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Abstract: We present a new approach to shape-based segmentation and tracking of deformable anatomical structures in medical images,
and validate this approach by detecting and tracking the endocardial contour in an echocardiographic image sequence. To this end, some
global prior shape knowledge of the endocardial boundary is captured by a prototype template with a set of predefined global and local
deformations to take into account its inherent natural variability over time. In this deformable model-based Bayesian segmentation, the
data likelihood model relies on an accurate statistical modelling of the grey level distribution of each class present in the ultrasound
image. The parameters of this distribution mixture are given by a preliminary iterative estimation step. This estimation scheme relies on
a Markov Random Field prior model, and takes into account the imaging process as well as the distribution shape of each class present
in the image. Then the detection and the tracking problem is stated in a Bayesian framework, where it ends up as a cost function
minimisation problem for each image of the sequence. In our application, this energy optimisation problem is efficiently solved by a
genetic algorithm combined with a steepest ascent procedure. This technique has been successfully applied on synthetic images, and on
a real echocardiographic image sequence.
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1. INTRODUCTION

The segmentation of images is of great importance in medi-
cal imaging, and remains a necessary step to obtain qualitat-
ive measurements such as the visualisation or the location
of objects of interest, the detection of pathological defor-
mations, as well as for quantitative measurements such as
area, volume or the analysis of dynamic behaviour of ana-
tomical structures over time.

Among these images, ultrasound images play a crucial
role, because they can be produced at video-rate, and there-
fore allow a dynamic analysis of moving structures. More-
over, the acquisition of these images is non-invasive, rather
inexpensive, and does not require radiations compared to
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other medical imaging techniques (for example, CT
techniques). On the other hand, the automatic segmentation
of anatomical structures in ultrasound images is a real chal-
lenge due to speckle noise and artifacts which are inherent
in these images. In addition to the poor image quality
(i.e. low signal-to-noise ratio, low resolution and contrast),
observed objects, like the heart, are constantly undergoing
motion and non-rigid deformation due to their own defor-
mations, as well as the deformation of adjacent structures.
Another common problem are artifacts caused by turbulent
blood flow, air in the lungs, ribs, etc., which lead to a loss
of signal and temporary occlusion of object boundaries.

Automatic segmentation techniques used in medical appli-
cations have been developed for CT, MRI images [1–3] or
echocardiographic sequences [4–12] (see also [13] for a com-
plete review and discussion of existing methods for the
endocardial border identification in two-dimensional echo-
cardiographic images). Among these segmentation schemes,
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two of the more reliable approaches use Bayesian inference,
which allows to take into account the available local or
global a priori knowledge. This available knowledge is then
used to constrain the segmentation process. These methods
are based on deformable templates or Markov Random Fields
(MRF) models. Both have advantages and shortcomings.
The increased popularity of deformable models and templates
[1–4] can be explained by their ability to express, via a
global prior model, the geometric information and the shape
variability of the object of interest to be detected over
time and across individuals. The major difference between
deformable models and templates lies in the degree of global
a priori knowledge which is used for constraining the segmen-
tation process. While the deformable model-based approach
imposes only generic smoothness constraints on the
extracted shape, the deformable template imposes more spe-
cific constraints via a predefined prior distribution. In MRF-
based segmentation approaches, the proper use of available
prior information is expressed by a local prior model. This
prior model, described by a Gibbs distribution, expresses the
fact that nearby pixels are fairly likely to belong to the
same class. This contextual knowledge is captured through
the specification of spatially local interactions (called clique
potentials) that constraint the segmentation process [14].

The main problem with deformable models is that the
likelihood energies are experimentally and heuristically
designed, and do not statistically segment the image. As for
MRF models, they cannot incorporate any global shape
constraints in the segmentation process. Nevertheless, con-
trary to deformable model-based approaches, the likelihood
model of an MRF model-based unsupervised segmentation
exploits an accurate statistical modeling of the grey level
distribution of each class present in the input image [15].
Since it seems that deformable templates provide an interest-
ing framework for structurally analysing an image and MRF
models provide a good mathematical setting for statistically
analysing an image, it makes sense to capitalise on the
benefits of both methods.

To this end, we propose in this paper a deformable
template-based approach for the segmentation and tracking
of anatomical deformable structures in medical images. We
validate this approach by detecting and tracking the endo-
cardial contour in an echographic image sequence. We first
define a prototype template along with a predefined set of
admissible transformations in order to capture some available
global a priori shape knowledge of the endocardial boundary
with its inherent natural variability over time. In this Baye-
sian segmentation, the likelihood model relies on an accurate
Markovian statistical modelling of the grey level distribution
of each class present in the image. This likelihood is defined
as maximal when the deformed template delineates two
regions distributed according to the aforementioned distri-
butions. The parameters of this distribution mixture are
given by a preliminary statistical estimation method called
Iterative Conditional Estimation (ICE) [16]. This estimation
scheme relies on a local a priori model, and takes into
account the distribution shape of each class present in the
ultrasound image. Then, the detection problem of the object

of interest is stated in a Bayesian framework as the esti-
mation of the deformation parameters of the template that
maximise the posterior Probability Density Function (PDF).
To efficiently maximise this function, and contrary to many
other approaches which use gradient-based optimisation
methods [1,4,17] and rely on a proper initialisation of the
template for each image of the sequence, we will show that
an alternative approach consists in using a genetic explo-
ration of the parameter space combined with a steepest
ascent procedure. The use of a Genetic Algorithm (GA) as
part of image segmentation algorithms [18,19] or for deform-
able model initialisation [20] is not new. Nevertheless, the
combination of this global optimisation technique with a
local one (a gradient ascent technique) has not been
exploited in this detection and segmentation context. The
optimisation method we propose is fast, has the capability
of avoiding local minima, and no human interaction has to
be used to initialise the prototype template on the first
frame of the echographic image sequence.

