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Abstract In this paper, we present a simple and efficient

biologically inspired edge detection algorithm which

attempts to model some structural features of the Human

Visual System. More precisely, our edge detection

approach attempts to model the dynamic retina concept,

i.e., the natural saccadic eye movement process which

redirects the fovea’s attention from one point of interest to

another within the image along with the inherent topolog-

ical log-polar transformation (with its space-variant reso-

lution) of the retinal image into its cortical projection. The

experiments, reported in this paper and conducted on the

Berkeley Segmentation Dataset, demonstrate that the pro-

posed biologically inspired contour detection method per-

forms well compared to the best existing state-of-the-art

edge and contour detection methods recently proposed in

the literature.

Keywords Berkeley Dataset (BSDS300) � Biologically
inspired edge or contour detection � Cortical image �
Dynamic retina concept � F-measure � Human visual system

(HVS) � Log-polar mapping � Saccades

1 Introduction

Edge detection is a fundamental pre-processing step in

image processing whose goal is to identify points corre-

sponding to the object boundaries present in the digital

image. This low-level vision task which preserves the

important structural properties of an image and changes its

representation into something that is easier to analyze is

often the preliminary and also the crucial step in the

development of many image understanding algorithms and

computer vision systems such as object localization/

recognition [1–3] or 3D reconstruction problems [4, 5].

Within this context, the availability of the Berkeley

Segmentation Dataset (BSDS300) [6] in which a wide

variety (300) of natural color images have been manually

segmented by multiple contributors, has allowed to mea-

sure, with good statistical confidence, the performance of

several edge or contour detection algorithms proposed in

the literature. Among these, a significant number of

methods [7–11], favorably evaluated on the BSDS300, are,

in fact, mainly based on the probability-of-boundary (Pb)

contour detector originally proposed in [6] by the authors

of this dataset. In this latter contour detection approach, the

local brightness, energy, color, and texture gradient fea-

tures are first computed on oriented discs, are then inde-

pendently optimized through a learning procedure, on the

BSDS300 training set, and are finally combined in a

learning logistic regression classification procedure in

order to empirically define each pixel’s likelihood of being

on a contour.

In addition, the BSDS300 has also allowed to especially

understand and to quantify the relative importance of color

and texture in the contour detection process [6], the benefit

of contour grouping [7, 8] and multiscale models and

features over monoscale approaches [10, 12], the interest of

combining regions (or global information) and boundary

cues [9, 11, 13, 14], the benefit of learning the prior (and

transition) distribution of pieces of contour shapes [15] or

the advantage of learning to classify [16, 17] to name a

few.
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Although they have not been evaluated or just partially

on the BSDS300, other contour detection methods are

worthy to be mentioned here, especially statistical methods

which have the advantages to model, in a consistent sta-

tistical framework, the highly structured statistical prop-

erties of natural images (i.e., with possibly either an

explicit mathematical model for edge, or contour structure

or an image structural model, or some background statis-

tics, or eventually noise and degradation models, etc.). In

addition, these statistical methods are adaptive, data driven,

are better suited to deal with noisy images and, moreover,

inference can be efficiently used for the automatic and

explicit estimation of the internal parameters of the model.

In this class of methods, the well-known Canny edge

detector [18] assumes that edges are step functions cor-

rupted by additive Gaussian noise. This algorithm is based

on an optimal linear filter in the sense of three criteria

(good detection/localization, and low multiplicity of the

response to a single edge). In [19], an optimal edge

detector, which revisits the analytical expressions of the

three Canny’s criteria is developed, in the case of discrete

signals (see also [19] for numerous other variants of Canny

edge detection approaches). Another statistical edge model

has been considered in [20] in which the authors assume

that curves are drawn from a Markov process and define a

prior distribution both encouraging smooth contours and

restricting the number of contours in an image. A statistical

multiscale data-driven edge detector has also been pro-

posed by Konishi et al. [21]. The statistical inference is

simply expressed as a log-likelihood ratio test between the

on- and off-edge non-parametric learned distributions of

the filter responses. In [22], the authors present a global

constrained Markov model for contours in images that also

uses the conditional distributions of the gradient vector

field on and off edges for the likelihood. The prior one is a

Gibbs distribution and includes a smoothing parameter and

all the internal parameters of the model are learned on-line

using an iterative conditional estimation procedure. In [23],

the a contrario framework allows the authors to model the

Helmholtz principle which enunciates that relevant geo-

metric structures such as contours have a very low proba-

bility to occur in a random context. Finally, the particle

filter framework proposed in [15] allows both to express

and learn the prior (and transition) distribution of pieces of

contour shapes in such a way that the distribution auto-

matically embeds efficiently a semi-local information of

the contour structure via every possible contour variation

and then to locally track with a particle filter, these pieces

of contour shapes along contours.

