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Abstract In this paper, we address the problem of esti-

mating a segmentation map into regions from a soft (or

possibly probabilistic) boundary representation. For this

purpose, we have defined a simple non-stationary MRF

model with long-range pairwise interactions whose poten-

tials are estimated from the likelihood of the presence of an

edge at each considered pair of pixels. Another contribu-

tion of this paper is also to demonstrate that an efficient and

interesting alternative strategy to complex and elaborate

region-based segmentation models consists in averaging

several (quickly estimated) soft contour maps (obtained,

for example, with simpler edge-based segmentation mod-

els) and to use this MRF reconstruction model to achieve a

reliable and accurate segmentation map into regions. This

model has been successfully applied on the Berkeley image

database. The experiments reported in this paper demon-

strate that the proposed segmentation model from an edge

map is reliable and that this segmentation strategy is effi-

cient (in terms of visual evaluation and quantitative per-

formance measures) and performs well compared with the

best existing state-of-the-art segmentation methods

recently proposed in the literature.

Keywords Color textured image segmentation � Non

stationary Markovian (MRF) model � Segmentation into

regions from edge map � Segmentation from soft contour �
Energy-based model � Berkeley image database

1 Introduction

Image segmentation is a frequent pre-processing step

whose goal is to simplify the representation of an image

into meaningful and spatially coherent regions with similar

attributes such as consistent parts of objects or of the

background. This low-level vision task, which changes the

representation of an image into something that is easier to

analyze, is often the preliminary and also crucial step in the

development of many image understanding algorithms and

computer vision systems.

A review of literature indicates that most of segmenta-

tion algorithms can be generally divided into two catego-

ries, namely the so-called region-based and edge-based

segmentation approaches. Region-based segmentation

methods attempt to group spatially coherent regions with

similar attributes. They include segmentation methods

exploiting the connectivity information between neigh-

boring pixels such as MRF-based statistical [1–3] or graph-

based models [4, 5], Mean-Shift-based techniques [6],

clustering schemes [7–10], region growing strategies [11,

12], variational schemes [13] or finally region-based split

and merge procedures, sometimes directly expressed by a

global energy function to be optimized [14]. On the other

hand, edge-based segmentation methods rely on the pre-

diction of local edge fragments which are simply defined

by significant localized changes or discontinuities in some

image features. In this way, classical edge detectors, such

as Canny’s [15] search for discontinuities in the luminance

or color intensity while more recent approaches also uses

texture information and rely on a preliminary learning step

for the optimal cue combination [16]. Another strategy

consists in grouping edges according to perceptual

laws [17, 18] and, for example, to combine local edge

features with either a morphological operator which uses
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context-dependent structuring elements [18], or with a

voting framework that uses deformable tensors [17], to

identify long curvilinear structure or perceptual structures

in the edge map (a review of these edge-based segmen-

tation methods is given in [19]). Due to the local nature of

such approaches and thus, their inherent sensitivity to

noise artifacts, boundary detection algorithms inevitably

produce false and disconnected contours (excepted in

[20]). By this fact, and contrary to the result given by a

region-based segmentation method, the resulting soft

boundary detection map does not generally exhibit, for a

given threshold, a set of closed curves corresponding to

the boundaries of a segmentation into regions (each one

associated with the consistent parts of objects present in

the scene). Consequently, this resulting soft edge map

often remains more difficult to exploit in a high-level

image analysis system compared with a classical region

map.

