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Abstract Browsing, searching and retrieving images from large databases based on low
level color or texture visual features have been widely studied in recent years but are also
often limited in terms of usefulness. In this paper, we propose a new framework that allows
users to effectively browse and search in large image database based on their segmentation-
based descriptive content and, more precisely, based on the geometrical layout and shapes of
the different objects detected and segmented in the scene. This descriptive information, pro-
vided at a higher level of abstraction, can be a significant and complementary information
which helps the user to browse through the collection in an intuitive and efficient manner. In
addition, we study and discuss various ways and tools for efficiently clustering or for retriev-
ing a specific subset or class of images in terms of segmentation-based descriptive content
which can also be used to efficiently summarize the content of the image database. Experi-
ments conducted on the Berkeley Segmentation Datasets show that this new framework can
be effective in supporting image browsing and retrieval tasks.

Keywords Berkeley dataset · Clustering algorithm · Entropy · Database browsing and
retrieving images · Hierarchical clustering · K-means · Multidimensional visualization ·
Query-by-drawing · Segmentation data clustering · Descriptive content based image
classification · Variation of information · Visualization of image databases.

1 Introduction

Clustering is the task of grouping together, in a feature space, data samples in the same
group (or cluster) that are similar in the sense of a given distance measure. It is the main task

� Max Mignotte
mignotte@iro.umontreal.ca
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of data exploration and analysis which is then useful for looking for patterns or structures
(and/or correlations) in the data that are of interest.

Image segmentation is a special case of clustering problem where the grouping of image
data (or pixels) into clusters must take into account not only their similarity in the feature
space but also the requirement of their spatial coherence, since an essential feature of image
data is the spatial ordering of its pixels. In the image segmentation case, structures of inter-
est are spatially coherent regions such as consistent parts of objects or of the background
sharing similar attributes. The detection and localization of these regions, with a spatial
clustering, allows to change and simplify the representation of the image into something
that is both compact, and also easier to analyze since this economic description, in terms
of detecting homogeneous regions, efficiently describes the geometric content of the input
image.

In these two latter cases, the clustering performance and its subsequent usefulness closely
depend on the used distance measure. In this sense, depending on this similarity metric, the
application herein proposed, consisting of achieving an unsupervised clustering of segmen-
tation results (estimated, for example, from an image database) could either be meaningless
or have a certain interest. Indeed, in such application, it is crucial to consider an appropri-
ate distance, across the lattice of possible spatial clusterings, for efficiently comparing two
segmentation results in a objective, reliable, comprehensible and perceptual criterion sense
which should be also capable of taking into account the inherent variability of each possible
perceptually consistent interpretation/segmentation of an input image (possibly segmented
at different detail levels by different human segmenter). Nevertheless, it is not trivial to
find a true (in the mathematical sense) and meaningful distance between two segmentation
maps. Indeed, the two segmentations might have a different number of segments and the
correspondence between segments are not known and this is especially true in the case of
segmentations obtained from two different images. If such a distance exists, an unsupervised
clustering of segmentation results could be efficiently used for obtaining an overview or for
browsing and/or retrieving images from large image collections or database or for retriev-
ing a specific subset or class of images in terms of segmentation-based descriptive content
(such as the layout and similar arrangement of the different objects segmented in the image)
and not in terms of low-level features such as color and/or texture as it is commonly used
in image database browsing applications. Moreover, a distance-based clustering can also be
exploited, among other things, in order to build an image database with a substantial amount
of diversity in the dataset. This can be easily achieved by automatically removing images
with to much similar content in terms of region-based descriptive content or to quantify this
amount of diversity with a dispersion measure such as the average of all distances obtained
for each segmentation pair.