Contrary to the statistical ones, biologically inspired

edge detection models tend to exploit many structural

features of the human visual system (HVS). Among these

models, some low-level biological vision systems, try to

replicate basic properties of the HVS, although some of

them are not explicitly focused on the edge detection

problem. For example, in [24], Hongler et al. propose a

simple mathematical formalization of the dynamic retina

concept [25, 26] for the edge detection problem in a vision

system subject to vibration noise. A retina-inspired model

for edge detection has also been proposed in [27] which

both tries to simulate and implements the non-overlapping

mosaic arrangement of retinal receptive fields as well as the

dynamic retina concept. It is also worth mentioning the

framework proposed in [28] which is based on the under-

standing of inhibitory mechanisms in biology and empha-

sizes the role of local information by combining classical

edge detection with isotropic and anisotropic inhibition,

thus achieving, as in [29], a kind of biologically motivated

contrast operator, in the image processing context. In this

two-step algorithm, the response of an edge detector is

followed by an assessment based on the local context (i.e.,

the local response of the edge detector). This biologically

motivated model, employing this inhibition mechanism, is

reliable to detect contours of objects but cannot be effi-

ciently exploited to reliably detect edges which belong to

texture regions. A two-step model with an inhibitory

mechanism, but well suited for the textural edge detection

problem, has also been proposed in [30] and tries to sim-

ulate the response of P and M types of ganglion and lateral

geniculate nucleus (LGN) cells in order to extract redun-

dant subsets of fine and coarse edges. This information is

then passed to a next stage (cortical level) and then pro-

cessed in order to suppress (or inhibit) the response for

edges within texture regions. Another way to model the

response of LGN cells has also been recently proposed in

[31], in which the authors propose a computational model

of a simple cell, which combines the responses of model

LGN cells with center-surround receptive field and that

outperforms the traditional Gabor function model in con-

tour detection. Finally, we can also mention the sparse

coding model of cortical area proposed in [32], the com-

bined use of retina and cerebral cortex modeling presented

in [33] for the development of low-level image processing

tasks such as motion analysis and video data structuring

and the multifeature-based center-surround framework

proposed in [34].

Apart from these models, focused on the edge detection

problem (and for which a recent survey of methods,

modeling biologically inspired aspects, is presented in

[35]), biologically motivated local feature [36], color

image [37], or keypoint [38] descriptors have been

designed for object recognition, detection [39] and tracking

[40] issues. In addition, low-level biologically inspired

vision systems have been mainly proposed by the computer

graphics community for the specific problem of displaying

high dynamic range (HDR) images on traditional low
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dynamic range (LDR) devices. Among these so-called tone

mapping methods which tend to replicate basic properties

of the HVS, we can mention the research works that

physically attempt to model the local sensitivity-adjusting

process of the HVS for high contrast scenes. Among these

HVS-based models of local adaptation, Pattanaik et al. [41]

have used a multiscale decomposition of the image

according to comprehensive psycho-physically derived

filter banks and extensive psycho-physical data. The reti-

nex model has also inspired several research projects [42–

47]. Other interesting approaches include the local eye

adaptation method [48] that compresses the dynamic range

of the luminance channel by simulating the photoreceptor

responses in the retina. Finally, let us also mention the

recent tone mapping model proposed in [49] which tends to

exploit the biologically inspired dynamic retina concept

which is mathematically formalized via an image repre-

sentation based on the specification of the statistical dis-

tribution of the non-local gradient magnitude in the HDR

compressed image (Table 1).

The biologically inspired contour detection model

presented in this paper tends to integrate three basic

properties of the HVS; namely (1) the dynamic retina

concept [25, 26], i.e., the small vibrations of the eyes and/

or the natural saccadic eye movement process (or sac-

cades), that redirects the fovea’s attention from one point

of interest to another within the image, (2) the topological

log-polar transformation (with its space-variant resolution)

of the retinal image into its cortical projection [50–53]

and finally, to a certain extent, (3) the optical illusion

called Mach bands [54] that allows the HVS to increase

the perceived change in brightness and makes it very

sensitive to line structures (and thus, that makes the HVS

inherently well suited for line detection). The remainder

of this paper is organized as follows: Sect. 2 describes the

proposed edge detection model and its links with the

above-mentioned biologically inspired considerations.

Finally, Sect. 3 presents a set of experimental results on

the BSD300 and comparisons with existing segmentation

techniques.

Table 1 Overview table

providing a (non-exhaustive)

list and comparison of the

different contour detection

models validated (or not) on the

BSDS300 in terms of F measure

Method (Refs.) Category Authors Date F-measure on BSDS300

[6] Machine learning Martin et al. 2004 Yes (0.65)

[7] Statistical Ren et al. 2005 Yes (0.64)

[8] Graph-based Zhu et al. 2007 Yes (0.64)

[9] Graph and machine learning Maire et al. 2008 Yes (0.70)

[10] Statistical Ren et al. 2008 Yes (0.68)

[11] Graph and machine learning Arbelaez et al. 2011 Yes (0.71)

[12] Statistical Widynski et al. 2014 Yes (0.71)

[13] Machine learning Fowlkes et al. 2003 Yes (0.65)

[14] Graph and machine learning Fowlkes et al. 2004 Yes (NA)

[15] Statistical Widynski et al. 2012 Yes (0.68)

[16] Machine learning Dollar et al. 2006 Yes (0.66)

[17] Machine learning Mairal et al. 2008 Yes (0.66)

[18] Statistical Canny 1986 Yes (0.58)

[19] Statistical Demigny 2002 No

[20] Statistical Felzenzwalb et al. 2006 Yes (NA)

[21] Statistical Konishi et al. 2003 No

[22] Statistical Destrempes et al. 2004 No

[23] Statistical Widynski et al. 2011 No

[24] Biologically inspired Hongler et al. 2003 No

[27] biologically inspired Roka et al. 2007 No

[28] biologically inspired Griorescu et al. 2003 No

[29] biologically inspired Itti et al. 1998 No

[30] biologically inspired Joshi et al. 2006 Yes (0.59)

[31] biologically inspired Azzopardi et al. 2012 No

[32] biologically inspired Spratling 2010 Yes (0.61)

[33] biologically inspired Benoit et al. 2010 No

[34] biologically inspired Yang et al. 2014 Yes (0.62)

[37] biologically inspired Zhang et al. 2012 Yes (0.68)
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2 Proposed model

2.1 Log-polar cortical mapping of the retinal image

One interesting feature of the HVS is the topological

transformation of the retinal image into its cortical pro-

jection (termed the conformal cortical mapping). More

precisely, the input image, projected on the retina of the

eye is reconfigured onto the (primary visual) cortex by a

process similar to a log-polar mapping before it is exam-

ined by the brain. This property is due to the fact that, in

humans and primates, the center of the retina (i.e., the

fovea) has a much greater spatial resolution than the

periphery, with a greater density of retinal cells with a

sampling period increasing almost linearly with the dis-

tance from the fovea (see Fig. 1) [50–53]. With this linearly

space-variant sampling structure, the information received

by the primary visual cortex can be described through a

log-polar mapping of the retinal stimulus (see Fig. 2). This

log-polar mapping has been proposed as a very appropriate

space-variant imaging model in active vision applications.