The first contribution of this paper relies on the combi-
nation of deformable templates and Markov Random Field
(MRF) models for the segmentation and tracking of anatom-
ical structures, such as the endocardial boundary. In this
method, we search to model the available local and global
a priori knowledge (global prior shape and local prior textural
knowledges) to more accurately constraint this detection
and segmentation problem. The second contribution of this
paper consists in tackling the minimisation problem related
to this Bayesian segmentation with an unsupervised hybrid
optimisation procedure. This leads to a segmentation method
that is completely data-driven, and does not require any
user interaction.

This paper is organised as follows. Sections 2 and 3
present the deformable template modelling and the proposed
Bayesian segmentation approach. In Section 4, we detail
the distribution mixture parameters estimation step used in
the data likelihood model. The stochastic search method
using a GA combined with a steepest ascent procedure is
described in Section 5. In Section 6, we report some experi-
mental results obtained on synthetic images and on a real
ultrasound image sequence.

2. DEFORMABLE TEMPLATE
REPRESENTATION

To model the global shape knowledge of the endocardial
contour, we first roughly define it by a set of � labelled
points, equally sampled, which approximate the outline of
a circle (see Fig. 1a). A cubic B-spline shape representation
involving these control points corresponding to ‘landmarks’
is then defined.

This way of modelling objects has been widely considered
in the object recognition literature, and particularly in the
active contour approach [21]. Such a scheme captures the
global structure of a shape without specifying a parametric
form for each class of shapes. Let us note that this original
prototype template can also be obtained from a learning
population and an off-line training procedure. This can be
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Fig. 1. Local and global non-affine deformations. (a) Initial
template (the grid is not part of the model itself); (b) �0 with
local random perturbations. Global non-affine deformations on
this locally deformed template with: (c) M = N = 1 and
�x

mn = �y
mn = 2 ∀m,n � {0, 1}2; (d) M = N = 2 and

�x
mn = �y

mn = 2 ∀m,n � {0, 1, 2}2.

done by manually extracting the endocardial outline on
different images from an echocardiographic sequence. The
extracted shapes have to be normalised in scale and aligned
with respect to a common reference frame. A mean shape
�0 can then be easily computed from this learning population
[4,22]. Nevertheless, the circular crude representation of the
endocardial boundary remains close to that given by this
type of training procedure (cf. Fig. 15b).

The prototype template �0 does not describe the possible
instances of the object shape to be detected. To take into
account the natural variability of the object considered, we
introduce a set of admissible affine transformations, ensuring
a first crude registration of the shape, and a set of non-
affine local and global transformations.

2.1. Description of Local Non-affine
Transformations

First, a local deformation process � applied to the � control
points is introduced. These local deformations applied to
the original shape �0 allow us to model local random
perturbations that can occur for each control point of the
template outline [4]. Mathematically, these local defor-
mations are represented by local random translations � for
each control point of �0 (cf. Fig. 1b).

2.2. Description of Global Non-affine
Transformations

To refine the shape representation, we introduce a global
non-affine deformation. The one used in this paper was first
proposed by Jain et al. [17]. In this approach, the image is
considered to be mapped to the unit square S = [0, 1]2.
The deformation is then represented by a displacement
function denoted D(x, y). The mapping (x, y) � (x, y) �
D(x, y) is thus a deformation of S, a smooth mapping of
the unit square onto itself. The space of such displacement
functions is spanned by the following orthogonal bases:

ex
mn(x, y) = (2 sin(�nx) cos(�my), 0) (1)

ey
mn(x, y) = (0, 2 cos(�nx) sin(�my)) (2)

for m, n = 1, 2, . . . Low values of m and/or n correspond
to lower frequency components of the deformation in the x
and y directions, respectively. The displacement function is
then chosen as follows:

D�(x, y) = �M
m=1

�N
n=1

�x
mnex

mn(x, y) + �y
mney

mn(x, y)
�mn

(3)

where �mn = �2 (n2 � m2) are the normalising constants.
The parameter vectors � are the projections of the displace-
ment function on the orthogonal basis previously defined.
To allow a sufficiently wide range of possible deformations,
while keeping the number of parameters reasonable, we use
M = N = 2. Figure 1 illustrates the series of deformations
of the initial template using higher order terms and different
values of M and N. We can notice that these deformations
can efficiently express the inherent elasticity of the endo-
cardial contour. We also notice that the deformation
becomes more complex as higher frequency components are
added to the displacement function �.

2.3. Description of Affine Transformations

Finally, we introduce a set of admissible linear transform-
ations on �. These deformations involve translation, scaling,
rotation and stretching of the template.

Let now �� be a deformed version of the original proto-
type �0 according to the aforementioned transformations
with parameter vector �. A global configuration of the
deformable template is thus described by five parameters
corresponding to affine transformations, four pairs of global
non affine deformation parameters (�x

mn, �y
mn), and (� 	 2)

pairs of translation vector (�xi
, �yi

), respectively. The circular
prototype template along with the set of aforementioned
transformations constitute our global prior model describing
the different possible configurations of the shape of interest.

3. SEGMENTATION MODEL

3.1. Introduction

As mentioned in the introduction, the automatic segmen-
tation of anatomical structures in ultrasound images is
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especially challenging due to artifacts caused by the speckle
noise effect. This partially correlated noise, inherent to the
imaging process, lead to a poor image quality (with low
resolution, contrast and signal-to-noise ratio) on which the
sharpness of anatomical structure contours is noticeably
reduced.