In addition, an automatic clustering procedure often requires the estimation of the cen-
ter of each cluster. It is the case of the K-means clustering procedure which is the most
commonly used clustering algorithm so far proposed in the literature [11] or more gener-
ally, also the case of all class of (distance-based) clustering algorithms known as iterative
refinement algorithms. To this end, the estimation of cluster centers, in a non-Euclidean
and non-standard distance sense, when the underlying data are segmentation results, is far
from being trivial. Fortunately, this problem has been recently solved in the image process-
ing community in order to provide an interesting alternative to the existing complex and
computationally costly segmentation models. Indeed, an effective, simple and commonly
accepted segmentation strategy consists in averaging (i.e., efficiently combining or fusing)
multiple quickly estimated segmentation results (of the same scene) obtained from some
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simple segmentation models (or by the same segmentation algorithm with different values
of its internal parameters) to achieve a final improved segmentation result. This strategy has
initially been introduced in [9, 10] with the restriction that all input segmentations (to be
averaged or fused) should contain the same number of regions and then a little later without
this restriction, with an arbitrary number of regions [6, 15–17, 31] in different criteria senses
with algebraic, analytic or stochastic procedures. In the case of unsupervised clustering of
segmentation results, these cluster centers or prototypes could be efficiently used to quickly
visualize the region-based descriptive content of each class of segmentation map ensemble
associated to a given image database. Also, these cluster centers could estimate a clustering
meaningfulness distance allowing to quantify the diversity in the dataset or the performance
of each clustering algorithm, among others things. It is true that the K-means procedure and
more generally, all iterative refinement clustering algorithms have also a major shortcoming
in the fact that the number of clusters must be specified in advance.

Finally, it is worth mentioning that, there is no work, reported in the literature (to our
knowledge), which proposes and exploits, for several visualizing or browsing applications,
an automatic clustering result of segmentation maps estimated from an image database. In
the context of browsing large image collections, which is a non trivial task, mainly due to the
semantic gap existing between the user subjective notion of similarity and the one according
to which a browsing system organizes the images, we can cite several existing techniques.
A possible strategy consists of the use of a PCA or MDS mapping-based visualization tech-
nique for grouping similar (in terms of color and/or texture-based features) images together
on a plane [26], eventually projected onto a sphere [27], on a hierarchical (browsing) tree
which can be customized according to user preferences [4], or other graphs (a good survey
of existing strategies can be found in [7]). Higher level strategies are proposed for exam-
ple in [12] where a browsing model integrates high level semantic concepts which allows
to help users to narrow a search domain rather than to browse the whole collection [12] or
in [29] in which the underlying idea is to mine and interpret the information from the user’s
interaction in order to understand the user’s needs. Based on the Dempster-Shafer theory of
evidence and the combination of color and text features, the system’s interpretation is used
for suggesting new relevant images to the user.

The remainder of this paper is divided into the following sections: First, the pro-
posed distance measure, defined on the space of clusterings, for efficiently comparing two
segmentation results, is presented in Section 2.1. The averaging procedure of segmenta-
tion results used for estimating the cluster centers based on this aforementioned distance
is recalled in Section 2.2. Section 3 shows a variety of applications. Finally Section 4
concludes this paper.

2 Distance-based clustering components

2.1 Used distance

The variation of information (VoI) metric [13, 14] is a recent information theory based
measure for comparing the similarity of two segmentation results (or clusterings). This
metric quantifies the information shared between two segmentations by, more precisely,
measuring the amount of information that is lost or gained in changing from one segmen-
tation to another. Equivalently (and conceptually), it also represents roughly the amount of
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randomness in one segmentation which cannot be explained by the other [13]. The VoI is
a true metric on the space of clusterings which is positive, symmetric and obeys the trian-
gle inequality [14]. This VoI metric is currently exploited as a clustering or segmentation
quality metric that measures the agreement of the segmentation result with a given ground
truth. To this end, it was recently used in image segmentation [18–21, 25, 32] as a quanti-
tative and perceptually interesting measure to compare automatic segmentation of an image
to a ground truth segmentation (e.g., a manually hand-segmented image given by an expert)
and/or to objectively evaluate the efficiency of several unsupervised segmentation methods.

