2004a ), (possibly locally) weighted

oting ( Artaechevarria et al., 2009 ) in which weights can be pos-

ibly estimated by the Expectation-Maximization (EM) algorithm

 Rohlfing et al., 2004b ), or shape-based methods ( Rohlfing and

aurer, 2007 ) to name a few. 

The limits of these techniques are mainly due to the registra-

ion errors. Regions from atlases may be associated to the wrong

egions in the target image. To address this limitation, a first strat-

gy consists in using a combination of a linear rigid registration,

ollowed by a nonlinear or local registration. The first step pro-

ides an initial rigid alignment, while the second step rather con-

iders the specific non-rigid and/or nonlinear deformations of the

arget (for example, to take into account the inter-individual vari-

bility of the imaging pose and bone morphology). In this con-

ext, the nonlinear registration can be achieved in many ways.

or example, by considering small perturbations (as parameters

f the nonlinear transform) on landmark points of a preliminary

igid registration, or by considering nonlinear deformations of a

rid of Bezier or BSpline points, using deformation field (optical

ows), demons, finite element models, to name a few ( Morin et al.,

012 ). In addition to the fact that this nonlinear registration is

ften slow and suboptimal due to non-convexity of the energy

unction that is optimized, let us recall, above all, that the non-

inear deformation required for this registration is generally not

earned from the multi-atlas dataset. A second strategy focuses

n patch-based label fusion methods to compensate registration

rror by searching for correspondences between the target im-

ge and atlases. In this spirit, Coupé et al. (2010) use expert seg-

entation priors to achieve the nonlocal patch-based label fu-

ion. Rousseau et al. (2011) propose a patch-based image label-

ng method, relying on image intensity similarities between the
nput image and an anatomy textbook. Wang et al. (2011) pro-

ose a regression-based approach for label fusion. Patch-based ap-

roach in Wu et al. (2012) uses l 2, 1 -norm regularization to en-

orce joint sparsity during the label fusion. Wang et al. (2013) com-

ine (possibly weighted) majority voting and a patch-based ap-

roach to achieve unsupervised segmentation. Bai et al. (2013) for-

ulate patch-based label fusion in a probabilistic Bayesian frame-

ork. Shi et al. (2014) combine spectral matching with multi-atlas

atchMatch (MAPM) to introduce multi-atlas spectral Patch-Match

MASP) segmentation. Finally, Wu et al. (2015) propose a hierarchi-

al multi-atlas label fusion with multi-scale feature representation

nd label-specific patch partition. Multi-scale feature representa-

ion increases the accuracy of the patch-based similarity measure-

ent and label-specific atlas patches makes the label fusion pro-

ess more specific and flexible. The interest of these methods is

hat they don’t need explicit registration between the individual

utative segmentations of the atlas and the subject image to be

egmented. In fact, the main assumption of all these patch-based

pproaches is that, if patches of the input subject image are lo-

ally similar to the patches of atlases, they should have a similar

abel. In terms of voting rule, the atlases whose reference images

re more similar to the target image should contribute more to the

egmentation. This strategy borrows the main idea of the non-local

eans denoising algorithm ( Buades et al., 2008 ) which assumes

hat image information is redundant. 

In our approach, we prefer not to rely too much on patch-

ased similarity between two X-ray images mainly because grey

evel information of these patches are not always as informative

s might be desired. Indeed, quantum noise can be different for

ifferent X-ray imaging systems and numerous artifacts exist, such

s bone and soft-tissue artifacts and inter-individual variability of

one densities and structures. In fact, the most informative and re-

iable visual cues in an X-ray image of the pelvic region remain the

oundary contours between the different pelvic bone structures,

nd particularly the external bone contour of the pelvis; our pro-

osed method will fully rely on this information. 

In our model, this boundary information between bone regions

xisting in the pre-segmented images of the multi-atlas dataset al-

ows us to estimate a collection of superpixels which has the in-

eresting property to capture, easily and non-parametrically, all the

onlinear and local variability of Regions Of Interest (ROIs) present

n the multi-atlas dataset. The interest is then twofold; this allows

o efficiently estimate the target-specific nonlinear deformations

equired by the registration process while simplifying the opti-

ization problem involved in the pruning process ( via a superpixel

ap based refining process aiming at reducing the remaining reg-

stration errors). Then, the label propagation step is formulated into

n optimization problem, also called the median partition problem,

iming to find the best segmentation which maximizes an entropy-

ased similarity criterion between the compromise solution and

he set of co-registered segmentations, over the space of possible

egmentations. This fusion procedure has already turned out to be

ery efficient for combining a set of weak segmentation results to

et a final improved segmentation result ( Mignotte, 2014a ). 