In a commonly used deformable model-based Bayesian
segmentation approach, these contours (or some spatial
and/or temporal gradient measures derived from the input
image) are generally exploited in the data likelihood model.
In a Bayesian approach, this likelihood model aims at
expressing a measure of similarity between the deformed
template and the object(s) present in the image and con-
strains the deformable template to be attracted and aligned,
via an appropriate likelihood energy term, to the salient
spatial or temporal edges of the object to be detected
[4,17,23–25].

Due to the speckle noise, our likelihood model cannot
rely efficiently on this type of gradient measures. Instead,
we propose here a region oriented statistical approach. More
precisely, we propose to model and use the grey level
statistical distribution of each homogeneous region existing
in an echocardiogram, and to exploit an a priori information
about the location of the endocardium with respect to each
other anatomical structures present in the ultrasound image.
This a priori anatomical information expresses the fact that
the endocardial contour delineates two homogeneous regions
(R0, R1}. The first one, called the blood zone (R0), arises
from the low acoustic wave reverberation in the ventricular
cavity (filled with blood). The second one, called the muscle
region (R1), is due to the acoustic signal reverberation on
the cardiac muscle. Each aforementioned region has com-
pletely different grey level intensity distribution, and each
pixel of the input image has a membership likelihood to
each class {e0 = blood, e1 = muscle} that we can define by
the following Probability Density Functions (PDFs):

PYs/Xs
(ys/xs = ei), i � {0, 1} (4)

where ys designates the grey level of the pixel at site s and
xs is its associated class label. Ys and Xs represent the random
variables associated to the realisations xs and ys, respectively.
Assuming that R distinct homogeneous regions are present
in the input image (R = 2 in our application), the maximis-
ation over � of the following expression:

PY/
(y/�) = �R−1

j=0
�

s:xs = ej

PYs/Xs
(ys/xs) (5)

allows us to find the optimal template (or the optimal
deformation parameter vector � of the original prototype
template �0) which best matches the image. Equivalently,
we can minimise – ln PY/
(y/�) and use this previous
expression as our energy function. This energy function is
not heuristic and statistically segments the image in a
Maximum Likelihood sense. Let us also note that this
term defines the likelihood distribution used in a classical
Markovian segmentation.

3.2. Joint Model

In that prospect, we let the template define two regions (cf.
Fig. 2): the first is the set of pixels inside the region delimited
by the prototype template ��, and is denoted �•

�. The second
is the outside region, defined by the set of pixels located
on the contour of the deformed template with a slightly
superior scale. This last one is denoted ��

�. From this, we
propose the following joint model through the Gibbs distri-
bution:

P
,Y(�, y) =
1
Z exp{− �(�, y)} (6)

where Z is a normalising constant and � is an objective
function measuring how well a given instance of deformed
template �� fits the content of the input image y. The
energy function �(�, y) is composed of two terms, as
explained below:

� Likelihood energy term: this first energy term measures the
likelihood of the image, and can be compared to the log-
likelihood distribution defined in Eq. (5):

�l(�, y) = −
1

N�
•
�

Σ
s��

•
�

ln PYs/Xs
(ys/e0) −

1
N�

�
�

�
s��

�
�

ln PYs/Xs
(ys/e1) (7)

where the summation of the first and second term of �l(�,
y) is over all the N�

•
�

pixels inside the region defined by
the deformed template �� and over all the N�

�
�

pixels
delimited by ��

�, respectively. Note that the two weighting
factors are necessary to get a scale-invariant likelihood
measure. This function attains its minimum value when
the deformed template delimits exactly two homogeneous
regions with grey level distribution corresponding to blood
and muscle class for the region �•

� and ��
�, respectively.

� Prior energy term: the second term penalises the deviation
of the deformed template �� from the original prototype

Fig. 2. The two different regions delimited by the template at a
specific location and transformation. �•

� is the set of pixels inside
the region delimited by the deformed prototype template ��. �•

� is
the set of pixels located on the contour of �� with a slightly
superior scale.
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�0. This function does not penalise affine transformations1

and is close to that proposed by Jain et al. [17], except
for the second term:

�p(�, y) = � Σ
�i��

[(�x
i )2 + (�y

i )2] + �
�i��

(�i)2� (8)

where (�x
i , �y

i ) and �i correspond to displacement function
parameters of the global non-affine deformation, and the
translation parameter vector of the non-affine local defor-
mations, respectively (see Section 2).

3.3. MAP Detection

Using these two energy terms, the joint distribution P
,Y(�,
y) can be written as

P
,Y(�, y) =
1
Z exp − {�l(�, y) + ��p(�, y)

�(�, y)

} (9)

where the factor � provides a relative weighting between
the two penalty terms, and allows us to control the ‘rigidity’
of the template. The posterior distribution deduced from
Eq. (9) is given by

P
/Y(�/y) =
1
Zy

exp {− �(�, y)} (10)

where Zy is a normalising constant depending on y only.
We formulate now the detection problem as the search of
the Maximum A Posteriori (MAP) estimation of �

�̂MAP � arg max
�

{P
/Y(�/y)} (11)

� arg min
�

�(�, y) (12)

The search of �̂MAP is therefore equivalent to the minimis-
ation of the non concave following objective function:

�(�, y) = −
1

N�
•
�

�
s��

•
�

ln PYs/Xs
(ys/e0) −

1
N�

�
�

�
s��

�
�

ln PYs/Xs

(ys/e1) + � ��
�i��

[(�x
i )2 + (�y

i )2] + �
�i��

(�i)2�(13)

This function is minimal when the deformed template delin-
eates two homogeneous regions (blood and muscle for our
application) distributed according to the grey-level distribution
corresponding to each region, and when the deformed template
is not too different from the original prototype (in the non-
affine deformations sense). To get an unsupervised deformable-
based segmentation scheme, we have now to estimate the
distribution mixture parameter vector , i.e. the distribution
parameters associated to each region, blood and muscle of the
ultrasound image. We consider this in the next section.