Let SA =
{
CA
1 , CA

2 , . . . , CA
RA

}
and SB =

{
CB
1 , CB

2 , . . . , CB
RB

}
be respectively the first

and second segmentation (or the segmentation test result to be evaluated and the ground
truth segmentation) between which the VoI distance has to be estimated and RA being the
number of regions1 in SA and RB the number of regions in SB. The VoI between SA and SB

is defined as:

VoI(SA, SB) = H(SA) + H(SB) − 2 · I (SA, SB) (1)

where H(SA) and H(SB) denote respectively the classical entropy associated with the
segmentation SA and SB and I (SA, SB) the mutual information between these two segmen-
tations. Let n be the number of pixels within the image, nAi the number of pixels in the
i-th cluster of the segmentation SA, nBj the number of pixels in the j -th cluster of the seg-

mentation SB and finally nij the number of pixels which are together in the i-th cluster (or
region) of the segmentation SA and in the j -th cluster of the segmentation SB. The entropy
is always non-negative (it takes a value of 0 only when there is no uncertainty, namely when
there is only one cluster) and is defined as:

H(SA) = −
RA∑
i=1

P(i) logP(i) = −
RA∑
i=1

nAi

n
log

nAi

n

H(SB) = −
RB∑
i=1

P(j) logP(j) = −
RB∑
i=1

nBj

n
log

nBj

n
(2)

with P(i) = nA
i /n being the probability that a pixel belongs to cluster SA (respectively

P(j) = nj/n being the probability that a pixel belongs to cluster SB) in the case where i

and j represent two discrete random variables taking respectively RA and RB values and
uniquely associated to the partition SA and SB. Let now P(i, j) = nij /n represents the
probability that a pixel belongs to CA

i and to CB
j , the mutual information I (.) between the

partitions SA and SB is equal to the mutual information between the random variables i and
j and is expressed in the following way:

I (SA, SB) =
RA∑
i

RB∑
j

P (i, j) log
P(i, j)

P (i) P (j)
(3)

The VoI is a true metric across the lattice of possible clusterings (taking a value of 0 when
two clusterings are identical and positive otherwise) and is bounded by log n. However,
if SA and SB have at most Rmax clusters (i.e., regions), it is bounded by 2 logRmax [14].
Let us also note that if we have several possible ground truth segmentations for a same

1A region is a set of connected pixels belonging to the same class and a class, a set of pixels possessing
similar textural characteristics.
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scene (which could be possibly segmented at different levels of details by different human
segmenters), this measure is able to take into account the inherent variability of possible
interpretations between each human observer and more precisely the inherent variability
of each possible perceptually consistent interpretation/segmentation of an input image by
a simple averaging technique [32]. This variability is also due to the fact that the image
segmentation problem is inherently ill-posed (and consequently, this problem has multiple
solutions notably for the different possible values of the number of classes not known a
priori) [17].

2.2 Cluster center estimation

Let {Sk}k≤L be a finite ensemble ofL segmentations {Sk}k≤L = {S1, S2, . . . , SL} existing in
a given cluster. The estimation of the center of these L segmentations (also called the cluster
prototype or the consensus segmentation) can be efficiently achieved in the VoI distance
sense (see Section 2.1) by the solution of the following optimization (or so-called median
partition [30]) problem:

ŜVoI = arg min
S∈Sn

VoI (S, {Sk}k≤L)

= arg min
S∈Sn

1

L

L∑
k=1

VoI (S, Sk) (4)

with Sn is the set of all possible segmentations using n pixels. Herein, each estimation of
the center of a given cluster (i.e., the best compromise segmentation solution resulting in a
consensus in terms of contour accuracy or detail level displayed by each segmentations in
{Sk}k≤L), thus appears as the segmentation solution which minimizes the average pairwise
VoI distance between all elements of the cluster. Equivalently, this partition solution can be
expressed as the result of a minimization problem on a consensus function (using the VoI
distance) which can be solved with a steepest local energy descent procedure [17]. In this
iterative minimization procedure, a new label x is assigned to pixel s (initially with label ls),
if this pixel is connected to the x-th region and if the local decrease in the energy function
VoI(.)s:ls→x is positive with:

�VoI
(
Ŝ

[p]
VoI

, {Sk}k≤L

)
s:m→x

=
L ·

{
−nm

n
log

(nm

n

)
− nx

n
log

(nx

n

)

+ (nm − 1)

n
log

(
nm − 1

n

)
+ (nx + 1)

n
log

(
nx + 1

n

)}

−2 ·
∑L

l=1

{
nm,Ll

s

n
log

(
nmLl

s

n
· n

nm

· n

nLl
s

)