Let us mention that the concept of superpixels was ini-

ially proposed in multi-atlas segmentation by Wang and Yushke-

ich (2013) and Yu et al. (2016) but with a very different ap-

roach compared to us, both in terms of data and algorithm used

o generate the superpixel map but also in terms of their util-

ty in the underlying registration/segmentation model. Indeed, in

he above mentioned works, the superpixel representation is gen-

rated, in a classical way, through low-level unsupervised image

egmentation of an input Magnetic Resonance (MR) image (from

he Simple Linear Iterative Clustering proposed in Achanta et al.,

012 or the Graph-Based Image Segmentation technique described

n Felzenszwalb and Huttenlocher, 2004 ). Nevertheless, unlike MR



60 D.C.T. Nguyen et al. / Medical Image Analysis 48 (2018) 58–74 

Fig. 1. The pipeline of the proposed approach. 
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images, which have a better quality, X-Ray images contain quan-

tum noise, numerous artifacts (overlap and blurring) that can de-

grade any over-segmentation or superpixel map estimation proce-

dure. In addition, the input image is over-segmented into small

homogeneous regions or superpixels (sharing similar features) but

which are not necessarily of interest in terms of bone or anatomi-

cal structures. Unlike this, our application generates the superpixel

map by taking the intersection operation on the warped training

label images which were manually segmented into different ROIs

by experts. That is why our superpixel map takes into account the

local and nonlinear deformations of ROIs (i.e., bone regions), exist-

ing in the training atlases, without too much error. Besides, our su-

perpixel map is not used as an additional matching constraint for

establishing the voxel-wise label transfer and fusion (as proposed

in the two above mentioned references) but in order to refine the

segmentation process. 

As mentioned in our preliminary work ( Nguyen et al., 2015 )

and to our knowledge, there is no reported work that proposes

and uses, for the label propagation step, the result of a median

partition-based optimization problem or that exploits a superpixel

strategy for taking into account the nonlinear variability of the

ROIs in label multi-atlas population. The remainder of this pa-

per is divided into the following sections. In Section 2 , we intro-

duce details about the dataset that will be used in our model.

Section 3 describes the DCT-based pre-processing step made on

each X-ray image to be segmented in order to enhance the con-

tour of the different anatomical structures to be segmented. The

proposed model with its five steps, namely (1) shape-based lin-

ear registration and multi-atlas selection, (2) superpixel map cre-

ation, (3) superpixel map pruning, (4) final selection and filter-

ing of the multi-atlas dataset, and (5) entropy-based fusion pro-

cedure are presented in Section 4 . Finally, we show experimental

results in Section 6.2 and conclude in Section 7 . The pipeline of

superpixel and multi-atlas segmentation of bone structures for the

pelvic structure is given in Fig. 1 . 
p  
. Dataset and multi-atlas creation 

For our experiments (approved by the local ethics board of our

niversity), we used 31 anonymized 45-degree oblique X-ray im-

ges of the pelvis, talus, and patella that were manually segmented

nto different ROIs by experts well trained in lower extremity and

edical image segmentation. Images of the pelvis were partitioned

nto 14 different ROIs including the whole pelvis with sacrum, and

oth hemipelvis. Images of the talus were manually segmented

nto 4 different ROIs, including the body, dome and head of talus.

inally, images of the patella had 2 different ROIs (see Fig. 2 ). 

. X-ray image pre-processing 

In our application, a pre-processing step is required in order to

nhance the visibility of the bone contours which, in fact, consti-

ute the most important and reliable low-level visual cue in each

adiographic image. To this end, a histogram equalization tech-

ique and a DCT-based denoising step ( Mignotte et al., 2008; Yu

nd Sapiro, 2011 ) was used. 

The DCT-based denoising procedure used in this application is

n iterative strategy of denoising. Each iteration progressively de-

oises the image and consists in repeating a translation invari-

nt DCT-based frequential filtering using a simple adaptive hard

hresholding rule within a sliding subimage. Algorithmically and,

ore precisely, the iterative denoising scheme thus simply consists

f alternating, until a maximal number of iterations is reached, two

teps (which are also summarized in pseudo-code in Algorithm 1 ):

(1) The first step is a frequential filtering using the DCT trans-

orm of each 8 × 8 subimage extracted from the current denoised

ersion of the degraded image (initially, this current image esti-

ate is y , the degraded image itself). It is well known by the com-

ression community that a DCT filtering (i.e., a threshold on these

CT coefficients) on each 8 × 8 blocks extracted from a (noisy or

ot) image can denoise, but also can cause blocky artifacts on the

rocessed image after reconstruction (i.e., inverse DCT). In order
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Fig. 2. Six examples of 45-degree oblique manual segmentations of the human pelvis (a), talus (b), and patella (c) used in our multi-atlas. 

Algorithm 1. DCT-Based Denoising Algorithm. 
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o reduce these artifacts, a standard way is to use the DCT of all

ircularly translated version of the image, herein assumed to be

oroidal. This thus implies to compute a set of N S = 8 × 8 = 64 (8

orizontal shifts and 8 vertical shifts) transformed images (which

re then averaged in the second step). For the filtering operation in
he DCT domain, we used the simple hard thresholding rule clas-

ically used in the wavelet-based denoising approaches. After an

nverse DCT transform, we have to un-shift the filtered image and

tore the result for the second step. 