This biologically inspired transformation model has several

advantages and facilitates some visual tasks. For example,

it can provide an efficient data reduction without a subse-

quent loss in perceptual information [52, 56], offers a good

trade-off among large visual field and reasonably high

resolution, preserves the oriented angle of intersection

between two curves, and simplifies rotational and origin-

centered rotations and scalings become simple shifts in the

cortical image (a useful property for scale and rotation-

invariant pattern recognition [57]). In addition to these

pattern recognition problems, this transformation also

allows to facilitate the estimation of the time to impact

from optical flow [58]. Log-polar transform is also an

appealing transformation as it results in a foveated image

(i.e., a smoothly space-variant resolution image) without

blocking artifacts. In addition, it depicts in great detail the

region where the focus of attention (corresponding to the

reference center of its transformation) is (see Fig. 3).

2.2 Dynamic retina concept

Another interesting feature of the HVS is the presence of

small vibrations of the eyes or natural saccadic eye

movements, now well-known under the name of saccades.

Our eyes are thus never still, even during fixation. This

rapid and simultaneous movement of both eyes, from one

still position to another, called saccade, is derived from a

French word for ‘‘twitch’’ (namely saquier); saccade is a

typical occurrence in visual perception, the eyes fixing on

one point after another in the visual field [25, 26].

The primary function of saccade is to maximize

information processing within the high resolution region

of the fovea [59]. Another reason is that the brain directs

the eye to move in such a way as to foveate successively

onto the different points of interest within the image.

The attention of the fovea is reserved for those elements

that contain ‘‘essential information’’ necessary for the

perception of the scene. By locating interesting parts of

the scene, i.e., by redirecting the fovea from point of

interest to another point of interest within the image, the

brain is able to reconstruct a coherent interpretation and

a mental three-dimensional (3D) ‘‘map’’ of the scene

(based on a combination of foveal details and general-

ized low-acuity information acquired from the eye’s

periphery). A more sophisticated hypothesis for the role

of saccades, in visual exploration, is that we saccade to

areas which are expected to have useful spatial infor-

mation for the interpretation of shapes or structures. We

would therefore expect the eye to saccade to those

Fig. 1 Graphical representation of the space-variant sampling

structure of the fovea (center of the retina) with a much greater

spatial resolution than the periphery, with a greater density of retinal

cells. Within the fovea, the sampling period becomes almost constant

(taken from [55])

Fig. 2 Log-polar transformation. Any point (x, y) (i.e., [column,

row]) of the scene in the image plane (left) can be expressed in terms

of ðq; hÞ in the cortical plane (right) by ðlogðqÞ; hÞ with h 2 ½0; 2pÞ. In
this example, the log-polar transform is centered at the center of the

image. We can notice that concentric circles and radius lines in the

Cartesian plane (left) are mapped respectively to vertical and

horizontal lines in the cortical plane (right)
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features which are most useful for this task [25, 59–61].

In addition, saccades and microsaccades are part of the

oculomotor strategy by which the visual system acquires

fine spatial detail [62].

When scanning a stationary object, the eye alternates

between fixations and saccades in the visual field (see

Fig. 4). During each fixation on a given point of view or

(point of) interest, the cortical or log-polar mapping is

then built with this selected point of interest as center of

reference for this log-polar transformation. During visual

exploration, a series of saccade-fixation sequence (termed

usually as a scanning saccade) is initiated and leads to a

sequence of cortical mappings, to be examined by the

brain, with these different points of interest as different

centers of reference. From this sequence of cortical

mappings, the brain fuses this information in order to

acquire an accurate estimation and 3D understanding and

interpretation of the different shapes and structures pre-

sent in the scene. The process of retaining information

across a scanning saccade is called trans-saccadic

memory and the process of integrating information from

more than one fixation is called trans-saccadic integra-

tion [63].

Fig. 3 Top original image and image showing Nc ¼ 5 centers of

reference (taken on the diagonal of a rectangular window, centered on

the image and whose size is 80 % the size of the original image)

associated to each log-polar transformation and inverse log-polar

mapping transformation from the third log-polar mapping presented

below (using a bi-linear interpolation). Bottom image mapped in log-

polar domain w.r.t. these above-presented five different centers of

reference

Fig. 4 By Yarbus [25]. The right diagram shows eye movement

traces while a subject explores a picture of the bust of Nefertiti (left).

While viewing a stationary object, the eye alternate between fixations

and saccades. Each saccade leads to a new fixation (each dot

represents a unit of time). Typically, the eye makes approximately 3

saccades per second, fixating on each point of interest for 300 ms at a

time. The set of saccades occupy 10 % of the total viewing time.

Yarbus [25] noted that the attention of the fovea is reserved for those

elements that contain ‘‘essential information’’ necessary for the

perception of the scene. The ‘‘less essential information’’ is ignored

by the fovea and obtained by the lower resolution periphery. From

only a small percentage of the visual field captured in high-acuity, the

subject is able to reconstruct a useful understanding of the object on

the scene
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In our application, in order to replicate the sequence of

cortical mappings obtained by the scanning saccade pro-

cess i.e., from different points of view (of the image) which

will be examined by the visual cortex, we have simply

considered a fixed number of cortical (log-polar) mappings

each one with respect to (w.r.t.) a different center of ref-

erence equally spaced on the diagonal segment located at

the center of the image plane (see Fig. 3).