In this paper, we report an efficient algorithm for

estimating a region segmentation map from a soft (or

possibly probabilistic) boundary representation. This

scheme is based on a non-stationary MRF model

expressed by a Gibbs distribution whose the long-range

pairwise (second order) interaction potentials are spatially

variant and preliminary estimated from the likelihood of

the presence of an edge (given by the edge map) at each

discrete location. Finally, our segmentation model from

an edge potential map emerges as an optimization prob-

lem of a complex (non-convex) cost function with several

local extrema over the label parameter space. In our

application, this final optimization task is performed by a

robust multi-resolution coarse-to-fine minimization strat-

egy efficiently relying on a hard constraint enforcing the

spatial continuity during the iterative labeling process. A

quantitative performance evaluation has been carried out

whose interest is twofold. First, it will allow to validate

our model and second, it will also show that a good

alternative to complex and elaborate region-based seg-

mentation models existing in the literature consists in

averaging several (quickly estimated) soft contour maps

(obtained for example, with simpler edge-based segmen-

tation models) and to use our segmentation model from

edge map to achieve a (more) reliable and accurate seg-

mentation map into regions.

2 Proposed model

Let S be the final segmentation result into several classes

and flig designates the set of class labels associated with

this segmentation map. Our generative model of segmen-

tation into different classes S ¼ flig is simply defined by

the following Gibbs distribution expressed as

PðS ¼ fligÞ ¼
1

Z
exp �

X

hi;ji
pij dðli; ljÞ
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where Z is the (constant) partition functions, d is the delta

Kronecker function and hi; ji is the set of second-order

cliques (i.e., binary cliques) of a Markov Random Field

(MRF) model defined on a complete graph (each node or

pixel xi is connected to all other pixels contained within a

(square) search window of fixed size Ns pixels centered

around xi) and in which the long-range pairwise interaction

potentials fpijg are spatially variant and preliminarily

computed from the soft edge map. In order to favor the

same class label for the pixels i and j when these one are not

separated by an edge in the edge map and vice-versa, a good

and empirical choice for the estimator of pij is given by

pij ¼ 1� bWði; jÞ ð2Þ

where Wði; jÞ denotes the maximal contour potential found on

the straight line existing between the pixels i and j in the (soft)

edge map plane (normalized between ½0 1� and on which a

preliminary no maximal suppression step [15] was done), b is

an internal parameter of our segmentation model which acts as

the inverse of a regularization parameter, i.e., favoring over

segmentation (for large value of b) or, on the contrary,

merging regions (for small value of b). In order to find a

particular configuration of Ŝ, that efficiently minimizes our

energy based model, we use the ICM-based [2] multi-reso-

lution approach proposed in [21] (Fig. 1).

Fig. 1 From top to bottom and left to right; a natural image (number

134052) from the Berkeley database, its soft edge map and six pairs of

sites represented by six line segments whose the size is proportional to the

value of the edge potential Wði; jÞ crossed by the line segment. In our two-

level multi-resolution model, we consider, in fact (as indicated in

Sect. 4.1), a complete graph for the reduced-resolution level and a non-

complete graph for the full resolution level by considering that each pixel

is connected with its four nearest neighbors and a fixed number of

connections (70 in our application), regularly spaced between all other

pixels located within a squared search window (of fixed size Ns ¼ 80

pixels) centered around the pixel
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Besides, to further help the optimization process to

succeed in finding an optimal solution, a hard constraint

enforcing the spatial continuity of each (likely) region is

imposed during the iterative ICM labeling process. To this

end, the most likely regions in the edge map are easily

estimated by identifying the sets of connected pixels whose

edge potential is below a given (and low) threshold n. In

this way, we easily identify small regions in which few

edges or contours or only small gradient magnitudes have

been detected. This procedure allows us to define a map of

likely homogeneous textural regions. The hard constraint

enforcing the spatial continuity of each of the ICM’s

cluster is simply done by assigning the majority class label

in each (pre-estimated and likely homogeneous) region for

each iteration of the ICM procedure. In order to get a set of

reliable regions, even in the case of the use of soft edge

maps exhibiting only very few contours (which are possi-

bly unclosed with one pixel thick) on a uniform black

background (i.e., with gray levels equal to zero), we have

decided to use only the most reduced resolution level

(associated with the soft edge map) to identify the sets of

connected pixels whose edge potential is below n. At the

next higher resolutions, the set of regions are then inter-

polated (see [21]). Since the contours are more likely

closed at the upper level, this strategy ensures reliable

regions and thus a reliable hard constraint.