(2) The second operation consists in doing an averaging of these

4 denoised image estimates in order to compute the current de-

oised estimate and to make translation-invariant the proposed

enoising procedure. 

We returned to the first step for another denoising operation by

onsidering that y = ˆ x and so on, until the stability of the solution,

ypically at the end of 5 full iterations of our application. For the

mplementation, we have used the fast 8 × 8, 16 × 16 fft2d DCT

ackage implemented in C code by T. Ooura (functions ddct8x8s

nd ddct16x16s tested in program shrtdct.c ) and available on-line

t http address given in Ooura (2001) . 

. Proposed multi-atlas segmentation model 

The proposed multi-atlas segmentation process is mainly di-

ided into two stages. The first part allows us to estimate the ex-

ernal contour of the bone structure to be segmented (steps 4.1,

.2 and 4.3 ) and the second part (steps 4.4 and 4.5 ) is dedicated to

he refinement of the external contour of the bone structure and,

bove all, to estimate the region labels within the bone structure

o be semantically segmented. 

.1. Shape-based linear registration and multi-atlas selection step 

Since the most significant and informative visual information of

 bone structure in an X-ray image (especially in the lower limbs)

emains its external bone contour, each segmented image of the

ulti-atlas was first independently and rigid-registered, through

ffine transformations, to the target image using a contour-based

egistration technique. This rigid registration was done to produce
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Fig. 3. From left to right; superpixel map obtained for a given X-ray 45 degree image for respectively the pelvis, talus, and patella to be segmented. 
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1 Experiments have shown that slightly better results are given if the superpixel 

map is scaled by a factor slightly greater than one in order to ensure that the ex- 

ternal bone contour of the X-ray target image is fully contained in the superpixel 

map. To this end, after trial and error, a scale factor of 1.02 allows us to give the 

best segmentation results. 
an initial alignment for each multi-atlas segmented image that

maximized a similarity measure between an edge potential field

estimated from the pre-processed target X-ray image and the ex-

ternal contour of the corresponding bone region in the segmented

image. The edge potential was simply generated by the calculation

of the gradient magnitude convolved with a Gaussian kernel (Gaus-

sian blur) with a variance controlling the degree of smoothness of

this contour field ( Benameur et al., 2003 ) and making nearly con-

vex the energy function used in the optimization-based registra-

tion technique (see Fig. 7 ). The rigid registration that maximized

the summation of this potential map over all the pixels located on

the boundary of the external contour of the bone structure to be

segmented (given by the manual segmentation) thus allowed us to

get a rough alignment of each atlas segmented image to the target

image. 

Furthermore, our contour-based similarity registration score

was also used to rank the set of rigid-registered manual segmenta-

tions of our multi-atlas by decreasing order of similarity. The first

half of this rigid-registered segmentations was then used for esti-

mating the adaptive superpixel representation associated to each

input image to be segmented. 

4.2. Superpixel map creation 

A set of superpixels is thus estimated from the first half of

the optimally rigidly registered segmented images belonging to the

multi-atlas by simply taking the intersection of all the segments

(or regions) existing in this pre-selected (rigid-registered) manual

segmentations (see Fig. 3 ). Conceptually, each generated superpixel

corresponds to a group of connected pixels belonging to the same

region label and the set of superpixels provides a (superpixel) map

which is assumed to divide the input image to be segmented into

atomic regions sharing the same label (thus reducing the number

of entities to be labeled or/and to guide and adding constraints

to the segmentation process). Fig. 4 illustrates different superpixel

maps of patella with different number of input atlases. Each su-

perpixel (i.e., each color) represents a local and nonlinear defor-

mations of ROIs of the patella. 

Ren and Malik first used the superpixels ( Ren and Ma-

lik, 2003 ), as a pre-processing step, for the segmentation of nat-

ural images in order to simplify and better spatially constrain

the segmentation task. This concept has also been proposed in

Jodoin et al. (2007) however, with the different purpose of com-

bining a segmentation map (into spatial regions) and a coarsely es-

timated and to-be-refined higher level vision application (e.g., oc-

clusion map, motion segmentation/estimation field, etc.). In multi-
tlas segmentation, the concept of superpixels have also been used,

ut especially for MR images in Wang and Yushkevich (2013) ;

u et al. (2016) and in order to oversegment the target images and

ll atlases into small regions, sharing similar features but which

re not necessarily of interest in terms of bone structures. In our

pplication, the superpixel maps were generated directly from the

ell segmented training atlases and were thus adaptive for each

adiographic image to be segmented. They will allow us both to

arry out an adaptive local non-rigid registration taking into ac-

ount the local and nonlinear deformations of ROIs specific to the

arget but also to guide and to simplify the superpixel map prun-

ng step by better spatially constraining it. 

