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Visual assessment, with significant inter- or intraobserver variability, is

still the norm for the evaluation of Single Photon Emission Compu-

terized Tomography (SPECT) cerebral perfusion studies. We present in

this paper an automated method for screening SPECT studies to detect

diffuse disseminated abnormalities based on a computerized atlas of

normal regional cerebral blood flow (rCBF). To generate the atlas, a set

of normal brain SPECT studies are registered together. The atlas

contains the intensity mean, the nonlinear displacement mean, and the

variance of the activity pattern. A patient is then evaluated by

registering his or her SPECT volume to the atlas and computing the

nonlinear 3-D displacement of each voxel needed for the best shape fit

to it. A voxel is counted as babnormalQ if the intensity difference

between the atlas and the registered patient (or if the 3-D motion

necessary to move the voxel to its registered position) is superior to 3

SD of normal mean. The number of abnormal voxels is used to classify

studies. We validated this approach on 24 SPECT perfusion studies

selected visually for having clear diffuse anomalies and 21 normal

studies. A Markovian segmentation algorithm is also used to identify

the white and gray matters for regional analysis. Based on the number

of abnormal voxels, two supervised classifiers were tested: (1)

minimum distance-to-mean and (2) Bayesian. The analysis of the

intensity and displacement babnormalQ voxels allow one to achieve an

80% correct classification rate for the whole brain and a 93% rate if we

consider only voxels in the segmented gray matter region.

D 2004 Elsevier Inc. All rights reserved.

Keywords: SPECT; Brain; Atlas; Classification; Optical flow; Segmenta-

tion; Markovian segmentation

Introduction

Regional cerebral blood flow distribution has for years been

known to be tightly coupled to that of brain glucose and oxygen

utilization (McCulloch, 1988). Although this was taken to be

coupled to bbrain activity,Q the specific nature of this activity was

only more recently shown to be on the level of glutamatergic

synaptic transmission, which explains almost all of the consump-

tion of glucose (and therefore of oxygen) in the brain (Sibson et al.,

1998). Studies of cerebral blood flow using radioactive tracers in

humans were shown to be possible as early as the mid-1960s

(Mallet and Veall, 1965), but widespread clinical applications only

became possible much later with the introduction of technetium-

99m-labeled tracers (e.g., 99mTc HMPAO or 99mTc ECD), which

show a cerebral distribution that correlated reasonably well with

that of perfusion after intravenous administration (Holmes et al.,

1985). This distribution can be assessed with Single Photon

Emission Computerized Tomography (SPECT), which generates a

three dimensional image of the distribution of activity that can then

be assimilated to the distribution of cerebral blood flow. SPECT

imaging of the distribution of these tracers is now routinely

performed in Nuclear Medicine departments, at a fraction of the

cost and infrastructure as required by other techniques, that is,

positron emission tomography (PET).

Despite the advent of sophisticated image analysis algorithms,

most clinical assessments of the normality (or deviation from it)

of the distribution of rCBF in SPECT are currently done by

visual observation of the studies, searching for side-to-side

asymmetries or other babnormalitiesQ (highly subjective evalua-

tions of the homogeneity of tracer distribution, etc.) in

comparison to what could be observed in normals. In fact, in

most centers, physicians do not even use a true normal bank of

data but rather a more or less informed hypothetical mental

construct of what normal studies should look like. Different

methods have been described to accurately compare the acquired

data with a reference case or series of cases, thereby ensuring

more objective identification of regions with modified accumu-

lation of rCBF tracers. Initially, this always implies more or less

sophisticated registration algorithms. Once repositioning is

performed, numerous techniques have been developed to analyze

variations in the distribution of activity of the brain between

patients and normals based on predefined statistical criteria, or

from one study condition to another in the same subjects.

1053-8119/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2004.06.029

* Corresponding author. DIRO, Departement d’Informatique et de

Recherche Operationnelle, University of Montreal, C.P. 6128 Centre-ville

Station, Montreal, Quebec, Canada H3C 3J7. Fax: +1 514 343 5834.

E-mail address: meunier@iro.umontreal.ca (J. Meunier).