1 Due to the fact that this function does not penalise affine transformations
like the stretching transformation, the ‘mean shape’ �0 that is used as prior
information is also an ellipse. This prior information seems to be, anatomically
speaking, natural and true for short or long axis views of the endocardial bound-
ary.

4. Distribution mixture parameter estimation

We consider a couple of random fields Z = (X, Y) (called
the ‘complete data’), where Y = {Ys, s � S} represents the
field of observations located on a lattice S of � sites s
(associated to the � pixels of the input image), and X =
{Xs, s � S} the label field (related to � blood or muscle class
labels of the segmented image). Each Ys takes its value in
{0, . . ., 255}, and each Xs in {e0 = blood, e1 = muscle}. The
distribution of (X, Y) is herein defined, firstly, by prior
distribution PX(x), supposed to be stationary and Markovian,
and secondly, by site-wise likelihoods PYs/Xs

(ys/xs) whose
parameter vector (xs) depends on class label xs. To take
into account the speckle noise phenomenon [26] in the
reverberation areas, we model each PYs/Xs

(ys/xs) by a shifted
Rayleigh law with parameter vector (xs) = (min, �), namely;
RY(y; ) = [(ys 	 min)/�2] exp[	(ys 	 min)2/2�2] with y
� min and � � 0.

To determine  = ((e1), (e2)), we resort to the ICE
algorithm [27]. This procedure relies on an estimator ̂(X,
Y) for completely observed data case. This iterative method
starts from an initial parameter vector [0] (not too far from
the optimal one), and generates a sequence of parameter
vectors leading to the optimal parameters (in the least
squares sense) with the following iterative scheme:

[p+1] =
1
�

[̂(x(1), y) + % + ̂(x(n), y)] (14)

where x(i), i = 1, . . ., � are realisations of X drawn according
to the posterior distribution PX/Y, (x/y, [p]). To decrease
the computational load, we can take � = 1 without altering
the quality of the estimation [16]. Finally, we can use the
Gibbs sampler algorithm [28] to simulate realisations of X
according to the posterior distribution. For the local a priori
model of the Gibbs sampler, we adopt a standard isotropic
Potts model with the 8-connexity spatial neighbourhood
[14]. In this model, there are four parameters, called ‘the
clique parameters’, associated to the horizontal, vertical,
right and left diagonal binary cliques, respectively (see Fig.
3). Given this a priori model, the prior distribution PX(x)
can be written as

PX(x) = exp �− �
�s,t�

�st (1 − �(xs, xt))� (15)

where summation is taken over all pairs of spatial neighbour-
ing sites and � is the Kronecker delta function. To favour
homogeneous regions with no privileged orientation in the

Fig. 3. Second order neighbourhood and associated two-site cliques.
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Fig. 4. Image histogram of the picture reported in Fig. 7a (solid
curve) and estimated probability density mixture obtained with the
ICE procedure (dotted and dashed curves).

Gibbs sampler simulation process, we choose �st = 1. Finally,
[p�1] is computed from [p] in the following way:

� Stochastic step: using the Gibbs sampler, one realisation x
is simulated according to the posterior distribution
PX/Y(x/y), with parameter vector [p].

� Estimation step: the parameter vector [p�1] is estimated
with the Maximum Likelihood (ML) estimator of the
‘complete data’ [29]. If N0 = # {s � S: xs = e0} is the
number of pixel of the blood area, we have for (e0)

min� = min
s�S:xs=e0

(ys) − 1, �̂2 =
1

2N0
�

s�S:xs=e0

(ys − min�)2

(16)

� Repeat until convergence is achieved, i.e. if [p�1] �
[p], we return to stochastic step.

Figure 4 represents the estimated distribution mixture
on the echogram shown in Fig. 7a, and the histogram of
this ultrasound image: the two site-wise likelihoods
PYs/Xs,

(ys/ei, ), i = 0, 1, weighted by the estimated pro-
portion �i of each class ei are superimposed to the image
histogram. Corresponding estimates obtained by the ICE
procedure, requiring about 12 iterations, are given in Table
1. The quality of the estimations is difficult to appreciate
in the absence of ground truth values. We can roughly

Table 1. Estimated parameters for the picture reported in
Fig. 7a. � stands for the proportion of the two classes
within the ultrasound image. min and � are the Rayleigh
law parameters

ICE procedure

final
(blood) 0.48(�) 24(min) 207(�

2
)

final
(muscle) 0.52(�) 24(min) 9436(�

2)

perform such an evaluation by comparing the image histo-
gram (solid curve) with the probability density mixture
corresponding parameters (dotted and dashed curves). Esti-
mation results on synthetic images with ground truth values
will be given in Section 6, in order to appreciate the
robustness of this procedure and the quality of the esti-
mations. Experiments have shown that the distribution mix-
ture parameters keep constant for all the images extracted
of the same echographic sequence. For this reason, and to
decrease the computational load, the mixture parameters are
computed once and for all on the first frame of the echo-
graphic sequence. Now that we are able to estimate the
parameters of the mixture-based data model, we can turn
our attention to the optimisation problem of �.

5. OPTIMISATION PROBLEM

The objective function to be minimised in Eq. (12) is a complex
function with several local extrema over the deformation para-
meter space. A global search is usually impossible due to the size
of the configuration space. Instead, we have implemented a
Genetic Algorithm-based optimisation technique.