+nxLl
s

n
log

(
nxLl

s

n
· n

nx

· n

nLl
s

)

− (nmLl
s
− 1)

n
log

(
(nmLl

s
− 1)

n
· n

(nm − 1)
· n

nLl
s

)

− (nxLl
s
+ 1)

n
log

(
(nxLl

s
+ 1)

n
· n

(nx + 1)
· n

nLl
s

)}
(5)
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where Ll
s denotes the label at site s of the l-th segmentations (l ≤ L) of the segmenta-

tion ensemble {Sk}k≤L and we recall that nmLl
s
designates the number of pixels which are

together in the m-th cluster (or region) of the segmentation S and in the Ll
s-th cluster of the

segmentation Sl ∈ {Sk}k≤L (see Algorithm 1).

As initialization of this steepest gradient descent, we can start from the segmentation
result (among the L segmentation results to be averaged), ensuring the minimal consensus
energy in the VoI sense [17]. Another strategy consists in initializing the gradient proce-
dure from a synthetic image spatially divided by K horizontal or vertical rectangles with
K different labels and to take, at convergence, the segmentation solution ensuring the min-
imal consensus energy. In order to improve the convergence, we also use a multiresolution
approach by considering the optimization problem at a lower resolution level (with the
downsampling of {Sk}k≤L by a scale factor c). After convergence of the gradient, the result
obtained at this lower resolution level is interpolated and then used as initialization for the
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gradient procedure at the full resolution level. This strategy drastically reduces the com-
plexity and computational effort and provides an accelerated convergence toward improved
estimate (as noticed, for example, in other energy-based models [21–23]).

3 Examples of applications

3.1 Visualization of image databases

Due to the huge number of the images in a collection or a database and the limited size of
a computer monitor, it may be interesting to find a strategy to provide a quick overview of
these images. Generally, it will ensure that these images are displayed as thumbnails and
correctly arranged in such a way that the user can quickly and intuitively understand what
types of images are contained in the database and their distribution for further analysis.
Generally this is typically achieved by mapping-based technique such as principal compo-
nent analysis or multi-dimensional scaling (MDS) along with a metric between low-level
color or texture features and computed for each pair of images of the database. More pre-
cisely, MDS is before all, a nonlinear dimensionality reduction technique that attempts to
find an embedding from the initial feature vectors in the high dimensional space such that
distances (or conceptually, the original relationships of these images in term of a given
distance) are preserved in a low dimensional space. The foundational ideas behind MDS
were first proposed by Young and Householder [33] and then further developed by Torg-
erson [28] in which, its original algorithm (called classic MDS) exploits a spectral method
which consists of finding embedding coordinates by computing the top eigenvectors of a
double-centered transformation of the distance matrix (called a Gramian matrix) sorted by
decreasing eigenvalue.

Instead of considering low-level color or texture features to arrange these image thumb-
nails, as it is commonly used in image database browsing or navigation systems, it may be
interesting to arrange them according to their descriptive content extracted by a (region-
based) segmentation or more precisely, based on the spatial arrangement of the different
objects detected or segmented in the image regardless of their own color or texture. This
mapping-based visualization technique, made at a higher level of abstraction, is herein pos-
sible since the VoI distance (see Section 2.1) is a true metric and also a quantitative and
perceptual measure to compare two segmentations, which also inherently takes into account
the variability of each possible perceptually consistent interpretation/segmentation of an
input image which could be possibly segmented at different detail levels.

The VoI-based true metric allows us to estimate a distance matrix (describing the dis-
similarities between each existing pair of segmentations) from which the classic MDS then
computes a Gramian matrix having the same properties as the one obtained with a classical
Euclidean distance based distance matrix (i.e., positive and semi-definite (PSD)) which then
ensures (positive eigenvalues and) a good convergence and accuracy of the MDS algorithm
(and more generally of all MDS methods based on eigen-decomposition). As explained in
[5], the use of a distance which is not a true metric is somewhat equivalent to considering a
noise corrupted version of the Gramian or distance matrix and consequently an inaccurate
and unreliable (visualization) mapping.