Available online on ScienceDirect (www.sciencedirect.com.)

www.elsevier.com/locate/ynimg

NeuroImage 23 (2004) 561–568



Although numerous packages have been proposed to accomplish

these tasks, one program, Statistical Parametric Mapping (SPM),

provided by the Methodology Group at the Wellcome Department

of Cognitive Neurology (UK) (SPM, 2004), has been used by

significantly more groups than any other. SPM can be applied to

SPECT imaging, but in fact its structure makes it either

suboptimal or overkill for most SPECT studies. These limitations

are in general limited to a much lower number of measurements

per subject than those obtained with PET, and even more so with

fMRI (Acton and Friston, 1998). Nevertheless, it is possible to

use SPM successfully in SPECT under appropriate conditions, at

least for research protocols but probably also for everyday

clinical work (Ebmeir et al., 2003).

Most of the work in this field has been applied to PET, MRI,

and fMRI studies at this time (see Frackowiak et al., 1997;

Thatcher et al., 1994; Toga, 1999; Toga and Mazziotta, 2002).

Applications in SPECT remain scarce and are not generally

available to clinicians, and no consensus exists as to the optimal

techniques to be employed. One SPECT study by Houston et al.

(1998) is worth noting because our methodology is somewhat

related to their work. In their paper, they used a normal SPECT

atlas using principal component analysis (PCA) to compare

pathological and at-risk groups (boxers, divers with or without

decompression illness, subjects with Alzheimer’s disease, and

schizophrenics). For each group, the percentages of abnormal

cortical voxels (z3 SD of normal atlas activity), and the number of

lesions (groups of connected abnormal voxels) were computed and

revealed significantly different rCBF patterns between normal

controls and that of boxers, divers with decompression illness, and

subjects with Alzheimer’s disease. Another group (Kovalev et al.,

1999; Pagani et al., 2003) has proposed an alternative scheme for

SPECT images in Alzheimer’s disease (AD) and frontal lobe

dementia (FLD). Their algorithm uses a segmented brain atlas to

define volumes of interests corresponding to 11 brain regions in the

SPECT images. For each region and for the whole brain, they

computed approximately one thousand intensity and gradient

features. Then, using t statistics, they choose the most appropriate

set of features to separate normals, AD and FLD taken two by two.

Their method yielded an accuracy of 96.2%, 97.6%, and 94.2% in

the separation of AD from normals, FLD from normals, and AD

from FLD scans, respectively, using the best set of features in each

case. It is important to note that these results were not validated

with an independent set of data, and that their percentage values are

most probably higher than what could be obtained clinically.

Although these results do not represent actual classification rates,

they certainly reflect the separability of the classes using their

approach.

In this paper, we present and test a method for evaluating

SPECT studies based on a computerized atlas of normal regional

cerebral blood flow (rCBF). However, its construction neither

uses PCA (Houston et al. 1998) nor presegmented anatomical

regions (Kovalev et al., 1999; Pagani et al., 2003) but a

methodology we have previously developed for MRI anatomical

atlas construction (Guimond et al., 1999). This automatic

procedure builds a stable average anatomical model of the human

brain containing two important features: an average intensity

(with the normal variations for each voxel) and an average shape

(with the normal shape deformation as an x, y, and z covariance

matrix for each voxel). In SPECT imaging, the equivalent atlas

will contain not only the normal rCBF (mean intensity and

variance, similarly to Houston et al. 1998) for each voxel, but

also the extent of possible displacement of the activity pattern

(displacement magnitude mean and variance). We expect that the

combined activity and displacement information will improve the

performance of the detection of anomalies process.

The proposed methodology is optimized for the detection of

disseminated diffuse abnormalities, not local or focal ones.

Therefore, the precise localization of a particular affected area or

the identification of a spatially localized activity pattern is not our

main concern here. In clinical practice, diffuse abnormalities are

often difficult and tedious to assess because they are barely

perceptible and distributed over the whole brain or large areas of it.

Our approach can be considered as a screening test to detect such

diffuse abnormalities. It is implied that a nuclear physician will

subsequently further investigate (and classify, if possible, as

suggestive of a specific process) the detected abnormal cases.

Materials and methods

Two main operations are needed using our strategy to detect

abnormal perfusion patterns in SPECT. The first one is the

construction of an atlas of the normal brain of the type described

above, and the second one is the application of an objective

criterion to classify a patient as normal or abnormal by comparing

his or her SPECT study to the atlas. We also evaluated whether

classification could be improved by limiting the analysis to only a

portion of the data, that is, cortical voxels.