Genetic Algorithms (GA) are a class of robust stochastic
search and global optimisation procedures which mimic the
evolution of natural systems [30]. The algorithm acts in an
iterative way by allowing parallel evolution in a population
of N individuals. Each individual represents a point of the
search space, and is a candidate solution to the optimization
problem. It is represented by a string or ‘chromosome’,
which is composed of a list of L features (corresponding to
the L searched parameters). The parameters have to be
encoded in an appropriate manner. The most common
approach is to quantise the parameter values and to binary
code them. The fitness of the various individuals (the tenta-
tive ‘solution’) to the environment is expressed by a fitness
function, which, after the characteristics contained in a
chromosome have been decoded, gives a ‘performance’ value
to the string. Genetic search is carried out in a sequence
of ‘generations’. In each generation, a new population of N
chromosomes is created with genetic operators. These oper-
ators mimic the biological phenomena of selection, crossover
and mutation. The choice of the solution upon which they
are used is dictated by the evolutionary principle of the
‘survival of the fittest’. The algorithm begins with an initial
population of N chromosomes randomly chosen, and ter-
minates when either a specified number of iterations has
been performed or a maximally fitted individual has emerged.

In our application, let us recall that we have to optimise
an L dimensional function. Each of the L parameters �l is
binary quantified on q bits in order to take any value
within the predefined range [�Lmin, �Lmax]. Therefore, the
ith chromosome, denoted [�]i, is a string of qL bits length, i.e.

[�]i = (ci
11, ci

12, %, ci
1q

�1

; ci
21, ci

22, %, ci
2q

�2

; %,

ci
L1, ci

L2, %, ci
Lq

�L

) (17)

where ci
kl designates the lth bits associated to the kth para-
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meter, and � is the parameter vector associated to the
chromosome [�]i after decoding.

5.1. Fitness Measure

We can easily derive a fitness measure F (to be maximised)
directly from Eq. (12) (the energy function � to be
minimised). To turn �(�, y) into a fitness measure for use
in a genetic algorithm, we can choose,

F([�]i) = exp {− �(�, y)} (18)

The following is the detail of the selection, crossover and
mutation operators. The associated parameters used in our
application will be given in Section 6.

5.2. Selection

Individuals with higher fitness survive and individuals with
lower fitness die. Let us assume that at iteration k, the
population of the GA is the set of N chromosomes, i.e.

POPk = {[�]k
1, %, [�]k

N} (19)

Generation of the next population is based on the evalu-
ation of F for all individuals of POPk. More precisely, we
probabilistically select each chromosome for ‘reproducing’ in
the next generation, using their relative fitness

p([�]k
i ) =

F([�]k
i )

�N

j=1

F([�]k
j )

(20)

5.3. Crossover

A pair of chromosomes is picked up at random, and the
single-point crossover operator is applied according to a
fixed crossover probability. For this operation, a random
number in the range of 0 to the length Lq of the string is
generated. This is called the crossover point. The portions
of two strings lying to the right of the crossover point are
interchanged to yield two new strings, as shown in Fig. 5.

Fig. 5. An example of crossover with the partial exchange of
information.

5.4. Mutation

Mutation consists in considering in turn each bit of a given
chromosome and changing its value with a predefined low
probability called the mutation rate.

To speed up the convergence rate, we have developed
two strategies and we have combined them:

1. The first one is an elite-preservation strategy [30]: the
individual with the highest fitness survives to be an
individual of the next generation.

2. The second strategy (called hybrid GA [30]) consists in
associating the genetic search with a local optimisation
technique. In each generation, a percentage of the best
individuals are used to initialise a gradient ascent tech-
nique. Therefore, these best individuals explore local
neighbourhoods in the parameter space to find a point
of higher fitness.

In our application, these two strategies are used together
in an efficient way to create a global optimisation technique
called a ‘hybrid genetic algorithm with an elitist strategy’.

6. EXPERIMENTAL RESULTS

In this section, the real echocardiograms (short axis view)
of a normal subject were provided by the Montreal Heart
Institute. The ultrasound imaging system was a Hewlett
Packard SONOS 1500 with a transducer frequency of
2.5 MHz. The images were Time Gain Compensated (TGC)
for attenuation.

6.1. Distribution Mixture Estimation Step

Based on the distribution mixture parameters given by the
ICE procedure (see Table 1), we can compute the probability
map for the blood and muscle classes. This map exhibits
sharp boundaries between high and low probability regions
for each class. As a result, the probability maps have a high

Fig. 6. Smoothed probability map for the ultrasound image reported
in Fig. 7a. Each probability map is estimated by computing the
membership likelihood of each pixel to each class ({e0 = blood, e1

= muscle}) defined by Eq. (4) and based on distribution mixture
parameters (see Table 2 and Fig. 4) given by the ICE procedure
(described in Section 4). (a) Probability map associated to the blood
class; (b) probability map associated to the muscle class.
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Fig. 7. Successive generations of the genetic search on an ultrasound image showing the endocardium (first frame of the sequence). Best 5%
deformed templates before the gradient ascent procedure (on the left) and the best resulting template after the gradient ascent procedure
(on the right). Hybrid GA optimisation after. (a) Two generations (F(�(�, y)) = 0.091); (b) three generations (F(�(�, y)) = 0.119); (c)
four generations (F(�(�, y)) = 0.173); (d) eight generations (F(�(�, y)) = 0.186). An unsupervised and reliable detection of the endocardial
border for the first frame of the sequence is obtained.