The minimization is then refined in a second step by

identifying each region of the resulting segmentation map

(by assigning a different region to each set of spatially

connected pixels belonging to a same class). This creates a

region adjacency graph which allows to finally perform a

merging procedure at region level. To this end, we apply,

once again, the ICM relaxation scheme but this time on

each region [i.e., by simply merging the couple of adjacent

regions leading to a reduction of the energy function of our

model (Eq. 1) until convergence]. We provide details of

our multi-resolution optimization strategy in Algorithm 1.

3 Edge map used in our model

3.1 Texture information used

As discriminant texture cues, we have simply used the set

of values of the re-quantized color histogram (with equi-

distant binning) estimated around the pixel to be classified.

In our application, this local histogram is equally re-

quantized (for each of the three color channels with qb ¼ 5

equally spaced bins) in a final Nb ¼ q3
b bin descriptor

(Nb ¼ q3
b ¼ 53, in our application), computed on an over-

lapping squared fixed-size (Nw ¼ 7) neighborhood1

Algorithm 1
1 Let us note that Nw must be large enough to efficiently model the

texton feature but should also be not too large in order not to affect

(too much) the accuracy of the boundary estimation between distinct

textured regions. A good compromise, between good classification

and contour accuracy, seems to be the value Nw ¼ 7. Some tests have

shown that Nw ¼ 5 and Nw ¼ 9 give slightly similar performance

results and a size value greater than Nw ¼ 11 affects the accuracy of

the boundary location. This observation was also noticed in [29].
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centered around the pixel to be classified. This histogram is

then normalized so that it integrates to one (see [8]). In this

simpler model, a texton (i.e., the fundamental repetitive

micro-structures of a textured image) is herein character-

ized by the values of the re-quantized (local) color histo-

gram (thus encoding a non-parametric mixture of colors).

This model is simple to compute, allows significant data

reduction while being robust to noise and local image

transformations and has already demonstrated efficiency

for tracking applications [22].

3.2 Canny-based binary edge map

In order to estimate a reliable binary edge map, which will

then be used to estimate a soft boundary representation (see

Sect. 3.4), we first rely on a classical Canny’s edge map

[15] whose gradient magnitude at each pixel (located at

row i and column j) is herein replaced by the following

simple distance:

Dðhi�ðNw=2Þ;j; hiþðNw=2Þ;jÞ þ Dðhi;j�ðNw=2Þ; hi;jþðNw=2ÞÞ

where h is the Nb-bin vector, i.e., the re-quantized local

color histogram, located at row i and column j (see

Sect. 3.1), and Dðhi�d;j; hiþd;jÞ is the Manhattan distance

(L1 norm) between vectors (or bin descriptors) hi�d;j and

hiþd;j computed on a squared Nw-size window centered,

respectively, at location ði� d; jÞ and ðiþ d; jÞ.
We have used a classical no maximal suppression step

[15] which makes all edges in one pixel thick. Besides, the

thresholding is classically done with hysteresis [15], and

the high threshold is estimated as being the value of the

Manhattan distance for which its repartition function

(computed on the whole image) reaches a certain threshold

value shð\1Þ. Finally, the ratio of the high to low

threshold is two to one (as suggested in [15]). This pro-

cedure allows to make the Canny procedure dependent on

only one threshold, sh, which is closely related to the

percentage of edge that will be detected in image

(sh ¼ 0:86 in our application).

3.3 K-means-based binary edge map

The set of q3
b-bin descriptors are also grouped into different

clusters (corresponding to each class of the image) by the

classical K-means algorithm [7] (K = 7 in our applica-

tion2) with the Manhattan distance (L1 norm). This give us

a K-means-based region map with which we can extract

another binary edge map.