Atlas construction

Creation of the atlas requires several normal SPECT studies that

must be registered into a unique reference volume. We first

normalize the intensity of all studies to account for different

parameters (see below) that are not directly related to diffuse

perfusion abnormalities. Then the SPECT volumes are coregistered

using a linear transformation to make all brains comparable in size

and orientation. Finally, we compute the individual SPECT pattern

shape differences, yielding displacement mean and variance, which

will be incorporated in the atlas along with the intensity mean and

variance. We now describe the methodology in more detail.

Intensity normalization

The registration algorithm assumes the same intensity for

corresponding brain structures in the two images to be aligned.

This assumption is rendered unrealistic by multiple factors, such

as acquisition parameters (administered dose, camera perform-

ance, etc.), subjects’ body conformation, or variations in pre- and

postprocessing of data. To correct for these nonrelevant differ-

ences in signal intensity, a linear correction is used. Assuming an

initial rough registration of the two brain images, a joint histogram

is computed. The slope of the line of a linear regression through

this histogram gives the multiplication factor to compensate for

the overall intensity difference (Fig. 1). To fit the line, we use a

very simple procedure that looks for a regression line going

through the origin and dividing the set of points in Fig. 1c (joint

histogram) in two equal sets. This algorithm offers robustness to

outliers by computing a median line and is very simple to

implement. To increase the reliability of results, this evaluation is

repeated before the nonlinear registration (often with no or almost

no change).
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Linear registration

A 3-D image sequence (of two or more images) can be

mathematically described as a function I(x,y,z,t) where I is the

image intensity at time t and position (x,y,z). Using the chain rule

for derivatives, one obtains the basic constraint of optical flow

(Horn and Schunck, 1981):

dI

dt
¼

BI

Bx
U þ

BI

By
V þ

BI

Bz
W þ

BI

Bt
ð1Þ

The partial derivatives can be estimated directly from the two

SPECT images to be coregistered. The four remaining variables

U = dx / dt, V = dy / dt, W = dz / dt, and dI / dt represent the

motion (velocity) along the x, y, and z axes and the object (here,

brain) brightness changes, respectively. This equation lays down a

first constraint to determine the motion (registration) between two

SPECT images. The linearity condition provides another

constraint:

U

V

W

3

5 ¼ T
Y

þM

x

y

z

3

5

2

4

2

4 ð2Þ

where T
Y

is a translation vector and M is a 3 � 3 general matrix.

M can therefore incorporate rotation and scaling as well as

shearing. Eq. (2) represents an affine (or linear) transformation. A

last constraint is used to model the behavior of the change in

brightness dI / dt. One option is to set dI / dt to 0, which means

no change in object (brain) intensity (Horn and Schunck, 1981).

This constraint is assumed valid when the brain SPECT images

are first intensity normalized as described in the previous section.

The overdetermined system obtained by writing down the basic

optical flow equation using the linearity and dI / dt constraints for

each voxel can be solved as a least square problem using the

corresponding normal equations. In this way, one obtains the linear

field transformation needed to align both brain SPECT volumes

and to give them the same size and orientation. This approach can

be used iteratively by keeping track of intermediate results (Barber,

1992, 1995) to improve the results when the two brains bstartQ from

very different orientations in the original images.

One should note that in general, to ensure robustness, a good

preregistration is necessary to initialize the optical flow linear

registration. For this purpose, we use the theoretical model of

Alpert et al. (1990). We first set a threshold at 25% of the

maximum activity to get two brain masks. Then a principal

component analysis (PCA) is done on the mask voxel x, y, and z

coordinates to extract the main axes and the centers of gravity. The

registration of the centers of gravity and main axes gives the 3-D

translation and rotation needed for preregistration. A crude scaling

factor is also computed by comparing the volume (number of

voxels) of each mask. The resulting final transformation is

composed of a 3-D translation, a 3-D rotation, and an isotropic

scaling factor and is used to preregister the SPECT images.

Nonlinear registration

We used the algorithm developed by Horn and Schunck (1981)

to compute the nonlinear residual transformation used to refine the

coregistration of both volumes. The algorithm initially computes

the x, y, and z motions U, V, and W using the optical flow

brightness constraint (Eq. (1)) to get an initial solution (motion

component perpendicular to the gray-level isocontours):

U ¼ ÿ
BI

Bx

BI=Bt

OjIO
2 þ a2

V ¼ ÿ
BI

By

BI=Bt

OjIO
2 þ a2

W ¼ ÿ
BI

Bz

BI=Bt

OjIO
2 þ a2

ð3Þ

Subsequently, the optical flow (U, V, and W) is iteratively

smoothed (local average) and then updated to the nearest solution

of the brightness constraint equation:

U kþ1 ¼ ŪU k ÿ
BI

Bx

jId ŪU k ; V̄V k ; W̄W k
ÿ �

þ BI=Bt

OjIO
2 þ a2

V kþ1 ¼ V̄V k ÿ
BI

By

jId ŪU k ; V̄V k ; W̄W k
ÿ �

þ BI=Bt

OjIO
2 þ a2

Fig. 1. Image normalization.
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W kþ1 ¼ W̄W k ÿ
BI

Bz

jId ŪU k ; V̄V k ; W̄W k
ÿ �

þ BI=Bt

OjIO
2 þ a2

ð4Þ

where the bar over Ūk represents the local average (using a 3� 3� 3

mean filter) at the kth iteration. The a
2 term helps to avoid

unreliable results introduced by low values of tjIt. This also

ensures that high contrast contours will drive the nonlinear

warping and prevents small interpatient brightness differences

(small tjIt) from inappropriately affecting the warping process.

Moreover, the larger a is, the smoother the nonlinear trans-

formation will be (Horn and Schunck, 1981). In this study, we

found after several tests that a (large) a value of 100 was a good

choice for the type of task at hand (see below). The resulting

nonlinear field is smooth and allows a good coregistration of the

two SPECT volumes. Do note that it can only be used following a

prior linear registration step, otherwise the spatial and temporal

derivatives risk becoming too unreliable.

Atlas construction principles

The actual construction of the atlas can begin as schematically

illustrated in Fig. 2 after linear volume registration and intensity

correction of all normal brains to be incorporated into the atlas

(also see Appendix A for details).

First, we select a brain amongst the normal ones to be used as a

reference (black square in Fig. 2). We then coregister the other ones

(white squares) to this reference using the nonlinear optical flow

procedure described in the previous section. At this point, the

intensity mean and variance can be computed. However, since the

reference brain is chosen arbitrarily, it cannot be considered to

represent any babsoluteQ normalcy of shape. Therefore, the mean

displacement needed to coregister the normal brains is calculated

and subtracted from all brains to obtain the average brain shape in

addition to the average intensity (gray square). The final atlas

consists of the normal average and variance of the intensity and

displacement of the SPECT activity pattern.

Classification

Evaluation of any given patient proceeds in a manner similar to

that used for constructing the atlas. We begin by registering the

patient’s SPECT volume to the atlas (average brain intensity and

shape) with a linear intensity correction and an affine trans-

formation, following the procedure described in the linear

registration section. The algorithm computes the nonlinear 3-D

displacement of each voxel needed for an almost perfect shape fit

with the atlas (nonlinear registration section).

For each patient’s brain voxel, we can then compare the intensity

and nonlinear displacement to their normal values in the reference

system of the atlas. To reduce the dimensionality of the problem, we

consider only the number of abnormal voxels for intensity and the

number of abnormal voxels for displacement as the two new

attributes for classification. Assuming a Gaussian probability

density function (PDF) for the intensity, a voxel is assumed to be

abnormal if its intensity is more than 3 SD above or under the atlas

mean. Assuming a Rayleigh PDF for the displacement, a voxel is

assumed to be abnormal if the corresponding displacement is more

than 3 SD above the atlas mean (note that a Rayleigh distribution

implies that abnormal values are higher than the mean).

Obviously, we expect normal individuals to show relatively

small numbers of outliers while the reverse would be observed in

patients with abnormal brain perfusion. To classify normal and

abnormal brains, we tested two quite simple classifiers. The first

one is a minimal distance classifier in which one counts the number

of outliers and places the patient in the class with the nearest mean

number of outliers. The other one is the Bayes classifier, which

assigns the subject to the most likely class assuming a Gaussian

PDF model for each class (Duda et al., 2000).

The different steps involved in our algorithm can be summar-

ized as follows:

Atlas creation steps:

1. Gross alignment of each normal subject on a target brain

2. Intensity normalization of each subject with the target brain

3. Spatial registration to the target brain with an affine

transformation

4. Second intensity normalization

5. Non linear registration to the target brain

6. Subtraction of the average (nonlinear) displacement from all

brains

7. Final construction of the atlas, which consists for each voxel of:

a. mean and variance of the intensity

b. mean and variance of the displacement for the set of all

registered brains of the previous step.