.3. Superpixel map pruning 

At this stage, an adaptive superpixel map, which non-

arametrically incorporated all the nonlinear variability existing in

 selected subset of the multi-atlas dataset (inter-patient variabil-

ty of the imaging pose and bone morphology), was generated us-

ng each radiographic target image to be segmented. Since the su-

erpixel map was already linearly registered to the target image

because this intersection map was built from a subset of selected

nd linearly rigidly registered segmentations), a pruning step, us-

ng an iterative pruning algorithm, was easily achieved by sim-

ly finding the set of connected superpixels which maximized the

ontour-based similarity between the outer contour of this super-

ixel map and the edge map of the radiographic image 1 . More pre-

isely, this iterative pruning procedure can be described in the fol-

owing manner; Each superpixel connected with the background

abel (i.e., which is contiguous with the outer bone region to be

egmented), in a lexicographic order, was classified as belonging

o the considered bone region if the outer contour-based similar-

ty metric increased and until convergence or a maximum number

f iterations was reached. At convergence, this iterative procedure

See Algorithm 2 ) allowed us to estimate a precise closed (and con-

inuous) outer contour of the bone structure. 

.4. Final selection/filtering of the multi-atlas dataset 

At this stage, we had to refine the previously closed external

ontour of the bone structure and also to infer both the internal
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Fig. 4. Examples of superpixel maps of the patella created from (a) 2 atlases, (b) 3 atlases, (c) 5 atlases and (d) 10 atlases. Each superpixel (i.e. each color) represents a 

nonlinear deformation between each bone regions. 

Algorithm 2. Iterative Pruning Algorithm. 

r  

s

 

c  

m  

Algorithm 3. VoI-Based Segmentation Fusion Algorithm. 

s  

i  

o

2 In this binary region-based classification step, the F-measure (also called F- 

score) is a region-based measure of accuracy. The accuracy of this classification is 

expressed by means of recall (R), precision (P) and their harmonic mean, the F- 

score: F = 2 P R/ (P + R ) with P = T P/ (T P + F P) and R = T P/ (T P + F N) , where TP, FP 

and FN indicate, respectively, the number of correct detections, false alarms and 

missed detections at pixel-level. The F-score can be also interpreted as a weighted 

average of the precision and recall, where an F-score reaches its best value at 1 and 

worst at 0. 
egions (within the bone structure) along with their most likely

emantic labels. 

To this end, since the previously estimated external contour was

losed, a final linear registration, between it and each manual seg-

entation of the multi-atlas, was achieved with a region-based
imilarity metric (namely the F-measure 2 ) and also allowed us to

dentify and select the first half of the manual segmentations of

ur multi-atlas dataset, which were best registered. 
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Fig. 5. Evolution of the consensus energy function of the VoI-based fusion proce- 

dure along the number of iterations for two different bone structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4. The proposed X-ray segmentation algorithm. 
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Finally, these above-mentioned pre-selected rigid-registered

manual segmentations were combined in the variation of informa-

tion (VoI) sense ( Mignotte, 2014a ), to yield the final semantic seg-

mentation. 

4.5. VoI-based fusion procedure 

The fusion procedure, used in our application, is based on

the variation of information (VoI) distance ( Meil ̆a, 20 05; 20 07 )

which has the crucial advantage of being a true metric on the

space of segmentations, i.e., a metric which is positive, symmet-

ric and obeying the triangle inequality ( Meil ̆a, 2007 ). This metric

is commonly used for comparing the similarity of two segmen-

tation results (or clusterings) or also as an efficient quality score

that measures the agreement of the segmentation result with a

given ground truth. To this end, it was used in image segmentation

( Mignotte, 2011a; 2011b; 2014b ) in order to objectively benchmark

the efficiency of an unsupervised segmentation algorithm giving an

automatic machine segmentation of an image to a ground truth

segmentation (e.g., a manually hand-segmented image given by an

expert). 

Let S A = { C A 

1 , C 
A 

2 , . . . , C 
A 

R A 

} and S B = { C B 

1 , C 
B 

2 , . . . , C 
B 

R B 

} be re-

spectively the first and second segmentation (or the machine seg-

mentation result to be evaluated and the ground truth segmen-

tation of the same size) between which the VoI distance has to

be estimated. S A is composed of n pixels and R A regions C i (also

called cluster, segments or superpixels in the following). Let n A 

i 
be

the number of pixels in the i th region ( C i ) of the segmentation S A ,

n B 

j 
the number of pixels in the j th region ( C j ) of the segmenta-

tion S B and finally n ij the number of pixels which are together in

the i th region of the segmentation S A and in the j th region of the

segmentation S B . P (i ) = n A 
i 
/n represents the probability that a pixel

belongs to the i th region of S A (respectively P ( j) = n j /n being the

probability that a pixel belongs to the j th region of S B ). Let finally

P (i, j) = n i j /n represents the joint probability that a pixel belongs

to C A 

i 
and to C B 

j 
. The VoI between S A and S B is always in the range

[0 , . . . 1] and defined as: 