We first present an MDS image overview of the Berkeley Dataset (BSDS300) [24], based
on the VoI distance (see Fig. 1). The BSDS300 consists of 300 color images of size 481 ×
321. For each color image of, a set of ground truth segmentations, provided by human
observers (between 4 and 7), is also available. In our application, we can either exploit the
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Fig. 1 A MDS visualization map of the BSDS300 based on the VoI distance between segmentations. Left:
view map of the (300) color images mapped according to their similarity in term of region-based segmen-
tation result. Right: view map of the segmentation results according to their similarity in the VoI distance
sense

result of a segmentation algorithm or use the ground truth segmentations when these one
are, of course, available.2

In our case, the ground truth segmentation map with the median value of the number
of regions estimated by the set of human observers (amongst 4 and 7) for each image of
the BSDS300 has been here exploited.3 The images are also squared by stretching them
in order to get some invariance in the spatial arrangement of the different parts and object
shape segmented in the image. The visualization 2D map of the image thumbnails of the
images and their associated ground truth segmentation based on the VoI distance computed
for each pair of segmentations is shown in Fig. 1. Images (to the left) with a similar lay-
out and arrangement of the different objects detected or segmented in the image regardless
of their own color or texture are placed close to each other while images with dissimilar-
ity arrangement are far from each other. In this example, the target output dimension of the
MDS-based mapping technique equals to 2 dimensions which is the size of the output map-
ping. A mapping on a cube would have been also possible with a target output equals to 3
dimensions. It is worth mentioning that we can also efficiently evaluate the reliability of the
MDS-based mapping technique (as a function of the target output dimension) by using the
correlation-based metric which is simply the correlation of the VoI distance between pair-
wise segmentations and their corresponding (pairwise) 2D Euclidean distances in the target
space [2]. In the absence of perceptual error and thus, with no loss of information in this
dimensionality reduction problem, the ideal correlation metric is one. For a 2D MDS visu-

2Our approach is tolerant to different types of image degradation (e.g., noise, blur, distortions) insofar as
the segmentation method is able to give a segmentation map which is robust enough for these types of
degradation.
3It is worth mentioning that we could also exploit all the set of ground truth segmentations for each image
by computing an average VoI distance computed across all the existing ground truth segmentations.
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alization map of the BSDS300 based on the VoI distance between segmentations, we obtain
a correlation metric ρ = 0.856 which means that there are only 14.4 percent of pairs of
images whose 2D Euclidean distance between them does not preserve the monotonicity of
the initial VoI distance (i.e., or 14.4 loss of information of this 2D MDS mapping according
to the correlation metric). Figures 2 and 3 show respectively some magnified details of Fig.
1 and the 6 nearest neighbors of a given image in the database illustrating well the efficiency
of our image mapping method based on either the similar layout and spatial arrangement
or (to some extend) the similarities in the geometrical shapes of the objects detected and
segmented in the scene (and despite the fact that the BSDS300 exhibit a great diversity of
images).

Let us note that we can easily quantify the amount of diversity, in term of our main
criterion (layout and similar arrangement of the different objects detected or segmented in
the image regardless of their own color or texture) by computing the average over all the
distances obtained for each segmentation pair:

D =
∑

k,l k �=l VoI(Sk, Sl)

N(N − 1)
(6)

Fig. 2 Magnified details of
Fig. 1 showing the grouping of
images of the BSDS300 based on
the similar layout and
arrangement of the objects
detected and segmented in the
scene. In lexicographic order, a
group of pictures mostly showing
one or two people at the center of
the image (top left) or showing
that the three images of bears of
the BSDS300 are close (top
right) and finally a group of
pictures showing that the six
birds of the BSDS300, perched
on a branch are relatively close or
showing, for the bottom or left
part of the image, an animal on a
mountainside or located in the
middle of the image
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where N is the number of images or segmentations and N(N − 1) the number of pair of
segmentations. This diversity measure D will be even closer to 1 that the diversity will be
better in the image database, according to our visualization criterion. For the BSDS300, we
obtain a diversity measure metric D = 3.05. In order to increase the diversity in the image
database, in our criterion sense, it consists in searching the two most similar segmentations
and removing one of them. To attain this goal, a hierarchical clustering (see Section 3.4)
can be exploited.