Detection steps:

1. Gross alignment of the tested subject with the atlas intensity

mean

2. Intensity normalization of the tested subject with the atlas

3. Spatial normalization to the atlas with an affine transformation

4. Second intensity normalization

5. Non linear registration to the atlas

6. Counting of the number of outliers (abnormal voxels)

7. Decision

Region of interest (ROI) segmentation

One could be interested in investigating the values of the

attributes used here for classification in a specific region of interest

(ROI) of the brain. For instance, since we are evaluating perfusion

anomalies that might preferentially occur in a specific compart-

ment, such as the gray matter, we wanted to ascertain whether

concentrating on cortical structures might improve segregation of

abnormal cases. In SPECT imaging, identification of the whole

brain can generally be done quite satisfactorily by choosing a

threshold of 25% of the maximum number of counts (or gray

level), eventually with some preprocessing. However, for grayFig. 2. Atlas construction.
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matter segmentation, a threshold approach will not be efficient

because too many voxels in the gray matter have intensity values

that overlap with those of the white matter. To solve this problem,

we used an unsupervised Markovian segmentation algorithm that

we have already presented elsewhere (Mignotte and Meunier,

2000; Mignotte et al., 2002), which is able to discriminate

automatically between white and gray matter. Briefly, the

algorithm tries to classify a voxel as white or gray matter according

to its intensity and the class of its neighbors. This can be

mathematically formulated as follows:

argmin
c

X

x;y;z

ÿ lnP Ix;y;z jcx;y;z
ÿ �

þ
X

neighbors

of x;y;z

�

1ÿ d c x; y; z; c neighbors

ÿ �

�

0

B

B

@

1

C

C

A

ð5Þ

The tissue class cx ,y,z represents one of the three brain structures

that are white matter, gray matter, and CSF/background. The

probability density function P(Ix ,y,zjcx ,y,z) gives for each class cx ,y,z
the corresponding PDF of the intensity Ix ,y,z for a voxel (x,y,z). The

first term is thus proportional to the likelihood of having a particular

intensity for a given class. For instance, if a voxel is relatively bright,

its likelihood of being in class bgray matterQ will be higher. To favor

homogeneous regions a second term is added. This summation is

taken over all pairs of voxels consisting of the current voxel (x,y,z)

and one of the voxels in the six-voxel neighborhood (left, right,

above, under, behind, or in front). If the class of the neighbor is the

same, then d(cx ,y,z,cneighbors) equals 1, otherwise it equals 0.

Therefore, when the segmentation is good, the classes are correctly

assigned and P(Ix ,y,zjcx,y,z) is relatively high and consequently the

first term is low (due to the minus sign). Moreover, the second term

is also small since the regions are homogeneous. The segmentation

problem becomes a minimization problem for which we look for the

best labeling of the voxel, that is, the one that minimizes the terms

within bracket. Notice that to solve this problem, we need to assess

the PDF of the intensity for each class. For this purpose, we fitted an

exponential law for the bCSF/backgroundQ area, and two different

Gaussian laws for the bwhite matterQ and the bgray matterQ regions;

together, these distributions approximate very well the intensity

histogram of the SPECT image governed by Poisson processes. The

estimation algorithm for the PDF parameters as well as the

optimization details can be found in Mignotte and Meunier,

(2000) and Mignotte et al. (2002).

Results

Data set

We validated this approach using 24 SPECT brain perfusion

studies (99mTc ECD) selected because they visually showed

undeniable diffuse anomalies, which were expected given the

clinical information available. The detection of abnormal diffuse

perfusion is typically a difficult task and is certainly much more

challenging than focal lesions detection. The atlas was constructed

with 21 perfusion studies from normal volunteers (hospital

employees, residents, and physicians). Care was taken to keep

the acquisition and image reconstruction protocols as constant as

possible [e.g., sampling, levels of statistics (counts), filtering,

reconstruction, and restoration methods] for all studies. Each

transversal slice contains 64 � 64 pixels and there are typically

around 40 slices per individual. The number of counts are rescaled

for 8 bits/pixel (256 gray levels). The volume was padded with

additional slices to get a set of uniform dimension volumes (64 �

64 � 64 voxels with isotropic dimensions of 4.2 millimeters/

voxel).