2.3 Lateral inhibition effect

Another interesting feature of the HVS is the Mach bands

or lateral inhibition effect (LIE), named after the physicist

Ernst Mach who first observed and studied them more than

a century ago. Due to the inherent spatial high-pass filter-

ing performed by the HVS on the luminance channel of the

image captured by the retina, this LIE (or center-surround

antagonism) allows to exaggerate the differences between

neighboring areas of slightly differing shades of gray along

the boundaries, thus naturally increasing the contrast-to-

noise ratio and enhancing edge and straight lines detection

by the HVS (see [64] p. 45 and [65] claiming that lateral

inhibition of neurons in visual cortex allows contrast dis-

crimination of oriented patterns). More generally, this

phenomenon shows that the local spatial context of a

contour significantly affects the global saliency of the

contour and more formally, it approximates a second order

derivative (i.e., a Laplacian) of the edge signal thus pro-

ducing an enhanced edge with first an undershoot (i.e., a

slight decrease in brightness compared to the true physical

value) and then an overshoot in brightness.

In the context of the visual processes, the LIE is in fact

known to occur in the early stages of visual information

processing in biological systems; not only in the retina

(thus in the image plane) but also in certain areas of the

visual cortex [66, 67], thus in the cortical domain [68–70]

or in conjunction with a (neural image and a) log-polar

mapping (see Sect. 2.1). By recalling that each line seg-

ment in the log-polar plane gives a circular contour frag-

ment in the image plane, the LIE, within the context of log-

polar conformal mapping, will result in the enhancement of

the image contours via (more precisely) the enhancement

of all contour fragments of the boundaries of objects pre-

sent in the image.

Let us note that smoothly curved contour can be gen-

erally handled as concatenations of (small) straight seg-

ments [71]. Nevertheless, even if many contours of man-

made objects and shapes accept an economic description in

terms of straight lines with the interesting ability to abstract

away unwanted or useless details [72], it is important

mentioning that a contour detection algorithm, on the

original (Cartesian) image, based solely on the simple

extraction of line segments would not give a competing

edge detection algorithm (see Sect. 3.2 where this state-

ment is evaluated, in term of F-measure, i.e., a measure that

trades off precision versus recall, on the test set of the

BSDS300 [73]).

In biological systems or in a visual exploration leading

to a sequence of fixations creating a sequence of log-polar

transformations w.r.t. different centers of reference, each

portion of smooth curved contour can be viewed (or log-

polar transformed) as a straight line contour in the cortical

domain and we will exploit, among other things, this

property. Indeed, a sequence of log-polar transformations

(w.r.t. different centers of reference) has some properties

that make it useful to detect curved contour segments. First

note that curved contours with a concentric circle shape in

the Cartesian image become a single straight vertical line

in the cortical plane since the constant radius q of the circle

gives a constant for all h coordinate. Similarly, radial lines

in the image plane which have constant angle but variable

radius, result in a map of horizontal lines (see Fig. 2).

Third, it is always possible to find a center of reference, or

equivalently; a point of view or (point of) interest, for

which this log-polar transformations will transform a given

curved contour fragment into a straight line segment (see

Fig. 5). Consequently, each curved contour segment can be

approximated by an arc of circle with a given radius value

and, each arc of circle portion is transformed into a straight

line segment in the cortical plane with an appropriate ref-

erence center corresponding to the center of this arc of

circle.

Fig. 5 Top curved contour fragment in the Cartesian image plane.

Bottom three (cropped portion of) different log-polar deformations for

which each contour fragment is transformed into a straight line

segment
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In order to simulate the LIE in the cortical domain, for

the purpose of contour detection, we thus decide to extract

straight line segments in the cortical image, and to this end,

we resort to the fast line segment detector (LSD) recently

introduced in [71] which is a linear-time line segment

detector that gives sub-pixel accurate detection results for a

controlled pre-determined number of false detections

according to the a contrario principle (nevertheless, it is

worth noting that our contour detection procedure remains

independent of the choice of the underlying line detector).

In contrast to classic edge detector, this algorithm defines a

line segment as a rectangular region whose points share

roughly the same image gradient angle. This algorithm is

very efficient to detect line segments based on the empir-

ical discovery made by Burns et al. [74] showing that

connected (rectangular) regions with common orientation

would almost always coincide with straight edges.

Finally, it is worth mentioning that the LIE simulation,

within the context of a log-polar or cortical mapping, has

been initially investigated in [75] in 1988 (and never after

that) for the edge enhancement problem. In this latter

simulation, a negative feedback system in one dimension

(introduced in [76]) is exploited in order to simulate the

way in which receptors interact in a negative inhibitory

manner.

2.4 The proposed biologically inspired edge

detection model

Our edge detection approach attempts to model these

aforementioned biological structural features of the HVS.

In order to replicate the scanning saccade process,

achieved during a visual exploration of an image (see Sect.

2.2), we have simply considered a sequence of Nc log-polar

transformations or cortical mappings, w.r.t. Nc different

equally spaced centers of reference (i.e., points of interest)

taken on the diagonal of a rectangular window, centered on

the image (and whose size is 80 % the size of the image,

see Fig. 3). Each center of reference thus defines a log-

polar mapping associated to a different point of view

within the image plane. This sequence of cortical map-

pings, equivalent to the information of the retinal stimulus

received by the primary visual cortex, will possibly trans-

form, for one of them, a given curved contour fragment

into a straight line segment (see Fig. 5) which will be then

efficiently detected by the LSD algorithm [71]. In fact, it

will always be true, at least locally; a smoothly curved

contour will be often efficiently approximated by con-

catenations of small straight segments.

In order to only consider straight line segments delin-

eating the boundary of two textured regions, we estimate,

for each cortical mapping, an edge potential map Wð:Þ, in
the textural sense [77]. This edge map will be used to find

the most likely straight line segments effectively delin-

eating two different textured regions. More precisely, in

our model, we will retain the first Ns line segments of the

LSD algorithm with the highest average potential value

(computed over all the pixels belonging to the line seg-

ments).1 This edge potential map requires to compute, at

each pixel, the following potential or gradient distance

D
�
hy�ðNw=2Þ;x; hyþðNw=2Þ;x

�

þD
�
hy;x�ðNw=2Þ; hy;xþðNw=2Þ

� ð1Þ

where h is the Nb-bin re-quantized local color histogram,

located at row y and column x [77], and Dðhx�d;y; hxþd;yÞ is
the L1 norm between vectors (or bin descriptors) hx�d;y and

hxþd;y computed on a squared Nw-size window centered

respectively at location ðx� d; yÞ and ðxþ d; yÞ [77]. This
textural gradient map assumes simply that a texton (i.e., the

repetitive character or element of a textured image, also

called a texture primitive) is herein characterized by a

mixture of colors or more precisely by the values of the re-

quantized (local) color histogram. This model is simple to

compute, allows significant data reduction while being

robust to noise and local image transformations and has

already demonstrated all its efficiency in region-based

segmentation procedures [77, 78].