3.4 Soft boundary map used

In order to propose a reliable soft boundary map, which

will then be used to validate our segmentation model, we

have averaged the different Canny-based and K-means-

based binary edge maps obtained for different color

spaces of the input images. In our application, ten dif-

ferent color spaces were used, namely RGB, HSV, YIQ,

XYZ, LAB, LUV, I1I2I3;H1H2H3; YCb Cr, TSL [23–

25] (which can be viewed as different image channels

provided by various sensors or captors3). Finally, we

average this resulting soft edge map with the one obtained

by multiplying this latter with the soft edge map obtained

by computing the color gradient magnitude (normalized

between ½0 1�Þ. Figure 3 shows an example of a soft

boundary map obtained by this strategy for, respectively,

one and a combination of ten different color spaces. We

can easily see the improvement of considering several

color spaces.

3.5 Image complexity-based adaptive regularization

In order to adaptively favoring over segmentation or, on

the contrary, merging regions, for a given input image

(when this one is available), we have defined our regular-

ization parameter b of the following manner

b ¼ bH þ s ð3Þ

where s is a weighting factor used to adaptively weight our

regularization parameter bH. This parameter s aims at

measuring the complexity of a natural color image or more

precisely its complexity in terms of number of different

texture types. Our goal is to favor numerous regions in the

case of a complex image and inversely. To this end, we

have defined this complexity as the measure of the mean

absolute deviation (i.e., the Manhattan distance or L1 norm)

of the equally re-quantized color histogram (using Nb

equidistant bins) of each overlapping squared fixed-size

2 We have experimentally noticed that a K-means clustering scheme

with K � 7 classes allows us to obtain a set of resulting segmentation

maps with, on average, a number of regions (each region or segment

being defined as a set of connected pixels belonging to the same class)

approximately equal to 20, agreeing with the average number of

regions found in the manual segmentation maps given by the human

observers in the Berkeley database [10].

3 The main criterion in the choice of these different color spaces is

that they are not linearly related. This allows us to promote diversity

and thus encourage different properties in the estimation of the

gradient magnitude or in the K-means clustering of the data (such as

data decorrelation, decoupling effects, perceptually uniform metrics,

compaction and invariance to various features, etc. [8, 21]) and

consequently obtain slightly different soft and binary edge maps

which are then averaged to increase the signal-to-noise ratio of the

final soft boundary map used in our application (see Fig. 3 [second

row], for an example of denoising result using this strategy).
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ðNwÞ neighborhood contained within this image. This

measure ranges in ½0 1�. An image with several different

texture types will result in value of s close to one. Figure 2

shows several examples of images and their complexity

value. This parameter is estimated when the input color

image is available; else, in the case where a single edge

map is available, this parameter is set to zero (in this case,

parameter b is not adaptive and set to a value which is the

same for all the set of edge maps).

4 Experimental results

4.1 Setup

In order to decrease the computational load of our multi-

resolution optimization procedure, we only use two levels

of resolution in our pyramidal structure (see Fig. 3): the

full resolution and a decimated (i.e., four times smaller)

potential contour and a related label field (corresponding to

the second upper level of the pyramid structure). We do not

consider a complete graph. For the full resolution, we

consider that each node xi (or pixel) is connected to its four

nearest neighbors (for the set of cliques whose distance is

greater or equal to 2) and a fixed number of connections

(70 in our application), regularly spaced between all other

pixels located within a (squared) search window of fixed

size Ns pixels centered around xi (Ns ¼ 80 in our appli-

cation). For the reduced-resolution, each node is totally

connected with all pixels contained in our reduced search

window of fixed size, four times smaller. In our application,

a search window of fixed size Ns, four times smaller than

the size of each resolution level, seems to be a reasonable

compromise between accuracy of the final reconstruction

result (from a soft boundary map) and computational

requirements.