Atlas construction

Fig. 3 shows the behavior of the registration process used in the

atlas construction with image differences and mosaics. In Fig. 3a,

the difference between corresponding transaxial slices from two

different brains shows the initial misalignment clearly (black, gray,

and white corresponding to negative, no, and positive differences,

respectively). After linear normalization for brain size and

orientation (Fig. 3c), the difference decreases considerably but

not completely. This was expected since some groups (Evans et al.,

1991; Strother et al., 1994) have shown in MRI that linear models

will leave a residual root means square mismatch of 6–7 mm.

Finally, Fig. 3e presents the typical intensity differences that will

be kept in the atlas after nonlinear registration. Figs. 3b, d, and f

display the same results as mosaics of 5 � 5 pixels squares of each

image appearing in turn to help assess the registration process. Fig.

4 shows the normal SPECT rCBF atlas using gray level images. It

contains four kinds of information: (a) the intensity average, (b) the

displacement magnitude average, (c) the intensity variance, and (d)

the displacement variance. All images were normalized for display

purposes. The original range of values is given in the figure

caption.

Validation

Due to the small data set, a leave-one-out strategy (Bishop,

1994) was used to test our approach to avoid any bias (Fig. 5).

Essentially this means that in turn, one perfusion study is used to

test the algorithm while the other ones are used for the atlas

construction and classifier parameter estimation.

Table 1 shows the success rates for both classifiers using the

number of intensity outliers only, the number of displacement

outliers only, or both attributes for classification. Since we are

particularly interested in abnormal diffuse perfusion that

typically occurs in the gray matter, Table 2 displays the success

rates when only voxels from that compartment are considered.

In each table, one observes that the best results are obtained

with the Bayes classifier using both attributes, and as expected,

the gray-matter-only classification shows the best performance

(93.3% vs. 80%). However, the confidence intervals are often

large due to the small number of SPECT studies available (total:

45), and therefore it is difficult to conclude as to the definitive

superiority of the gray-matter-only Bayes algorithm over all the

other methods.

Conclusion

We have presented a method to detect diffuse brain anomalies

in SPECT that uses a normal rCBF numerical atlas containing for

each voxel both the normal rCBF (mean intensity and variance)

and the displacement of the activity pattern (as displacement

mean and variance). We have then successfully tested this atlas

for the detection of diffuse rCBF disorders with simple

classification algorithms after dimensionality reduction. To our

J.-F. Laliberte et al. / NeuroImage 23 (2004) 561–568 565



knowledge, there is no other simple and automatic method, based

on a statistical atlas, to carry out such a complex interpretation

task (detection of diffuse anomalies in SPECT) with a success

rate higher than 90% (with an independent data set or cross

validation) as obtained in this work. However, we recognize that

the good success rates obtained in this work cannot be considered

to be definitive, as the number of SPECT studies is rather limited.

We therefore intend to test this approach on a larger number of

cases with different and more specific disorders in both SPECT

and PET.

Focal or local abnormalities were not considered here.

Although our method could detect focal abnormalities, it was not

designed for such a task. Indeed, these abnormalities are often

easier to localize in practice by comparing (visually or automati-

cally) the left and right hemisphere for instance.

Although registration of the SPECT images within one of the

standard frames of reference for brain imaging (e.g., Talairach and

Tournoux, 1988, or MNI152 SPM, 2004) could be possible, it was

not necessary for our purpose since we do not need to localize

abnormalities. Moreover, these systems suffer from some draw-

Fig. 4. Atlas features.

Fig. 3. Registration process behavior for different approach.
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backs. For instance, the Talairach atlas is based on one 60-year-old

postmortem individual that is not necessarily representative of any

given population. It is well known that brain variability increases

with the distance from the main axis (the AC-PC line). The current

standard MNI template (MNI152) is the average of 152 normal

MRI scans registered in the Talairach space. However, the

matching transformations used to construct this atlas were strictly

linear (nine parameters). For these reasons, and although registra-

tion of the SPECT images within one of these spaces remains

possible, we decided to construct a representative atlas of the

SPECT rCBF directly from our data set.

As stated previously, most of the work in neurofunctional

imaging has been applied to PET, MRI (morphometry), and

fMRI studies at this time, but several problems are similar in

SPECT. Unfortunately, applications in SPECT remain scarce

mainly because SPECT is often (we believe) underestimated.