At this stage, we have a sequence of Nc sets of straight

line segments (delineating two textural regions) for each

cortical mapping (w.r.t. their respective given center of

reference). Each line segment is associated to a mean

potential value which define a confidence level that the line

segment belongs to a contour in the textural sense. In order

to finally fuse or reconstruct the final edge detection map of

the input plane image from these Nc sets of straight lines

detection in the space-variant log-polar domain, thus sim-

ulating and taking into account edge detection at different

detail levels in the image (i.e., with foveal details and low-

acuity information acquired from the eye’s periphery), we

carry out an inverse log-polar transformation and a simple

averaging technique weighted by the above-mentioned

potential value estimated for each line segment candidate.

This finally defines a soft contour map which is then nor-

malized between 0 and 1. A non-maximum suppression

step is then employed to produce thin contours [11, 18].

In order to make our edge detection procedure a bit

more robust, we resort to a similar strategy described in

[79] (used for the region-based segmentation problem)

which consists in repeating our segmentation process, in

this case, our line segment detection on each log-polar

mapping, expressed for different (non-linearly dependent)

1 This detection procedure, between simple and textural edges, is

somewhat similar to the integration and surround inhibition mecha-

nism proposed in [30] allowing to discard irrelevant edges within

texture regions.
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color spaces. In addition to the log-polar transformation,

which facilitates the edge detection procedure (i.e., the

detection of curved contour fragment after the inverse log-

polar transformation), the use of different color spaces may

also help the contour detection procedure. Indeed, with this

strategy, small and adjacent regions of pixels with similar

color in a given color space and for which a line segment

detector cannot efficiently separate could produce a better

estimation in another color space in which these two

regions could have a more distinct color difference.

Equivalently, these different color spaces, can be viewed as

different image channels provided by various sensors or

captors [79]. The same strategy can be used for different

scale transformations for the same reasons. The scale

transformation is already an intrinsic (internal) parameters

of the LSD algorithm which proposes to achieve a line

segment detection for a given resolution level of the input

image.

In the same idea to exploit different color spaces or scale

transformations in order to improve the final contour

detection result, we will see that the addition of the

Cartesian representation of the image to this set of (log)

polar transforms can also further improve the result (see

Sect. 3.2).

2.5 The BIEDA algorithm

Algorithm 1 shows a pseudo-code of the proposed final

biologically inspired edge detection algorithm (BIEDA).

Besides, Fig. 6 visually describes the two main parts of the

model, namely; the trans-saccadic memorization and inte-

gration steps.

Starting from a 2D accumulation matrix J, whose size is

equal to the image size and whose all pixel values are

initially set to zero, the routine ACCUMULATE ðLNs
Þ

consists in accumulating, for each pixel value at location

(x, y) of J, its preceding value and the mean edge potential

of each line segment 2 LNs
crossing the pixel of coordinate

(x, y) (see Eq. 2). In our application, better results are given

with a geometric mean which allows to somewhat suppress

the spurious potential values while preserving the correct

one, namely,

Jðx; yÞ ¼
X

cs2CS;sc
log2ð1þ LNs

ðx; yÞ
�

8 x; y ð2Þ

The routine AVERAGING k2½0;...;Nc� consists in (pixel-wise)
averaging all the Nc edge potential images resulting from

the inverse log-polar deformation w.r.t. its reference center.

cFig. 6 The general framework of the proposed algorithm visually

describing the trans-saccadic memorization step composed of two

sub-parts; namely (from top to bottom) (1) a sequence of cortical

mappings (equivalent to the information of the retinal stimulus

received by the primary visual cortex), or log-polar transformations

w.r.t. different equally spaced centers of reference (or points of view/

interest within the image plane). (2) A detection step of the most

likely straight line segments delineating two different textured regions

(simulating the integration and surround inhibition mechanism

allowing to discard irrelevant edges within texture regions). Finally,

a trans-saccadic integration (or accumulation) step, allowing to fuse

these different above-estimated edge maps, thus simulating and taking

into account edge detection at different points of views and detail

levels in the image plane
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The routine EXTRAPOLATION performs a spatial

extrapolation of the log-polar image at spatial locationswhere

logðqÞ (i.e., the logarithm of the Euclidean distance between a

given center of reference and a pixel in the Cartesian image)

cannot be computed because the pixel is located outside the

image plane (see Fig. 7). It prevents edges frombeingwrongly

detected along these false boundaries by the LSD algorithm.

In our application, this extrapolation scheme is performed by

sweeping the log-polar image in lexicographical order and to

replace, for each pixel with no intensity value (thus corre-

sponding to a pixel coordinate outside the Cartesian image),

its grey value, by the average of non-null pixel values located

in a 8-neighborhood system. Let us note that this routine is not

mandatory since simple alternative strategies are possible and

simply consists in either discarding edges which falls on the

border of the final (Cartesian) contour image O(x, y) or to set

to zero the edge potential Wð:Þ (see Eq. 1) for the pixel

locations corresponding to these false boundaries.