We have decided to initialize the lower (or second

upper) level of the pyramid with a sequence of 15 different

random segmentations4 (with K classes). The full resolu-

tion level is then initialized with the duplication of the best

segmentation result in the model sense (i.e., the one asso-

ciated with the lowest Gibbs energy U) obtained after

convergence of the ICM at this lower resolution level (see

Fig. 3).

4.2 Comparison with state-of-the-art methods

In these experiments, we have to test our segmentation

algorithm on the Berkeley segmentation database [26]

consisting of 300 color images of size 481� 321 (divided

into a training and test sets of, respectively, 200 and 100

images). For each color image, a set of benchmark seg-

mentation results, provided by human observers, is avail-

able and will be used to quantify the reliability of the

proposed segmentation algorithm. In order to ensure the

integrity of the evaluation, the internal parameters of the

algorithm are tuned on the train image set. The algorithm is

then bench-marked using the optimal training parameters

on the independent test set.

We have compared our segmentation algorithm (called

SFSBM½bH j n� for Segmentation From a Soft Boundary

Map, bH and n being its two internal parameters) against

several unsupervised algorithms. For each of these algo-

rithms, the internal parameters are set to optimal values

Fig. 2 Examples of complexity values on some images of the Berkeley database. From left to right, s ¼ 0:235; 0:364; 0:515; 0:661; 0:803

4 It is worth recalling that the solution obtained by our two-level

multi-resolution optimization procedure depends closely on the

estimation obtained on the coarser resolution level (which, after

interpolation, will guide the solution of the full resolution level).

Furthermore, due to the ICM-based deterministic local optimization

used at coarser level, this latter coarse solution will depend on the

random initialization. Experimentally (after some tests) we have

noticed that a sequence of 15 different random initializations allowed

us to find, at least, one initialization leading to a reliable (coarse)

solution in all cases tested.
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and/or correspond to the internal values suggested by the

authors. All color images are normalized to have the lon-

gest side equals to 320 pixels. The segmentation results are

then supersampled to obtain segmentation images with the

original resolution (481� 321) before the estimation of the

performance metric.

The comparison is based on the PRI performance mea-

sure [27] which seems to be also highly correlated with

human hand-segmentations [10] (a score equal to

PRI = 0:78, for example, simply means that, on average,

78 % of pairs of pixel labels are correctly classified in the

segmentation results).

Fig. 3 From top to bottom and

left to right; A natural image

from the Berkeley database (n0

134008), its soft boundary map

(one and ten color space) and

the formation of its region

process (algorithm

SFSBM½bH¼2:3 j n¼30�) at the

(l ¼ 2nd) upper level of the

pyramidal structure at iteration

½0�2�; 3 (the last iteration) of

the ICM optimization

algorithm. Duplication and

result of the ICM relaxation

scheme at the finest level of the

pyramid at iteration 0, 1 and 7

(last iteration) and final ICM

segmentation result at region

level
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4.3 Results and discussion

Table 1 shows the obtained results for different values of

bH and n. A comparison with the best existing state-of-the-

art segmentation algorithms, in terms of PRI5 score and

computing time is also given in this Table. In terms of PRI

measure, we observe that the discussed fusion strategy

gives competitive results over the set of images of the

Berkeley image database. We can notice that a good value

of n allows to significantly improve the segmentation

result. Consequently, it is really necessary to help the

optimization process to succeed in finding an optimal

solution. To this end, the hard constraint enforcing the

spatial continuity is useful in this very difficult energy-

based segmentation method. For the four different sets of

soft boundary maps used in our tests (i.e., for our SFSBM

algorithm, see Table 1) and for the three different sets of

contour maps given in Table 2, we have noticed that n
should be ideally within the range n 2 ½0; . . .; 30�. n ¼ 0

means that the hard constraint (enforcing the spatial con-

tinuity) is not considered and consequently, in this case, the

segmentation result is often over-segmented. On the other

hand, a high value of n induces a useless under-segmen-

tation (occurring when real regions are erroneously fused).