SPECT has drawbacks with respect to PET and fMRI/MRI (e.g.,

lower resolution and no absolute rCBF value), but this is rapidly

improving with better radionuclide tracers and higher resolution

[see for instance the NeuroFOCUS (NeuroPhysics, 2004) system,

with a 3-mm resolution]. It also has several other advantages,

such as a much lower cost and wider availability than that of

PET or fMRI. In addition, out-of-scanner radionuclide injections

are possible with SPECT, and this still represents the only

applicable technique for research purposes in cerebral function

mapping for tasks where a subject cannot be placed in a fMRI

magnet or PET camera (complex protocols with patient motion,

metallic instrumentation, ictal monitoring of epilepsy patients,

etc.).

Our goal was to develop an automatic algorithm for the

screening of brain rCBF SPECT studies for the detection of

diffuse abnormalities. We believe that in clinical practice, such a

tool will significantly reduce the burden of visually assessing

rCBF studies. Moreover, such methodology could certainly be

applied in several other types of studies in SPECT as well as in

PET, fMRI, and other imaging modalities where atlas construc-

tion is applicable.
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Appendix A. Atlas creation at the voxel level

The atlas construction principles are described in Materials and

methods. In this appendix, we explain in more details the creation

of the atlas and in particular the resampling methodology needed

for that purpose. Fig. 6 illustrates the methodology in 2-D for

easier display, but the same principles apply in 3-D. First, we select

a brain amongst the normal ones to be used as a reference. Fig. 6a

represents four centers of voxel (black disks: .) of that brain. We

then coregister the other normal brains to this reference using the

nonlinear optical flow procedure described in Materials and

methods. The computed displacement vectors are displayed in

Fig. 6a for three different normal brains with an indication for each

reference voxel the corresponding voxel in the three other normal

brains. Since the reference brain is chosen arbitrarily, it cannot be

considered to represent any babsoluteQ normalcy of shape. There-

fore, the mean displacement is calculated and subtracted from the

reference brain to obtain the average brain shape and intensity. Fig.

6b shows the average displacement vectors for each reference

voxel. To remove the average displacement from the reference

brain, we must deform it according to the average displacement

field. This means that positions identified by a circle (o) in Fig. 6c

Table 1

Whole brain classification results

Classification

success rate,

n (%)

Confidence

interval 95%

[%–%]

False

positive,

n (%)

False

negative,

n (%)

Minimal distance classifier

Intensity 30 (66.7) [52.1–78.6] 11 (24.4) 4 (8.9)

Pattern

displacement

36 (80.0) [66.2–89.1] 6 (13.3) 3 (6.7)

Both 35 (77.8) [63.7–87.5] 7 (15.6) 3 (6.7)

Bayes classifier

Intensity 31 (66.7) [54.3–80.5] 10 (22.2) 4 (8.9)

Pattern

displacement

35 (77.8) [63.7–87.5] 7 (15.6) 3 (6.7)

Both 36 (80.0) [66.2–89.1] 6 (13.3) 3 (6.7)

Fig. 5. The leave-one-out process divides a set in multiple subsets and

alternately evaluates the Error Rate (ER) for each subset. The average

(1
n

Pn
i¼0 ERi) gives a better estimation of the algorithm performance (ER).

Table 2

Gray matter only classification results

Classification

success rate,

n (%)

Confidence

interval 95%

[%–%]

False

positive,

n (%)

False

negative,

n (%)

Minimal distance classifier

Intensity 33 (73.3) [59.0–84.0] 9 (20.0) 3 (6.7)

Pattern

displacement

37 (82.2) [68.7–90.7] 7 (15.6) 1 (2.2)

Both 40 (88.9) [76.5–95.2] 4 (8.9) 1 (2.2)

Bayes classifier

Intensity 42 (93.3) [82.1–97.7] 1 (2.2) 2 (4.4)

Pattern

displacement

40 (88.9) [76.5–95.2] 3 (6.7) 2 (4.4)

Both 42 (93.3) [82.1–97.7] 1 (2.2) 2 (4.4)
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will move to the integer coordinates of the voxel centers while the

original voxel centers will move to positions identified by a

triangle (E) (Fig. 6b) after the transformation. To obtain the final

normal displacement at the center of each voxel, we therefore

interpolate (trilinear interpolation of each x, y, and z component of

the vector) the displacement vectors for each circle (o) and

subtract the mean displacement (Fig. 6d). The final displacement

atlas consists of the average length (and variance) of these

(corrected) vectors. The corresponding final intensity atlas

consists of the average and variance of the interpolated intensity

(3-D cubic interpolation; Wolberg, 1990) at the tip of the

displacement vectors (marked with � in Fig. 6d) in each original

normal brain images.
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