Fig. 8. Successive generations of the genetic search on an ultrasound image showing the endocardium. Best 5% deformed templates before the
gradient ascent procedure (on the left) and the best resulting template after the gradient ascent procedure (on the right). Hybrid GA optimisation
after. (a) 0 generation (initial population of the GA) (F(�(�, y)) = 0.100); (b) two generations (F(�(�, y)) = 0.123); (c) four generations (F(�(�,
y)) = 0.155); (d) eight generations (F(�(�, y)) = 0.157). An unsupervised and reliable detection of the endocardial border is obtained.
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Fig. 9. Successive generations of the genetic search on synthetic images with two different synthetic Rayleigh noises. (a)
�2

0 = 700, �2
1 = 2000, (b) �2

0 = 1000, �2
1 = 1500. Best 5% deformed templates before the gradient ascent procedure (on the left) and the best

resulting template after the gradient ascent procedure (on the right). From top to bottom, hybrid GA optimisation after. (a) Two generations
(F(�(�, y)) = 0.149), six generations (F(�(�, y)) = 0.167), 10 generations (F(�(�, y)) = 0.174); (b) two generations (F(�(�, y)) = 0.116),
10 generations (F(�(�, y)) = 0.119), 24 generations (F(�(�, y)) = 0.120). In both cases, an accurate and reliable detection and segmentation
is obtained, and can be compared to the ground truth segmentation (at the bottom). Rates of correct classification are (a) 97.20%, (b) 93.46%.

gradient at the boundary of the different regions and low
gradient everywhere else. To avoid that the gradient-based
local optimisation procedure gets trapped in a local minima,
and to speed up the convergence rate, we decide to convolve
each probability map five times with the following 3 � 3
2D Gaussian mask: [1, 2, 1; 2, 4, 2; 1, 2, 1]. Besides, due
to the speckle noise effect, the probability maps, associated
to each class are very noisy. The smoothing process counter-
acts this problem as well. Figure 6 shows the smoothed
probability map for the ultrasound image reported in Fig. 7a.

6.2. Detection Step

This detection step has been carried out with the hybrid
genetic algorithm using the elitist strategy described in
Section 5, and after the distribution mixture estimation step
proposed in Section 4. To reduce the size of the parameter
search space, the stochastic exploration based on the GA
is used to only estimate the affine transformation parameters
(five parameters to be estimated). This affine deformation
parameter estimation ensures a first crude registration of the
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shape to be detected. The local exploration technique of
the best individuals selected by the GA, which is based on
the steepest ascent procedure, is then used to estimate the
whole parameter vector (including the global and local non-
affine deformations parameters).

Tests have shown that this optimisation procedure is not
very sensitive to the control parameters.2. In our application,
these parameters are commonly used [30], and are the
following: population size = 100, crossover rate = 0.8,
mutation rate = 0.008, maximum number of generations =
30. Parameters value are quantified on q = 8 bits. At each
generation, we select 5% of the best individuals (i.e. five
best parameter vectors) for the hybridation with the local
optimisation technique. The prototype template is a connec-
ted 12-points model (� = 12). The weighting factor penalis-
ing the prior term with respect to the likelihood term is
set to 0.1 and the size of the image is 256 � 256 pixels.
All these parameters keep constant for the detection and
the tracking step.

Therefore, to summarise, 100 individuals (or 100 ellip-
ses: circle � affine transforms) are initially randomly
generated in the image (first generation or first step of
the genetic search). Each individual represents a candidate
solution (a candidate contour) for the optimisation prob-
lem. The genetic procedure then acts in a iterative way
by creating a new population with genetic operators. At
each generation, we select 5% of the best individuals (i.e
five best parameter vectors) for the initialisation of the
gradient ascent technique.

Using this procedure, a reliable detection of the endocard-
ial contour is obtained for all images of the echographic
sequence. Our GA takes about 5–20 generations to converge
to the true solution. In fact, the convergence rate can vary
depending on the complexity of the objective function �(�,
y) to be minimised (or the complexity of the input image
and/or the shape to be extracted). Tests have shown that,
after a learning step (i.e. typically 3–6 generations or iter-
ations of the algorithm), the genetic exploration of the
search space parameter provides good initialisations for the
local exploration technique. This optimisation technique
allows us to reach a minima nearby the global minima
without requiring the high computational load required by
other global optimisation algorithm such as the simulated
annealing algorithm proposed in Kervrann and Heitz [4]. In
our application, the optimisation procedure for the detection
process takes about three minutes (average CPU time) on
a standard Sun/Sparc2 workstation.

Figures 7 and 8 show two real echocardiograms extracted
from an echocardiographic sequence and illustrate the best
deformed template and the best 5% set of templates before
the gradient ascent technique, and thus before the esti-
mation of parameters associated to global and local non-
affine transformations, for successive iterations or generations

2 Let us recall that this GA-based optimisation technique is only used to
provide good initialisations for the gradient-based local exploration technique.
This explains why the proposed hybrid optimisation procedure is relatively
‘insensitive’ to these genetic control parameters (if these are contained within
the commonly used range of values proposed by Goldberg).

of the genetic search. In spite of the speckle noise and a
random initial population for the GA, an accurate and
reliable detection of the endocardial border is obtained.
Figure 9 shows two synthetic images with different white
Rayleigh noise levels and the resulting detection/
segmentation obtained by the proposed deformable template-
based unsupervised segmentation method, along with their
associated rates of correct classification. Rates of correct
classification are obtained by dividing the number of cor-
rectly classified pixels with the number of pixels within
the synthetic shape (ground truth). Real parameters of the
distribution mixture and resulting segmentations can be
compared to estimated parameters by the ICE procedure
(see Table 2) and to the ground truth segmentations (cf.
bottom of Fig. 9). Figures 10 and 11 show synthetic ultra-
sound images with the texture model developed in Meunier
and Bertrand [31] (with correlated Rayleigh noise) and the
corresponding segmentation results. We notice that faithful
noise model estimations and accurate segmentations are
obtained. These experiments demonstrate that the proposed
detection and segmentation scheme is reliable, robust and
avoid a manual initialisation of the model.