2.6 Discussion

Without biological consideration, we can also view the pro-

posed algorithm as a voting scheme for the detection of

(eventually small) circular arcs or contour fragments delin-

eating the boundary of two textured regions.2 Contrary to a

Hough-style approach, which is dedicated to the detection of

(whole) parametric curves, our algorithm aims at detecting

(possibly small) straight segments in the log-polar domain, or

Fig. 7 EXTRAPOLATION routine achieved on the first log-polar

mapping presented in Fig. 3 (at left) and applied at spatial locations

where a pixel value in the Cartesian image cannot be computed

because its coordinates are outside the image plane

Algorithm 1
BIEDA

Input: A (plane) image I(x, y) (in RGB)
Output: A soft contour map O(x, y)

Nc Nb. of log-polar transf. (or centers of refer. c)
Ns Nb. of considered line segments of the LSD

with the highest potential value
Nsc Nb. of scales for the LSD
CS Set of considered color spaces

Pc(I) Log-polar map of I w.r.t. the ref. center c
P−1
c (.) Inverse log-polar w.r.t. the ref. center c

Ψ(J) Edge potential map on the image J
LSDsc Line Seg. Detect. (with scale parameter sc)

gives in output a set of line segments L

1. Initialization:

• Build a list of Nc points {c1, . . . , cNc} taken on a
diagonal of a rectangular window centered on I

• k←1

2. Trans-saccadic memorization:
while k < Nc do

• Compute Pck(I) & EXTRAPOLATION Pck(I)
• Compute the edge potential Ψ Pck(I)
• Init. the 2D accumulation matrix J to 0

for each color channel and each color space cs ∈
CS of Pck(I) and each scale factor sc do

L← LSDsc on Pck(I)
LNs ← Select the Ns line segments ∈ L with
the highest mean edge potential Ψ(.)
J← ACCUMULATE(LNs) [see Eq. (2)]

• Kck ←P−1
ck

(J)
• k←k + 1

3. Trans-saccadic integration:
• O← AVERAGINGk∈[1,...,Nc]{Kck}

2 It is important to recall and understand that Nc ¼ 10 (log) polar maps

cannot (obviously) transform all long (possibly circular) contour

fragments into straight lines. When the polar transforms are not able to

ensure this property, these contour fragments are just approximated by

concatenations of small straight segments in the log-polar domain or

equivalently by small circular arcs, in the Cartesian domain, which

accumulate in the final soft contour map. It is worth also mentioning that

we have tried,without success, to findamore optimalway to distribute the

Nc centers of the log-polar transforms within the image, with different

patterns suchas the set dots uniformlydistributedalonga spiral centered at

the center of the image or other patterns. The only conclusion I reached is

that theNc centers of references should not be to close together (certainly

in order to ensure some diversities in the polar transforms), not to close to

the edges of the image (certainly to ensure that the polar image is not too

distorted) and the performance in term of F-measure of good detection are

all the more better than Nc is high up to certain extent (see Fig. 8).

Pattern Anal Applic

123



equivalently, small circular arcs or parametric curve frag-

ments in the Cartesian domain (after the inverse polar trans-

form). To this end, the proposed algorithm accumulates, for

each polar view and color channels, color spaces or consid-

ered scale factors, these contour fragments, as a voting

scheme in the Cartesian (image) domain, in an accumulation

matrix, in order to achieve a final soft contour map.

Another way to understand the proposed algorithm is to

consider it as a two-step bottom-up contour detection

procedure involving

1. an amplification step, via our accumulation map and

accumulation procedure (see Trans-saccadic memo-

rization part of Algorithm 1) which aims at enhancing

or amplifying (almost circular) textural contour frag-

ments, first detected in the log-polar plane via straight

segments and then in the Cartesian (image) plane (after

the inverse polar transform) (Fig. 9).

2. a final denoising step, via our averaging procedure (see

Trans-saccadic integration part of Algorithm 1) which

aims at removing noise and spurious edges.

3 Experimental results

3.1 Set up

For the edge potential map estimation (see Sect. 2.4 and

Eq. 1), parameters are also those proposed in [77, 78], i.e.,

Nw ¼ 7, Nb ¼ 5 and d ¼ 3 (see especially [77] in Fig. 8a,

for the experimental study and the rationale behind the

Fig. 9 Examples of edge potential maps obtained for each log-polar

transform (w.r.t. its center of reference) on the natural image shown in

Fig. 3. Top edge potential maps in the log-polar domain. Bottom edge

potential maps obtained in the Cartesian domain after an inverse log-

polar transform w.r.t. its center of reference. We can notice that the

edge potential maps obtained for each log-polar transform are

obtained at different (spatially variant) resolutions and levels of

details. In addition, these edge potential maps are different and

complementary; this diversity will allow that the trans-saccadic

integration step, via the simple averaging process, will insure a

reliable final soft edge map
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Fig. 8 Evolution of the F-measure score for the Algorithm 2, as a

function of respectively, the number of log-polar transforms and the

number of different color spaces (in each case, the other parameters

of the model have been kept identical)
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value of these two parameters in their ability to detect a

reliable potential map on the Berkeley database).

We will see later in this Section that the performance

measure of good detection are all the more better than Nc;

the number of log-polar transforms (w.r.t. its center of

reference) and the number of considered color spaces in CS
is high. In order to limit the computational requirement of

our algorithm, we set Nc ¼ 10 (see Fig. 3 and 2), Nsc ¼ 4

(number of scales) and CS ¼ fRGB, HSV, YIQ, XYZ,

LAB, LUVg (see Algorithm 1).

In our application, Ns, the number of line segments of

the LSD, considered with the highest (textural) potential

value, is an important internal parameter of our algorithm

to be estimated. To evaluate our algorithm and to estimate

this important internal parameter, we replicated the sce-

nario proposed in [6–16, 73], using the BSDS300 and the

F-measure.3 In order to ensure the integrity of the

evaluation, the internal parameter Ns of our algorithm is

tuned on the train image set (pre-defined by the author of

the BSDS300), by doing a local discrete grid search rou-

tine, with a fixed step size, on the parameter space and in a

given range of parameter values (namely, Ns 2 ½30� 300�
[step size: 30]. We have finally found that Ns ¼ 180 allows

us to ensure a maximal F-measure score on the training set.