VoI (S A , S B ) = H(S A ) + H(S B ) − 2 · I(S A , S B ) 

with: H(S A ) = −
R A ∑ 

i =1 

P (i ) log P (i ) = −
R A ∑ 

i =1 

n 

A 

i 

n 

log 
n 

A 

i 

n 
H(S B ) = −
R B ∑ 

i =1 

P ( j) log P ( j) = −
R B ∑ 

i =1 

n 

B 

j 

n 

log 
n 

B 

j 

n 

I(S A , S B ) = 

R A ∑ 

i 

R B ∑ 

j 

P (i, j) log 
P (i, j) 

P (i ) P ( j) 
(1)

here H ( S A ) and H ( S B ) denote respectively the classical entropy as-

ociated with the segmentation S A and S B and I ( S A , S B ) the mutual

nformation between these two segmentations. 

Let { S k } k ≤ L be a finite ensemble of L segmentations { S k } k ≤L =
 S 1 , S 2 , . . . , S L } to be fused or combined in the VoI metric sense

n order to obtain 

ˆ S 
VoI 

, i.e. , (equivalently) the average (mean) seg-

entation in the VoI distance sense also called the best com-

romise segmentation solution (resulting in a consensus in terms

f contour accuracy, detail level, clutters, etc. exhibited by each

egmentations ( ∈ { S k } k ≤ L )). ˆ S can be regarded as the aver-
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Fig. 6. Original oblique X-ray radiographic images of respectively the pelvis, the talus and the patella before and after the denoising step (see Section 3 ). 
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ge pairwise agreement between putative individual segmenta-

ions ( ∈ { S k } k ≤ L ) or the solution of the following optimization (or

o-called median partition Vega-Pons and Ruiz-Shulcloper, 2011 )

roblem: 

ˆ 
 VoI = arg min 

S∈ S n 
1 

L 

L ∑ 

k =1 

VoI (S, S k ) 

︸ ︷︷ ︸ 
VoI (S, { S k } k ≤L ) 

(2) 

ith S n is the set of all possible segmentations using n pixels. This

onsensus segmentation solution can be expressed as the result of

 minimization problem on the consensus function VoI and can be

fficiently solved with a iterative local gradient descent algorithm

 Mignotte, 2014a ) in which a new label x is assigned to pixel s (ini-

ially with label l s ), if this pixel is connected to the x th region and

f there is a local decrease in the energy VoI (. ) s : l s → x with: 

�VoI 
(

ˆ S [ p] 

VoI 
, { S k } k ≤L 

)
s : m → x 

= L ·
{ 

−n m 

n 

log 

(
n m 

n 

)
− n x 

n 

log 

(
n x 

n 

)

+ 

(n m 

− 1) 

n 

log 

(
n m 

− 1 

n 

)
+ 

(n x + 1) 

n 

log 

(
n x + 1 

n 

)} 

−2 ·
L ∑ 

l=1 

{
n m, L l s 

n 

log 

(n m L l s 
n 

· n 

n m 

· n 

n L l s 

)

+ 

n x L l s 
n 

log 

(n x L l s 
n 

· n 

n x 
· n 

n L l s 

)

−
(n m L l s − 1) 

n 

log 

( (n m L l s − 1) 

n 

· n 

(n m 

− 1) 
· n 

n L l s 

)

−
(n x L l s + 1) 

n 

log 

( (n x L l s + 1) 

n 

· n 

(n x + 1) 
· n 

n L l s 

)}
(3) 
here L 

l 
s denotes the label at site s of the l th segmentations ( l ≤ L )

f the segmentation ensemble { S k } k ≤ L and we recall that n 
m L l s 

des-

gnates the number of pixels which are together in the m th region

f the segmentation S and in the L 

l 
s th region of the segmentation

 l ∈ { S k } k ≤ L (see Algorithm 1 ). As initialization of this steepest gra-

ient descent, we can start from the segmentation result (among

he L segmentation results to be averaged), ensuring the minimal

onsensus energy in the VoI sense ( Mignotte, 2014a ). 

In the label propagation step, the VoI-based fusion procedure al-

owed us both to refine the external contour of the bone struc-

ure to be segmented, but also, and especially, to infer the inter-

al region labels from the selected atlases (previously estimated in

ection 4.4 ) to the final segmentation map. Fig. 5 shows two ex-

mples of the evolution of the consensus energy function of the

oI-based fusion procedure along the number of iterations for two

ifferent bone structures. 

. Time complexity 

The purpose of this section is to compute an estimate for the

ime complexity required to segment an X-ray image by our strat-

gy. We performed a complexity analysis on each step of our ap-

roach. 

First, the time complexity of our X-ray image pre-processing

tep is linear with respect to the number of pixels with

(p(n dct b + g)) where p is the number of pixels in the image, n dct 

s the number of DCT iterations, b is the extracted block size and g

s the Gaussian kernel size. 