6.3. Tracking Step

The tracking strategy used in our application is the follow-
ing: the final estimate of the previous time frame is used as
an initialisation for the steepest ascent procedure for the
current time frame. If the resulting value of energy � at
convergence is higher than a given threshold, we can assume
that the inter-frame motion is small, and this strategy allows
to provide a proper initialisation of the template for the
local exploration technique used on the next frame. In this
case, the result of the gradient ascent technique gives the
final result for the current time frame. Otherwise (i.e. if �

Table 2. Estimated parameters for the picture reported in
Fig. 9. � stands for the proportion of the two classes within
the synthetic image. min and � are the Rayleigh law para-
meters. From top to bottom (a) Initialisation of the ICE
procedure; (b) Estimated parameters by the ICE procedure;
(c) Real parameters

Initialisation

[0]
(e0) 0.50(�) 00(min) 150(�

2
)

[0]
(e1) 0.50(�) 00(min) 10000(�

2
)

ICE procedure

final
(e0) 0.09(�) 19(min) 672(�

2)

final
(e1) 0.91(�) 19(min) 2037(�

2)

Real parameters

real
(e0) 0.09(�) 19(min) 700(�

2
)

real
(e1) 0.91(�) 19(min) 2000(�

2)
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Fig. 10. Successive generations of the genetic search on synthetic images with the ultrasound texture model developed in Meunier and
Bertrand [31]. Best 5% deformed templates before the gradient ascent procedure (on the left) and the best resulting template after the
gradient ascent procedure (on the right). From top to bottom, hybrid GA optimisation after. (a) Two generations (F(�(�, y)) = 0.289), four
generations (F(�(�, y)) = 0.409), 18 generations (F(�(�, y)) = 0.439); four generations (F(�(�, y)) = 0.269), eight generations (F(�(�, y))
= 0.299), 12 generations (F(�(�, y)) = 0.406). In both cases, an accurate and reliable detection and segmentation is obtained, and can be
compared to the ground truth segmentation (at the bottom). Rates of correct classification (a) 97.20%, (a) 95.08%.

is lower than a given threshold), we decide to use the
genetic algorithm combined with the steepest ascent pro-
cedure to re-estimate the whole parameter vector �. To this
end, each of the L (L = 35) parameters �l is quantified on
8 bits in order to take any value within the range [�l 	
��l, �l � ��l], with �l the estimated parameter value given
at the previous time. Tests have shown that the tracking
procedure often provides good initialisations from one frame
to the next, avoiding having to resort to GA optimisation.
Nevertheless, this GA-based stochastic minimisation pro-
cedure remains necessary to recover the good shape if the
inter-frame motion is important. In this tracking process,
the gradient ascent technique takes about ten seconds and

GA-based optimisation takes about one minute on a stan-
dard Sun/Sparc2 workstation. Figure 12 summarises, step-by-
step, the overall estimation procedure of the endocardial
boundary.

Figure 13 shows the tracking of the endocardial contour
in an echocardiographic image sequence (each frame size is
256 � 256) at different time frames during the cardiac
cycle. Figure 14 shows two other detection/segmentation
results obtained with our procedure on real ultrasound
images. The best resulting template is drawn on a rectangular
grid to visualise the global non-affine deformation estimated
by the hybrid GA. The global prior model seems to be
flexible enough for representing accurately the inherent
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Fig. 11. Top: synthetic ultrasound images with the ultrasound texture model developed in Meunier and Bertrand [31] and for different ratios
of noise level (the backscattering ratio between the two regions is respectively: 10, 7, 6 and 5). Bottom: segmentations obtained with our
method. (a) Rate of correct classification: 95.98%; (b) rate of correct classification: 95.12%; (c) rate of correct classification: 95.12% (d) rate
of correct classification: 93.65%.

Fig. 12. Unsupervised endocardial boundary estimation algorithm.
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Fig. 13. Tracking of the endocardial contour in the echographic sequence at different time frames during the cardiac cycle. From top left to
bottom right: frame 1, 4, 6, 9, 12, 13, 18, 20, 27, 34, 35, 40, 41, 43, 46, 48.

natural variability of the endocardial contour during the
cardiac cycle. Figure 15a shows the best resulting templates
obtained on the 20 first frames of the image sequence
reported in Fig. 13. The mean shape is computed from this
set of deformed templates (see Fig. 15b). We can see that
this mean shape is not too different from the proposed
circular original template �0.

6.4. Validation and Discussion

To confirm the effectiveness of this automatic segmentation
method, we have provided a comparison of accuracy with
manual tracings without inclusion of the papillary muscles3

3 We recall that our segmentation model of the endocardial contour is
supposed to exclude the cardiac muscles such as the papillary muscles.

(see Fig. 16). These contours were traced by two experts
from the Montreal Heart Institute on each frame of the
echographic sequence (50 frames).

To give quantitative measurements, we have computed

� The mean and standard deviation for intra-observer varia-
bility, expressed by the rate of identically classified pixels
between two manual tracings given by the same expert.

� The extra-observer variability, expressed by the rate of
identically classified pixels between two manual tracings
given by two different experts.