Figure 4 shows respectively the two images of the BSDS300 which are respectively
the closest and the farthest, in the segmentation-based mean VoI distance sense, from
the center of the 300 pictures of the BSDS300 with their associated ground-truth seg-
mentation. It is interesting to note that the estimation of the center of the BSDS300, in
term of segmentation map (see Algorithm 1), namely; argminS∈Sn VoI (S, {Sk}k≤L)), is
the blank image (exhibiting one segment/region for the entire image) which is not too far
from argminS∈{Sk}k≤L

VoI (S, {Sk}k≤L), the segmentation associated to the center of the
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BSDS300 (see Fig. 4a at right). This estimation result is also comprehensible, since, in
the VoI distance sense, any existing segmentations are also a refinement of this one region
segmentation [32].

3.2 Segmentation-based clustered visualization

With the VoI distance defined in Section 2.1, and the estimation procedure of the center
of each cluster or ensemble of segmentations presented in Section 2.2, an unsupervised
clustering of segmentation results can be efficiently designed for reducing the number of
images that are required to be displayed by grouping images with a similar layout and
spatial arrangement of the different objects detected or segmented in the image regardless
of their own color or texture or for retrieving a specific subset or class of images in terms of
(segmentation-based) descriptive content. To this end, several strategies (that we will also
evaluate the reliability later) are possible.

The first strategy (Algorithm 2) consists first of using the MDS based dimensionality
reduction technique presented in Section 3.1 and then exploiting the reduced data of this
mapping in a classical K-means algorithm. At the convergence of the K-means algorithm,
each new cluster center, in term of segmentation map, is estimated by Algorithm 1. The
second strategy (Algorithm 3) consists in directly using the non-reduced data, i.e., the seg-
mentation maps along with, at each iteration of the K-means algorithm, the estimation of
the center (or prototype) of each cluster (or consensus segmentation) until convergence is
achieved.

In order to evaluate and compare the reliability of these two above-described clustering
strategies, we can estimate the class separability or the Fisher’s distance [3] on each clus-
tering result. This distance is simply the within-class inertia divided by the between-class
inertia. In our case, this distance is meaningful if this one is computed in the VoI metric
sense such as:

F =
∑K

k=0
∑

Sm∈Clk
VoI(Sm, ck)∑K

k=0
∑K

l=0 l �=k VoI(ck, cl)
(7)
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Fig. 3 6 nearest neighbors of a given (the leftmost) image belonging to the BSDS300. From top to bottom,
group of images mainly showing 1-] a small and elongated animal or object on the grass/sand or in the
sky/water. 2-] an animal or a group of animals. 3-] pyramidal or (highly) elongated structures (pyramid or
mountain). 4-] wild mammals. 5-] group of men. 6-] small pyramidal structures in land/sea-scape

where Clk is the k-th cluster, {Sk} the set of segmentations to be clustered and {ck} the set
of prototype centers. This number D can be also viewed as a clustering meaningfulness
metric since it clearly measures just that and we should expect that this value be close to
zero for good clustering results. Figure 5 illustrates the Fisher’s distance obtained by the two
different above-mentioned clustering strategies as a function of K , the number of clusters.
We can easily notice that the reliability of the two strategies are comparable, in term of

Fig. 4 From left to right, the closest and the farthest image, in the mean VoI distance sense, from the center
of the BSDS300 with their associated segmentation. The segmentation map which is the exact center of the
BSDS300, as estimated by the Algorithm 1, is the predictable blank image or one region segmentation (which
is not included in the BSDS300 but not too far from the segmentation of the leftmost image)
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Fig. 5 Fisher’s distance (or cluster separability measure) for the two clustering strategies as a function of
the number of clusters

cluster separability. More precisely, slightly better for the VoI-Based K-means (Algorithm
3) for K > 8 and slightly better for the MDS based mapping (Algorithm 2) for K < 8.
Computationally speaking, the two algorithms require approximately one minute in order
to estimate a partition into a specified number of clusters or classes.