Second, the time complexity of bone structure external con-

our estimation step is O(p(N dataset ts + n pruning P )) . More precisely,

he time complexity of shape-based registration is O(N dataset tsp) ,

here N dataset is the number of images in training dataset, t is 

he number of translations, and s is the number of scaling factors.

his complexity grows linearly with N dataset and p , while t and s

an be fixed. The time complexity of superpixel map creation is
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Fig. 7. From left to right; gradient magnitude of three original oblique pre-processing X-ray radiographic images of the pelvis, talus, and the patella, respectively. From top 

to bottom; potential field with Gaussian filter with an increasing standard deviation σ b . 
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O(N map p) , where N map ( N map < N dataset ) is the number of images

used for creating the superpixel map. Also, the time complexity

of the superpixel map pruning algorithm is O(n pruning P p) , where

n pruning is the number of iterations required and P is the number

of superpixels. 

Third, the time complexity of external contour refinement

and internal segmentation estimation step is O(p(N dataset ts +
n v oi N f usion )) . More precisely, the time complexity of final selec-

tion of the multi-atlas (i.e. rigid registration) step, which is simi-

lar to the shape-based registration, is O(N dataset tsp) . Also the time

complexity of the VoI based fusion algorithm is O(n v oi N f usion p) ,

where n voi is the number of iterations required, and N fusion 

( N fusion < N dataset ) is the number of images used for fusion step. 

Finally, the overall complexity of our approach remains lin-

ear with respect to the number p of pixels in the image with

O(p(n dct b + g + N dataset ts + n pruning P + n v oi N f usion )) . 

6. Experiments 

6.1. Data 

For the experiments, we validated our multi-atlas based seg-

mentation approach on 31 45-degree oblique X-ray radiographic
mages and on three different human bone structures (pelvis, talus,

nd patella) acquired using a X-ray imaging system. Every pelvis,

alus and patella image was cropped for the best view, resulting in

mage sizes of 1500 × 1350, 400 × 300 and 350 × 350 pixels respec-

ively. 

.2. Experimental results 

The overall algorithm is summarized in pseudo-code in

lgorithm 4 . The internal parameters of the proposed method are

espectively the threshold T DCT of the DCT-denoising filter for the

re-processing step, the standard deviation σ b of the potential

eld used in the shape-based linear registration, and local non

igid contour based reconstruction (step 1.A and 1.C). The selec-

ion parameter ρ of the multi-atlas selection (step 1.A and 2.D),

nd finally the three thresholds of the pruning algorithm c 1 , c 2 , c 3 .

e have set these parameters, chosen after some trial and error

xperiments, to the following respective values T DCT = 40 , σb = 2 ,

= 50% and c 1 = 0 . 95 , c 2 = 3 . 5 , c 3 = 0 . 99 . 

The performance of segmentation algorithms is usually evalu-

ted based both on the quality or accuracy of the segmentation

esult and computational requirement. The quality or accuracy of

he segmentation algorithm is evaluated by comparing the output
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Fig. 8. Respectively the pelvic, talar and patellar external contours on the 45 degree oblique X-ray radiographic images (gradient and original). 

Fig. 9. Resulting fusion image estimated after the VoI-based label propagation step, with the estimated internal region labels of the pelvis, talus, and patella. 
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f the method with a ground truth, usually obtained from man-

al segmentation done by experienced radiologists. However, the

round truth always suffers from inter and intra-observer varia-

ions. To solve this problem, we have performed a leave-one-out

rocedure, i.e., we removed each existing manual segmentation

rom the multi-atlas data set while other manual segmentations

emained. Each X-ray image associated to the previously removed

egmentation map was then segmented by our strategy and com-

ared, in terms of classification error rate (i.e., similarity index),

ith its manual segmentation. 

Fig. 6 shows the original oblique X-ray radiographic image of

elvis, talus and patella respectively before and after the denois-

ng step (without the computation of the magnitude gradient) (see

ection 3 ). Fig. 7 shows an example of gradient magnitude and po-

ential field with Gaussian filter with an increasing standard devia-

ion σ b of three original oblique pre-processing X-ray radiographic

mages of respectively the pelvis, talus, and patella. Fig. 8 shows

he external pelvic, talar, and patellar contours respectively on the

orresponding 45-degree oblique X-ray radiographic (original and
radient) images and Fig. 9 shows the resulting segmentations es-

imated after the VoI-based label propagation step, with the esti-

ated internal region labels of the pelvic, talar and patellar struc-

ures. Figs. 10 , 11 , and 12 show respectively, some segmentation

esults from our automatic segmentation approach compared to a

anual gold standard segmentation. 