� The rate of correct classification4 between the ground-

4 We recall that the rate of identical (or correct) classification is expressed
by the number of identically (or correctly) classified pixels divided by the
number of pixels within the endocardial contour.
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Fig. 14. Top: detection/segmentation obtained with our procedure
on real ultrasound images. Bottom: the best resulting template is
drawn on a rectangular grid to visualise the global non-affine
transformation estimated by the GA. (a) Frame 33; (b) frame 45.

Fig. 15. Set of deformed templates and mean shape. (a) Best
resulting templates obtained on the 20 first frames of the image
sequence reported in Fig. 13. (b) Mean shape computed from this
set of deformed templates.

truths and 50 estimated curves by our segmentation
method.

Each expert has thus provided two sets of 50 manual
tracings (namely, contour1–1 and contour1–2 for the first
expert and contour2–1 and contour2–2 for the second expert).
These manual tracings allow us to estimate two rates of
intra-observer correct classification, four rates of inter-
observer correct classification and four rates of correct classi-
fication for our automatic segmentation method (by assuming
that the ground-truths given by an expert correspond to the
true classification). These percentages of correct classification
are given in Table 3.

The mean rates of intra-observer correct classification are,

respectively, 92.4% (std. deviation � = 2.4%) for the first
expert and 84.2% (� = 3.2%) for the second expert. The
four mean rates of inter-observer correct classification are,
respectively, 85.8% (� = 3.9%), 83.3% (� = 4.4%), 83.8%
(� = 4.0%) and 85.3% (� = 4.2%).

The variability between the ground-truths given by an
expert and the 50 estimated curves by our algorithm,
expressed in terms of the rate of correct classification is, on
average, 79%, (see Table 3). This rate of correct classi-
fication remains a bit lower than that given by the inter-
observer rates (on average, 84.5%). This can be explained
by the fact that the papillary muscles are not always clearly
visible, particularly near end-diastole (see Fig. 13, frame 1,
for example). In this situation, the algorithm includes a part
of the papillary muscle. The mean rate of correct classi-
fication between the ground-truths given by an expert includ-
ing the papillary muscles and the computed curves during
this period is, as expected, much higher: 88.4%. As for the
other frames acquired around the end-systole (see Fig. 13,
frame 35, for example), the papillary muscles are clearly
visible on most images, and the algorithm obtains an accept-
able 84.0% of correct classification during this period. There-
fore, the algorithm performs well with errors comparable to
the inter-observer errors, but will include the papillary mus-
cle when those structures are barely visible.

The inclusion of papillary muscles may appear as a limi-
tation of the proposed method if there is a need to exclude
them, even if they are barely visible. To overcome this
limitation, a solution consists in manually adjusting the
weighting factor (� in Eq. (9)) controlling the ‘rigidity’ of
the template. For instance, a lower value when the papillary
muscles are not well defined can largely solve this problem.
Nevertheless, a lower value for this parameter cannot be
used for all the frames of the echographic sequence, because
a sufficient value is sometimes necessary to constrain the
segmentation procedure.

7. CONCLUSION

In this paper, we have developed a robust algorithm to
detect and track anatomical deformable structures like the
endocardial border in an ultrasound image. We have stated
the segmentation issue in the Bayesian framework, and take
into account some available a priori knowledge of this prob-
lem. First, the proposed global prior model, integrating an
original prototype template along with predefined global and
local deformations, has shown itself to be very flexible and
well suited to model the high variability of the endocardial
contour over long image sequence. Another important
source of a priori knowledge is information about the inten-
sity and texture of the tissue of different anatomical struc-
tures. These factors are highly dependent on the imaging
process and are taken into consideration by modelling the
speckle distribution of each class of the ultrasound image
by a Rayleigh law. Parameters of each PDF are given by a
preliminary Markovian estimation step, and are then
exploited in the data likelihood model in order to statisti-
cally segment the image. The proposed method can be easily
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Fig. 16. Examples of manual and computed endocardial contours in successive frames of the echographic sequence. Top: segmentation results.
Bottom: manual tracing given by an expert.

Table 3. Rates of identical (or correct) classification.
Respectively, intra-observer measures, extra-observer measures
and rate of correct classification obtained by our segmen-
tation method

Intra-observer measures

contour1–1 contour1–2 92.4% (� = 2.4%)
contour2–1 contour2–2 84.2% (� = 3.2%)

Inter-observer measures

contour1–1 contour2–1 85.8% (� = 3.9%)
contour1–2 contour2–2 83.3% (� = 4.4%)
contour1–1 contour2–2 83.8% (� = 4.0%)
contour1–2 contour2–1 85.3% (� = 4.2%)

Algorithm measures

Algorithm contour 1–1 77.6% (� = 7.8%)
Algorithm contour 1–2 78.7% (� = 8.9%)
Algorithm contour 2–1 80.2% (� = 10%)
Algorithm contour 2–2 78.9% (� = 11%)

generalised with multidimensional pixel value and/or regions
parameterised with a distribution mixture, and presents sev-
eral attractive features compared to other related approaches.
In particular, it seems to be well suited to handle ultrasound
images with strong speckle noise on which edge information
or some gradient measures cannot be exploited. Finally, we
have shown that this problem can be handled as an equival-
ent energy minimisation problem for each image of the
echographic sequence. To this end, the optimisation problem
considered is tackled using a genetic exploration combined

with a steepest ascent procedure. This combined local and
global optimisation procedure is fast, robust, simple and well
suited for our application compared to other optimisation
techniques, such as the gradient-based method or the simu-
lated annealing algorithm [28]. Besides, this method does
not require initialisation of the template close to the desired
solution. Initialisation may be defined at random, leading
to segmentation procedures that are completely data driven.
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