In order to find the optimal value of n, a strategy consists in

gradually increasing this parameter until the set of seg-

mentation results are correctly segmented in terms of

average number of regions, a priori defined as acceptable

(for a given application).

We recall that, to decrease the computational load of our

segmentation procedure, these segmentation results are

obtained by not considering a complete graph in the second

upper level of our pyramidal structure; each node is, in fact,

totally connected with all pixels contained in a reduced

squared search window of size Ns ¼ 80. By considering a

complete graph, i.e., a search window of size Ns ¼ 160 on

this upper coarser level (allowing all the pairwise con-

nections to be taken into account for an input image on the

second upper level of our pyramidal structure), the PRI

score is essentially the same, i.e., PRI ¼ 0:785, for a

computational time approximately ten times higher. It is

also worth pointing out that our multi-resolution procedure

is mainly used to decrease the complexity and the com-

putational load of our optimization/segmentation procedure

(because most of the labeling procedure is correctly

Table 1 Average performance,

in term of PRI measure, of our

algorithm for several values of

its internal parameters on the

Berkeley image database [26]

The first value is the

performance metric on the

entire database and values

between square brackets

correspond to performances on

the train and test image sets

ALGORITHMS PRI [27] CPU Time on (image size)

HUMANS (in [10]) 0.8754

SFSBM½b�¼2:30jn¼30� 0.787 [train . 0.790 test . 0.781] �60 s (320� 215)

SFSBM½b�¼2:30jn¼0� 0.776 [train . 0.778 test . 0.772] �60 s (320� 215)

SFSBM½b�¼3:00jn¼30� 0.785 [train . 0.786 test . 0.781] �60 s (320� 215)

SFSBM½b�¼1:80jn¼30� 0.772 [train . 0.775 test . 0.764] �60 s (320� 215)

CTex [9] 0.800 �85 s [184� 184] [9]

PRIF [21] 0.800 �80 s (320� 215)

MIS[k = 50] [28] 0.798 �2.9 s (320� 215) [28]

SCKM½j¼9jn¼0:37� [29] 0796 �20 s (320� 215)

FCR½j1¼13jj2¼6jj¼0:135�[8] 0.788 �60 s (320� 215)

MD2S ½j¼11jn¼0:4� [30] 0.784 �60 s (320� 215)

FH [5] in [5] 0.784 �1 s (320� 215) [5]

HMC [31] 0.783 �80 s (320� 215) [31]

JSEG [11] (in [9]) 0.770 �6 s (184� 184) [11]

CTMg¼0:15 [10, 32] 0.762 �180 s (320� 215) [32]

St-SVGMM½j¼15�[33] 0.759 N/A

Mean-Shift [6] (in [10]) 0.755 �20 s (320� 215)

NCuts [4] (in [10]) 0.722 �120 s (100� 120) [4]

Table 2 PRI score obtained on several sets of soft boundary map

estimated by the boundary detection algorithms [35–37] (test set of

the Berkeley database)

ALGORITHMS PRI

HUMANS in Yang et al. [10] 0.8754

SFSBM½b�¼1:7jn¼20� in Ren [35] test set . 0.79415

SFSBM½b�¼2:9jn¼0� in Dollar et al. [36] test set . 0.77082

SFSBM½b�¼5:0jn¼0� in Maire et al. [37] test set . 0.77711

5 We have used the Matlab source code, proposed by Yang to

estimate the PRI measure presented in the following section. This

code is kindly available on-line at http://www.eecs.berkeley.

edu/*yang/software/lossy_segmentation/.
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estimated at this resolution level [see Fig. 3]). Conse-

quently, two levels of resolution allow us to decrease the

computing time of our segmentation procedure by

approximately a factor 4. Nevertheless, and it deserves to

be mentioned, a lower resolution level of our multi-reso-

lution structure should not be too coarse, to estimate a

reliable soft boundary map which will be able to exhibit the

consistent parts of small objects that we want to detect (and

thus to get a reliable estimation of the pairwise potentials

pij computed over this decimated soft edge map). Conse-

quently, more levels of resolution will not improve the

result since the boundary information of small objects

could unexpectedly disappear with a too coarse level of

resolution. In other words, the more we use a coarse level

of the pyramid, the more we select (a priori) only the large

consistent parts of objects to be segmented.