The accuracy of our automatic segmentation approach was,

ith our leave-one-out procedure, respectively 85.02% for the

elvis (e.g. in Fig. 10 ), 88.3% for the talus (e.g. in Fig. 11 ), and

3.79% for the patella (e.g. in Fig. 12 ). These scores take into ac-

ount the accuracy of the labeling of the different regions within

he bone structure to be segmented. The complete segmentation of

ne image took, on average, approximately 161 s for the pelvis, 62

econders for the talus, and 80 s for the patella on a 64-bit desk-

op PC (2,50 GHz Core i5-3210M CPU and a graphic card with Intel,

 GB RAM). Multi-core parallel computing with OpenMP was used

uring the rigid registration step for each individual registration to

peed up the overall procedure, Table 1 shows the running time of

he different steps of our segmentation approach. 
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Fig. 10. Comparison of segmentation results from our approach and a manual segmentation of the pelvis. (a), (b), and (c) original oblique X-ray radiographic images; (d), 

(e), and (f) external pelvic contours on the corresponding X-ray images; (g), (h), and (i) resulting images; (j), (k), and (l) manual segmentations. 

Table 1 

Computational time of different steps of the algorithm for 

the pelvis. 

Step Time (s) and % 

Pre-processing 1 (0.5%) 

Shape-based linear registration 4 (2.5%) 

Superpixel map estimation 2 (1%) 

Iterative pruning algorithm 15 (9%) 

External contour-based registration 44 (27%) 

VoI-based mean segmentation 95 (60%) 

Total computational time 161 (100%) 
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3 Patch-based majority voting is a powerful tool and also the simplest label fusion 

method exploited in multi-atlas based segmentation. It is based on the assumption 

that, if patches of the input subject image are locally similar to the patches of at- 

lases, they should have a similar label. To this end, the more similar patches are 

selected and the label in the target image can then be determined by choosing the 

majority vote, i.e., the label which is the most frequent at this voxel ( Huo et al., 

2015 ). 
4 SBA is based on the distances from each pixel to the contours of each label, and 

thus, it implicitly includes the neighborhood information of pixels ( Rohlfing and 

Maurer, 2007 ). 
In spite of the numerous artifacts existing in X-ray images, such

as the overlapping edges and concealed boundaries, the proposed

segmentation method can cope with these artifacts and achieve

good segmentation performance in an unsupervised way. 

6.3. Comparison with other methods 

We compared our method to the probabilistic patch-based la-

bel fusion model and the classical patch-based majority voting fu-
ion scheme 3 using different registration strategies. Briefly, as in

ai et al. (2013) , atlases and corresponding label maps were first

arped to the target image using image registration. Then, in or-

er to determine the label at a given voxel, each atlas patch in

he target image was compared to a number of patches (in a local

earch region) in a possibly warped atlases and was then weighted

ccording to its similarity and distance to the target patch. Finally,

abels from all the atlas patches were combined by a weighted ma-

ority voting based strategy, to give the label estimate in the target

mage. The resulting segmentation was then incorporated back into

he image registration process to refine the registration results. We

lso compared our VoI based fusion step to Shape-based averaging

SBA) 4 fusion step presented in Rohlfing and Maurer (2007) . These

wo fusions of segmentations are based on a different similarity

etric between two segmentation maps (i.e., the entropy concept
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Fig. 11. Comparison of segmentation results from our approach and a manual segmentation of the talus. (a), (b), and (c) original oblique X-ray radiographic images; (d), (e), 

and (f) external talar contours on the corresponding X-ray images; (g), (h), and (i) resulting images; (j), (k), and (l) manual segmentations. 

Table 2 

Accuracy of our method versus the MV and the PB fusion model with different registration and 

fusion methods for multi-atlas segmentation ( ∗:Patella bone has only 1 ROI). 

Patella (%) Talus (%) Pelvis (%) 

Our method VoI based fusion 
93 . 79 ∗

88 . 3 85 . 02 

SBA fusion 88 . 38 85 . 01 

Majority voting Affine registration 89 . 99 85 . 36 67 . 77 

Shape-based registration 90 . 26 85 . 26 76 . 91 

Probabilistic patch-based Affine registration 90 . 01 85 . 41 68 . 03 

Shape-based registration 90 . 27 85 . 44 77 . 59 
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or the VoI and a distance, related to the Chamfer distance for the

BA). 

This comparison was evaluated on 31 radiographic image

atasets for each bone structure and performed on above-

entioned desktop PC. In this comparison, we used an affine reg-

stration (AR) and our shape-based registration (SBR) to align the

tlas with the target, then the label fusion process (MV, PB, SBA

nd our method VoI) was applied to obtain the final result. The

egmentation quality was estimated with the similarity index by

omparing the manual segmentations (considered as a gold stan-

ard) with the combinations of different registration and label fu-

ion strategies (MV-AR, MV-SBR, PB-AR, PB-SBR, our method with

oI, and our method with SBA). For two binary segmentations

 and B , the similarity index is computed as the ratio between

 | A 

⋂ 

B | et | A | + | B | . Figs. 13 , 14 , and 15 show respectively some

egmentation results from these 6 abovementioned segmentation

pproaches compared to a manual gold standard segmentation.

he Tables 2 and 3 show the comparison of the similarity index

m  
i.e., accuracy) and the computational time of these three segmen-

ation methods respectively. Fig. 16 shows the accuracy of each at-

as in dataset for leave-one-out validation. 