In our case, the K cluster prototypes (centers), (or more simply the K segmentation
maps which are the closest of these K prototypes) can be exploited to efficiently summarize
the content of the image database and to check, according to this set of cluster prototype
segmentations if the database is correctly diversified. Figure 6 shows some cluster pro-
totypes/centers, in term of segmentation maps obtained with the VoI-based K-means for
different numbers of clusters. Let us note that the optimal number of clusters can be empir-
ically defined, in our application, by checking if the cluster prototypes are (visually or in
the VoI distance sense) pairwise different or as soon as a cluster is just composed by one
component only. This condition is fulfilled from 10 classes (for the two different clustering

Fig. 6 Some prototype (segmentation) centers obtained with the VoI-basedK-means for 5, 6, 7 and 8 clusters
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strategies and for the BSDS300) from 10 classes (and this upper bound can be an inter-
esting cue to quantify the diversity of an image-base). Figure 7 shows us all the selected
images from the BSDS300 assigned to the 4th cluster of the VoI-based K-means procedure
(see Fig. 6 for K = 8) whose cluster prototype, in term of segmentation map, is recalled on
the leftmost image. On this segmentation map, we can see several (four or five) elongated
structures (with a sort of head above them) which have been automatically clustered and
retrieved from the BSDS300. Indeed, among them, we can see images exhibiting between
two or four elongated structures such as persons or statues or ears of corn (or reeds). All the
other clustering results can be consulted at the web page of the author’s website.4

3.3 Query-by-drawing search

The proposed framework allows us to easily design and perform a query-by-drawing or
query-by-sketch search procedure which would allow a user to formulate a query by simply
(and coarsely) drawing a desired configuration or layout of the different geometric shapes of
the objects he wants to search and to automatically retrieve in the database. Figure 8 shows
some examples of a schematic drawing showing one or several geometric shapes and the
three nearest neighbor images, in the segmentation-based VoI distance sense, retrieved in
the BSDS300. It is interesting to note that the image which is at the center of the BSDS300

4Source code (in C++ language) of our algorithm with the set of clustering and map-
ping results for each clustering strategy are publicly available at the following http address
http://www.iro.umontreal.ca/∼mignotte/ResearchMaterial/scvoi.html
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Fig. 7 Images from the BSD300
belonging to the cluster
corresponding to the cluster
prototype, in term of
segmentation map, shown on the
leftmost image. Images
exhibiting elongated structures
such as persons or statues or ears
of corn (or reeds) have been
clustered and retrieved from the
BSDS300

(see Fig. 4a) appears in all the test examples. This result is comprehensible, since we recall
that, in the VoI distance sense, any existing segmentations are a refinement of this (almost
similar) one region segmentation [32]. In addition, this latter segmentation which is very
close to the one-region segmentation is also very close of a segmentation map exhibiting
one or two simple geometrical segmented shapes as the tested drawing examples. This is
also true for the snake and eagle images of the BSDS300.

3.4 Hierarchical clustering

Another grouping strategy consists in using the VoI based distance between two segmen-
tation maps (defined in Section 2) along with a Hierarchical Agglomerative Clustering
(HAC) based visualization approach. The HAC-based visualization method produces an
informative nested hierarchy of similar groups of object or clusters and iteratively builds the
hierarchy from the individual elements by progressively merging clusters. It outputs a den-
drogram showing all N levels of agglomerations where N is the number of images in the
image database, in terms of their region-based descriptive content (and without requiring
any parameters such as the number of clusters as theK-means procedure). The first agglom-
eration corresponds to the most similar pair of images in the database and also define the
(N − 1) clusters existing in the image-base. The last agglomeration allows us to define the
two main clusters existing in the image database. Between the first and last iteration, one
can also easily search in the dendrogram a data partitioning or segmentation with a speci-
fied number of clusters. Algorithm 4 outlines the VoI distance-based HAC algorithm. It is
worth mentioning that the HAC algorithm does not make implicit assumptions on cluster
shapes, contrary to the K-means based clustering Algorithms 2 and 3 which a priori assume
(sometimes wrongly) that the considered clusters are spherical with equal volumes (or the
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Fig. 8 Examples of query-by-
drawing search (three nearest
neighbors) in the BSDS300 in
the VoI distance sense

presence of Gaussian distributions with identical covariance matrix) [3]. Computationally
speaking, the HAC algorithm requires approximately two hours on the BSDS300 in order
to compute the nested hierarchy of clusters, integrating together the different partitioning
of the BSDS300 into different numbers of clusters. Figure 9 shows us a dendrogram on
the first 50 images of the BSDS300. The full dendrogram estimated for the entire database
is available on the author’s website. Figure 10 presents us the images related to the first
agglomerations, i.e., the set of the most similar images from the BSDS300, in terms of their
region-based descriptive content.
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Fig. 9 A dendrogram or
hierarchical agglomerative
clustering based on the VoI
distance between segmentations
on the first 50 images of the
BSDS300, showing the 50
agglomerations and the average
segmentation between each
similar groups of images, in
terms of their region-based
descriptive content