This estimation of Ns is then used, as internal parameter, to

benchmark our algorithm on the independent test set.

Before all, we show, in Fig. 11, the non-thickened final

soft contour map which consists in (pixel-wise) averaging

all the Nc edge potential images (coming from the inverse

log-polar, polar deformations and from the Cartesian

image). We can notice that the accumulation of numerous

(different size) almost circular fragments, coming from the

detection of straight segments in the polar or log-polar

planes and straight segments directly (in the image plane)

creates a smooth edge potential map without line or cir-

cular artifacts.

3.2 Comparison with state-of-the-art methods

First, we have evaluated the algorithm as summarized in

Algorithm 1 but also the strategy of combining ðNc=2Þ log-
polar transforms with ðNc=2Þ (space-invariant resolution)

polar transforms on the test set of the BSDS300. The visual

differences between log-polar and polar deformation (w.r.t.

a same center of reference) are shown in Figs. 7 and 10 for

a given natural image.

In addition, as already said in Sect. 2.3, in the context of

the visual processes, the LIE is in fact known to occur not

only in the cortical plane but also in the retina (thus in the

Cartesian image plane). Therefore, we have also evaluated

the benefit of adding the input Cartesian image to this set of

log-polar and polar transforms (we refer to this algorithm

Fig. 10 Polar transformation w.r.t. the same center of reference as the

log-polar transform shown in Fig. 7

Fig. 11 Non-thickened final soft contour map (of the input image

shown in Fig. 3) consisting in averaging all the Nc edge potential

images coming from the inverse log-polar, polar deformations and

from the Cartesian image

3 The F-measure, proposed by Martin et al. [73], is deduced from the

Precision/Recall values and characterizes the agreement between region

boundaries of two segmentations. The precision measure (P) is defined as

the fraction of detections that are true boundaries (this measure is then low

when there is significant over-segmentation, or when a large number of

boundary pixels have poor localization). The recall (R) measure gives the

fraction of true boundaries detected. A low recall value is typically the

result of under-segmentation and indicates failure to capture salient image

structure. Thus, Precision quantifies the amount of noise in the output of a

detector, while recall quantifies the amount of ground truth detected. The

performance of a boundary detector providing a binary output is

represented by a point in the precision–recall plane. If the output is a

soft boundary image, a parametric precision–recall curve expresses the

compromise between absence of noise and fidelity to ground truth as the

mainparameterof the boundarydetector varies. Precision and recall canbe

combined in a single quality statistic measure, the F-measure

(F ¼ 2PR=ðPþ RÞ, defined as their harmonic mean and as a measure

of performance combining both precision and recall. The notation

F@(recall,precision) represents the value of the highest F performance

measure (of a binary classifier) existing on its precision–recall (or ROC)

curve at coordinates ‘‘@’’, themeasure of its recall performance (on x axis)

and its precision performance (on y axis). This highest F-measure on a

Precision–Recall curve is used as a summary statistic for the performance

of the detector on a set of images.

Pattern Anal Applic

123



as Algorithm 2). Indeed, even without this aforementioned

biological justification, it is worth recalling that the

Cartesian image plane may give an interesting spatial

configuration of the image scene exhibiting, in some parts

of the image, straight line segments for contours only

existing in the original Cartesian plane. We will check, to

what extent, this modification will improve the efficiency

of our basic procedure summarized in Algorithm 1.

By considering only the Nc log-polar transforms, we

obtain (i.e., for Algorithm 1) an F-measure score at 0.65

(recall: 0.69, precision: 0.61) on the 100 test images of the

BSDS300. By combining ðNc=2Þ log-polar with ðNc=2Þ
polar transforms, we obtain an F-measure score at 0.67

(recall: 0.71, precision: 0.65). Finally, by adding the input

Cartesian image to this set of log-polar and polar trans-

forms, we obtain an F-measure score at 0.69 (recall: 0.72,

precision: 0.66) for a global optimal threshold of t ¼ 0:52

(for gray levels lying between 0 and 1). As already said, the

use of the original Cartesian image, in our application, is

justified since many contours of man-made objects and

natural shapes, in the original Cartesian image, will consist

of straight lines (which will possibly transform into curves

in polar or log-polar domain). Since this (slight)

improvement is not achieved at the expense of too much

computational cost, we consider this algorithm (combining

log-polar, polar, and the Cartesian image) as a baseline for

comparison purposes in the following (Algorithm 2). By

comparison, if we consider only the Cartesian image, with

one color space and one scale, we obtain an F-measure

score at 0.53 (recall: 0.43, precision: 0.67). A low recall

value is typically the result of under-segmentation and

indicates that this strategy fails to detect important edges in

the image (in this case, mainly the edges associated to the

highly curved contours). Figure 12 (at bottom) shows

several F-measure curves for these aforementioned variants

of our Algorithm.

We can notice (see the precision–recall curves shown in

Fig. 12), that our BIEDA model performs well, compared

to the best existing state-of-the-art edge or contour detec-

tors existing in the literature (namely the gPb [11] and the

PFCD [15]) with an F-measure score at 0.69 (recall: 0.72,

precision: 0.66) on the 100 test images of the BSDS300.