Figure 4 shows the distribution of the PRI measure over

the 300 images of the Berkeley image database (for the

algorithm SFSBM½bH¼2:25 j n¼30�). Figure 5 displays some

examples of segmentations obtained by our algorithm.

We have also shown, in Fig. 6, the four worst segmen-

tations (in the PRI sense), obtained by our segmentation

method. Experiments show that our method tends to over-

segment some images containing regions with large texture

elements or with spatially variant and/or progressively

variant and/or illumination variant textures or sometimes to

merge a part of an animal (with its texture camouflage)

with its natural environment (i.e., a background with an

almost identical texture). In these latter cases, this over-

segmentations are directly due to the small size of the Nw

squared window (used to compute the Canny-based and K-

means based binary edge maps) which, in fact, sets the size

of the texture elements which are then segmented. Never-

theless, it is worth pointing out that a larger Nw window

size does not improve the average PRI score because it

induces a loss of accuracy on the detected boundaries

between each textured region. There is thus a compromise,

via the value of Nw, between good classification (of pos-

sibly large texture elements) and contour accuracy between

the segmented regions. It seems that this is the main

drawback of our method used to compute our soft bound-

ary map. Nevertheless, this drawback does not call into

question our MRF reconstruction model for which the

average PRI score will be all the more competitive than the

soft boundary map will be correctly approximated (see

Table 2).

The results for the entire database and the list of PRI

scores obtained for each segmented image by our algorithm

are available on-line.

We have also validated our algorithm on a set of soft

boundary maps (all of whose edges are one-pixel-thick but

whose boundary map does not exhibit, for a given thresh-

old, a set of closed curves), estimated on the test image

base of the Berkeley image database and publicly available

at http address [34]. More precisely, we have tested our

algorithm on the soft boundary maps estimated by the

contour detection algorithms proposed by [35–37]. For

each one, we have selected the parameter vector ½bH n�
which ensures the better PRI score. Table 2 displays some

examples of performance measures obtained by our

algorithm.

4.4 Algorithm

The segmentation procedure takes, on average (per image),

\30 s (for an i7-930 Intel CPU, 2:8 GHz, 5611 bogomips

and non-optimized C?? code running on Linux) for the

estimation of our soft edge map and \30 s for the seg-

mentation procedure from this soft edge map (for a 320�
214 image). Source code (in C?? language) of our algo-

rithm (with the set of segmented images) is publicly

available at our website to make possible eventual com-

parisons with future segmentation algorithms or different

performance measures.

5 Conclusion

In this paper, we have presented a new and efficient

segmentation procedure from a soft (or possibly probabi-

listic) boundary representation. This procedure relies on a
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Fig. 4 Distribution of the PRI performance measure over the 300

images of the Berkeley database (for SFSBM½bH¼2:3jn¼30�)

Fig. 5 Example of segmentations obtained by our algorithm

SFSBM½bH¼2:3 j n¼30� (and the soft edge map given in Sect. 3) on

several images of the Berkeley image database (see also Table 1 for

quantitative performance measures and at our website for the

segmentation results on the entire database)
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non-stationary MRF model with long-range pairwise

interactions whose potentials are estimated from the like-

lihood of the presence of an edge at each considered pair of

pixels along with a multi-resolution optimization proce-

dure. A contribution of this paper is also to show that an

interesting alternative strategy to region-based segmenta-

tion models consists in estimating or averaging several

(possibly quickly estimated) soft contour maps and to

exploit our segmentation model to finally achieve a reliable

segmentation map into regions.
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