. Discussion and conclusion 

In our experiments, we observed that the VoI based fusion

nd SBA fusion have almost the same accuracy, probably due to

he small number of ROIs. The experiments also showed that our

hape-based registration gave a better result than image registra-

ion in the probabilistic patch-based label fusion model and the

lassical majority voting fusion scheme. Our method is slightly bet-

er than the other methods (MV and PB) with two different regis-

ration strategies in case of simple bones (patella, talus), and much

etter in the case of a complex structure (pelvis). Note that prob-

bilistic patch-based label fusion methods are used for MRI, and

ur method is proposed for X-ray radiographic imaging. As already

entioned in the introduction, image registration and patch-based
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Fig. 12. Comparison of segmentation results from our approach and a manual segmentation of the patella. (a), (b), and (c) original oblique X-ray radiographic images; (d), 

(e), and (f) external patellar contours on the corresponding X-ray images; (g), (h), and (i) resulting images; (j), (k), and (l) manual segmentations. 

Table 3 

Computational time (sec.) of our method versus the MV and the PB fusion model with 

different registration and fusion methods for multi-atlas segmentation ( ∗:Patella bone 

has only 1 ROI). 

Patella Talus Pelvis 

Our method VoI based fusion 
80 ∗

62 161 

SBA fusion 52 129 

Majority voting Affine registration 176 165 212 

Shape-based registration 56 6 9 

Probabilistic patch-based Affine registration 181 170 235 

Shape-based registration 58 12 18 

 

 

 

 

 

 

 

 

b  

e  

o  

n  

t  

t  

m  

d  

m  
methods probably turn out not to be well suited for X-ray images

since quantum noise can be different for different X-ray imaging

systems and also because numerous artifacts exist in these im-

ages, mainly due to the fact that neighboring tissues inside hu-

man body may have similar X-ray absorption rates and this phe-

nomenon can considerably bias the estimations of the state-of-the-

art patch-based methods. 

The strength of our approach lies in the combination of mul-

tiple weak, but complementary visual cues, such as contour-
ased and region-based similarity measures all along the differ-

nt steps of our registration/segmentation process. In addition,

ur superpixel-based framework that takes into account all the

onlinear and local variability of bone regions existing in the

raining dataset along with our label propagation fusion step, in

he variation of information sense, combined with our outlier re-

oval step, allows us to efficiently constrain the space of can-

idate segmentations, to finally propose a reliable segmentation

ap even in presence of low quality input X-ray images. This also
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Fig. 13. Comparison of segmentation results of the patella. (a) original oblique X-ray radiographic image, (b) manual segmentation, third row: external patellar contours on 

the corresponding X-ray image, fourth row: resulting images. 
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osteoarthritis. 
akes our method original, robust and particularly appropriate

or the segmentation of complex structures in X-ray imaging. To

he best of our knowledge, no study has been done on the X-ray

blique image segmentation of the pelvis, talus, and patella. Un-

ike most existing multi-atlas-based segmentation approaches, the

roposed method makes the following main contributions. First,

he multi-atlas-based training dataset allows us to estimate, non-

arametrically, a collection of superpixels which capture all the

onlinear and local variability of ROIs present in the multi-atlas

ataset. This allows us both to increase the accuracy of the super-

ixel map pruning step while simplifying the optimization prob-

em involved in this crucial step. Second, the contour-based sim-

larity measure used in our first registration step and combined

ith the region-based similarity measure exploited in the final se-

ection/filtering of the multi-atlas dataset allowed us to efficiently

nd adaptively single out the outlier segmentations, existing in

he multi-atlas dataset, for each specific segmentation case. Third,

he label propagation fusion step was herein performed in the
ariation of information sense and allowed us to refine the ex-

ernal contour of the bone structure to be segmented, but also,

nd especially, to infer the internal region labels from the pre-

elected segmentations of the atlas to the final segmentation re-

ult. In addition, the proposed approach is robust since it mainly

elies on the external bone contour of the bone structure to be

egmented, which is the most informative and reliable visual cues

n an X-ray image, especially in the case of the lower limb bone

tructures (such as the pelvis, talus, and patella). Also, the aver-

ge classification rate of our method was within the range of ac-

uracy typically obtained in case of manual segmentations (w.r.t.

ntra inter/observer variability). The proposed segmentation ap-

roach has potential clinical applications, one of them being three-

imensional reconstruction from biplanar images to assess skeletal

orphology in the context of various pathological processes like
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Fig. 14. Comparison of segmentation results of the talus. (a) original oblique X-ray radiographic image, (b) manual segmentation, third row: external talar contours on the 

corresponding X-ray image, fourth row: resulting images. 

Fig. 15. Comparison of segmentation results of the pelvis. (a) original oblique X-ray radiographic image, (b) manual segmentation, third row: external pelvic contours on the 

corresponding X-ray image, fourth row: resulting images. 
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Fig. 16. Accuracy of each subject in dataset. Each bin represents the similarity index of the resulting image comparing to the corresponding manual segmentation. 
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