Author's personal copy



Multimed Tools Appl

Fig. 10 Images from the
BSDS300 related to the first
agglomerations of the HAC, or
most similar images, in terms of
their region-based descriptive
content

3.5 Discussion

In order to better understand the behavior and properties of our search algorithm and the dif-
ferences of our indexing strategy with previous approaches, we have asked Google image5

to search similar images to a particular image of the BSDS300 in which we can see three
stone totems (i.e., three vertical elongated stone sculptures) with a specific texture and
color (i.e., the image number 101085) which was one of the image contained in the cluster
shown in Fig. 7 (more precisely, this image was assigned to the 4th cluster of our VoI-based
K-means procedure, see Section 3.2). A Google search online returned several images of
statues (see Fig. 11) with the same color and texture (than the query image) but among the
top 12 retrieved images, there is no retrieved images with three vertical structures (four of
them exhibit two elongated vertical structures) contrary to our approach (see Fig. 7) which
have naturally grouped images with a similar layout and spatial arrangement (all the three
vertical structures existing in the BSDS300) for the different objects detected in the image
regardless of their own color or texture.

5At this stage, it is important to recall that Google search image will not seek in a specific database (with
300 images as the BSDS300), but on the whole web image database and therefore it will have more choice
to refine its search process which will be more accurate and efficient.
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Fig. 11 Top: Image 101085 from the BSDS300. Bottom: Top 12 most similar images returned by Google
image search. A Google search online returned several images of statues with the same color and texture
between them (and enough similar to the query image) but none of them show three elongated vertical
structures with possibly a different color or texture as our method can give (see Fig. 7)

4 Conclusion

In this paper, we have proposed a new MDS based visualization map5, only based on the
geometrical layout and shapes of the different objects detected and segmented in the scene
which provides promising image overviews for large image database. Besides, we have
also presented various ways and tools for efficiently clustering or for retrieving a specific
subset or class of images in terms of their segmentation-based descriptive content6. This
descriptive segmentation-based information, provided at a higher level of abstraction, can
be a significant and complementary information which can be combined with the commonly

6This map has also been estimated on 3 other image databases, namely;
1) the Weizmann database (1 & 2 objects) (200 images),
2) the Microsoft Research Cambridge Object Recognition Image Database (MSRC) (591 images),
3) The Stanford Background Dataset (DAGS) (715 images).
The references of these image databases and the obtained visualization maps are publicly available (with the
source code of our algorithm) at the following http address:
www.iro.umontreal.ca/∼mignotte/ResearchMaterial/scvoi.html
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used color or texture cues or SIFT features or text information [1, 8] in order to further help
the user to browse through large collections in a more efficient and intuitive manner.

It is worth recalling that the VoI-based distance and average segmentation estimation
process can be exploited by all procedures requiring (iteratively or not) the mean observa-
tions of a sample of (possibly partitioned) data, such as, the mean shift or (more generally)
mode seeking based procedures which does not require prior knowledge of the number of
clusters. It is also the case of statistical procedures such as PCA (principal component anal-
ysis) which could be also generalized in order to study the variability existing in a medical
image segmentation database of specific segmented anatomical structures.

In addition, a similar approach could be applied to image data containing a temporal
dimension such as video image sequence and the 3D-generalized proposed method could
be useful and exploited, in the same way, for video structure analysis (in terms of their
segmentation-based descriptive content) or for video indexing problems and retrieval. It
could also include query interfaces and video clustering with, for this 3D temporally coher-
ent data, the estimation of a visual (spatio-temporal) prototype (center) model for each
cluster which could be subsequently exploited for video classification.
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