Full results of our final algorithm are reported in Table 2

including the Optimal Dataset Scale (ODS) F-measure

score which is obtained using the global optimal threshold

on the (100 test images of the) BSDS300, i.e., the so-called
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Fig. 12 Top F-measure scores by several other state-of-the art

edge/contour detection methods on the BSDS300 (illustration is

adapted from [15]). Bottom F-measure scores for different variants of

our Algorithm 2. Namely; F-measure curve by considering; (1) only

the Cartesian image, with one color space and one scale and weighted

by our edge potential map (in the textural sense), (2) Nc=2 log-polar

transforms, (3) ðNc=2Þ log-polar with ðNc=2Þ polar transforms, (4) the

BIEDA model, i.e., by adding the input Cartesian image to the set of

Nc=2 log-polar and polar transforms (in cases 2–4, the other

parameters of the model have been kept identical)

Table 2 Comparison of F-measure [73] results obtained on the

BSDS300 [6]

ODS OIS

Human 0.79 0.79

BIEDA 0.69 0.70

gPb (Maire et al. [9]) 0.70 0.72

PFCD (Widynski et al. [12]) 0.68 0.69

Canny [18] 0.58 0.62

ODS is the optimal scale on the dataset (or the global optimal

threshold [t ¼ 0:52] estimated on all the test images [11]) and OIS is

the optimal scale on each image (or optimal threshold on each test

image [11])
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(usually referred as) F-measure score along with the

Optimal Image Scale (OIS), i.e., the F-measure score

obtained using the optimal threshold on each image.

Fig. 13 illustrates a few contour detection results obtained

by the proposed algorithm after a non-maximum suppres-

sion step. Visually, we can notice that the edge maps

generated by our approach is a bit over-segmented com-

paratively to the gPb detector (and its numerous variants).

This is confirmed by the obtained score 0.69@ (0.72, 0.66)

with an ODS threshold 0.52 compared to the score obtained

by the gPb detector 0.70@ (0.71, 0.68) with an ODS

threshold 0.13 showing, in our case, a greater value for the

recall and the threshold value.

Finally, we have evaluated the performance of our

algorithm as a function of, respectively, Nc the number of

polar and log-polar transforms and the number of different

Fig. 13 Examples of soft contour maps obtained by the proposed

BIEDA scheme (Algorithm 2) after a non-maximum suppression step

on some images of the test set of the BSDS300 (and the image

number 134052). We obtain for the test set of the BSDS300, an

F-measure score at 0.69 (recall: 0.72, precision: 0.66) for a global

optimal threshold of t ¼ 0:52 (for gray levels lying between 0 and 1)
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color spaces (in each case, the other parameters of the

model have been kept identical). Results are summarized in

Fig. 8 and shows the benefit of doing and averaging (up to

a certain extent) several transformations possibly expressed

in different color and coordinate spaces (Fig. 14).

3.3 Algorithm and discussion

Figure 14 shows us different ways of distributing the Nc

centers of the log-polar transforms within the image and

the final F-measure score obtained in each case (the other

parameters of the BIEDA model have been kept identical).

The only conclusion we can reach is that the Nc centers of

references should not be to close together (certainly in

order to ensure some diversities in the polar transforms).

Else, we can notice that the shape of the distribution pattern

seems not very important.

In addition, in order to show that bio-inspired geometric

transforms outperforms other non-linear geometrical

transforms for the specific edge detection problem, the

BIEDA model has been tested by replacing the Nc polar

and log-polar transforms by a a set of Ncð¼ 10Þ stretching

transforms (see Fig. 15) whose side of the stretch and the

stretching factor was randomly chosen in the inter-

val [0.50; 1.50]. In this case, the final F-measure score

obtained is (with the other parameters of the BIEDA model

remaining the same): 0.6693@ (0.7218, 0.6239) which is

not bad at all but less than the score obtained with the set of

(log)-polar transformations.

The edge detection procedure takes, on average, 1 min

for an IntelCore i7, 3.2 GHz, 6403 bogomips and non-

optimized code running on Linux which is comparable to

the gPb detector [11, 80] and to the PFCD detector [15].

Let us add that our algorithm and especially the set of log-

polar or polar transforms, along with the line segment

detection process can be easily computed in parallel, for

example using the parallel abilities of a graphic processor

unit (GPU) (embedded on most graphics hardware nowa-

days available on the market) [81].

In addition to the fact that our algorithm could benefit

from any hardware based on multi-threaded CPUs or GPU

cards, it is worth mentioning that, with a quite similar

F-measure score compared to the state-of-the-art gPb-based

contour detector, the precision and recall measures are

Fig. 14 Examples of different ways of distributing the Nc centers of

the log-polar transforms. From lexicographic order, the following

F-measure scores are obtained (in each case, the other parameters of

the BIEDA model have been kept identical): 0.6870, 0.6718, 0.6761,

0.6799, 0.6826, 0.6765, 0.6839, 0.6848, 0.6858, 0.6730, 0.6798,

0.6836, 0.6866
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quite different for a given image compared to the measures

obtained by the gPb algorithm (see Table 3). It means that

these two methods perform differently and well for dif-

ferent images. This is not surprising since these two

methods are, by nature, very different from each other.

This fact may suggest that these two methods extract

complementary edge information and, consequently, could

be paired up or combined together to achieve better results.

Source code (in C?? language) of our algorithm with

the set of contour detections obtained by our algorithm and

the F-measure data (OIS and precision–recall curve for

each test image with comparison with ground truth seg-

mentations) are publicly available at the web site of the

author in order to make possible eventual comparisons with

future segmentation algorithms or different performance

measures.4

4 Conclusion

In this paper, we have presented a new method for the edge

or contour detection problem in natural images. The pro-

posed biologically inspired model tends to exploit some

important structural properties of the HVS and especially

the neural mechanism controlling the natural saccadic eye

movement process occurring during visual exploration/

search and the resulting (saccade fixation) sequence of log-

polar transformations of the retinal image which finally

corresponds to the information received by the cerebral

(visual) cortex. In this log-polar domain, the contour

detection problem is reliably facilitated since a given

curved contour fragment may be possibly transformed into

a straight line segment which will be then efficiently

detected by a reliable line segment detection method. This

edge detection model performs well (in term of F-measure)

compared to the best existing state-of-the-art edge or

contour detectors, remains simple to implement and per-

fectible by increasing the number of log-polar transforms

(w.r.t. different points of view or centers of reference

within the input image) or by dynamically set and/or

adaptively selecting more appropriate points of view within

the image. In addition, our edge detection model is easily

parallelizable and thus remains especially well suited for

the next-generation massively parallel computers and

multi-core processors.
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