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a b s t r a c t

In this paper, we propose an inhomogeneous restoration (deconvolution) model under the Bayesian
framework exploiting a non-parametric adaptive prior distribution derived from the appealing and nat-
ural image model recently proposed by Buades et al. [Buades, A., Coll, B., Morel, J.-M., 2005. A review of
image denoising algorithms, with a new one. SIAM Multiscale Model. Simul. (SIAM Interdisc. J.), 4(2),
490–530] for pure denoising applications. This prior expresses that acceptable restored solutions are
likely the images exhibiting a high degree of redundancy. In other words, this prior will favor solutions
(i.e., restored images) with similar pixel neighborhood configurations. In order to render this restoration
unsupervised, we have adapted the L-curve approach (originally defined for Tikhonov-type regulariza-
tions), for estimating our regularization parameter. The experiments herein reported illustrate the poten-
tial of this approach and demonstrate that this regularized restoration strategy performs competitively
compared to the best existing state-of-the art methods employing classical local priors (or regularization
terms) in benchmark tests.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In the regularized restoration framework, the prior (or regular-
ization) term allows us to both statistically incorporate knowledge
concerning the types of restored images a priori defined as accept-
able solutions and to stabilize (computationally speaking) the solu-
tion of this ill-conditioning inverse problem. That is why the design
of efficient image prior models, and especially their ability to sum-
marize the intrinsic properties of an original image to be recovered
are crucial in the final image quality and signal-to-noise improve-
ment (ISNR) restoration result.

Over the last two decades, there have been considerable efforts
to find an efficient regularization term (or a prior distribution)
capable of modeling all the intrinsic properties of a natural image,
particularly its edge and textural information. To this end, several
edge-preserving local regularization strategies there have been
proposed in the spatial domain (Chantas et al., 2006; Foi et al.,
2006; Mignotte, 2006; Neelamani et al., 2004; Banham and Katsag-
gelos, 1996) (e.g., via non-stationary, compound Markov or MRF
model with robust potential functions) or in the frequential do-
main (Guerrero-Colon and Portilla, 2006; Bioucas-Dias et al.,
2006; Foi et al., 2006; Figueiredo and Nowak, 2005, 2003; Biou-
cas-Dias, 2006; Neelamani et al., 2004; Banham and Katsaggelos,
1996) (e.g., via thresholding).
ll rights reserved.
Buades et al. (2005) have recently proposed a natural and ele-
gant extension of the image bilateral filtering paradigm. The basic
idea behind the so-called Non-Local means (NL-means) denoising
concept is simple. For a given pixel i, its new (denoised) intensity
value is computed as a weighted average of grey level values with-
in a search window. The weight of the pixel j in this weighted aver-
age is proportional to the similarity (according to the euclidean
distance) between the neighborhood configurations of pixels i
and j. In this procedure, the denoising process is due to the regular-
ity assumption that self-similarities of neighborhoods exist in a
real image1 and that one (or several) neighborhood configuration(s)
can efficiently predict the central value of the pixel, as shown by
Efros and Leung (1999) for texture synthesis with a (somewhat) sim-
ilar non-parametric sampling strategy.

In this paper, the idea proposed by Buades et al. (2005) is herein
used to derive an efficient image prior distribution. This prior ex-
presses that acceptable restored images are likely the solutions
exhibiting similar neighborhood configurations (i.e., images owing
a high degree of redundancy or exhibiting numerous similar pat-
terns1). Comparisons with classical deconvolution and restoration
approaches using local regularization strategy (in the spatial or fre-
quential domain) are given in order to illustrate the potential of
this approach and its pros and cons for some degradation models.
1 The repetitive character of a textured image (sometimes called the texton) is
obvious and one can observe that flat zones present numerous similar configurations
lying in the same object. Straight or curved edges also generally possess a complete
line of pixels with similar configurations (mostly along the contour, see Buades et al.
(2005) for relevant examples).
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2. Proposed approach

We herein use the classical penalized likelihood framework lead-
ing, in the context of image restoration, to the following cost func-
tion EðxÞ to be optimized

x̂ ¼ arg min
x
fky� h � xk2 þ cXðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

EðxÞ

g ð1Þ

where y and x represent, respectively, the noisy (degraded by an
additive and white Gaussian noise with variance r2) and observed
blurred image and the undistorted true image. h is the Point Spread
Function (PSF) of the imaging system2 and � is the linear convolu-
tion operator. This energy function ðEðxÞÞ contains two terms, the
first expresses the fidelity to the available data y and the second en-
codes the expected property of the true undegraded image. c is the
regularization parameter controlling the contribution of the two
terms. Let us note that this last parameter is crucial as it determines
the overall quality of the final estimate. More precisely, c must be
small in order to achieve a small residual error ky� h � xk2. However,
a large c is required to obtain a restored image xc with small prior
error XðxÞ. The estimation of this parameter will be discussed in Sec-
tion 3.

2.1. Non-local prior

In this work, we consider a prior error XðxÞ, related to a prior
distribution of the form

PXðxÞ / expf�cXðxÞg / expf�c kx�NLM½y�ðxÞkq
q|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kqðxÞkq
q

g ð2Þ

where q > 1 is a shape factor and NLM½y�ðxÞ designates the NL-
means (non-local means) filter (Buades et al., 2005) applied on x
(the undegraded image to be estimated).

More precisely, when given a discrete noisy and blurred image
y ¼ fyðiÞji 2 Ig, the estimated value NLM½y�ðxðiÞÞ, for a pixel i of x
is computed as a weighted average of all the pixels in the image by
the following non-local filtering process:

NLM½y�ðxðiÞÞ ¼
X
j2I

wði; jÞ xðjÞ

In this filter, the family of weights fwði; jÞgj depend on the similarity
(according to the euclidean distance) between the neighborhoods of
pixels i and j, and must satisfy (Buades et al., 2005) the usual con-
ditions 0 6 wði; jÞ 6 1 and

P
jwði; jÞ ¼ 1 with

wði; jÞ ¼ 1
ZðiÞ exp �kyðNiÞ � yðNjÞk2

2

h2

( )

yðNiÞ denotes the intensity grey level vector constituted by the set
of grey level values located in the square neighborhood ðNiÞ of
fixed size S and centered at pixel of coordinate i. ZðiÞ is the normal-
izing constant given by

ZðiÞ ¼
X

j

exp �kyðNiÞ � yðNjÞk2
2

h2

( )

where the parameter h acts as a degree of filtering.
Thus NLM½y�ðxÞ designates the NL-means filter applied on x

whose the non-local similarity graph (i.e., the family of weights
fwði; jÞgj) is previously computed from y the noisy and blurred ob-
served image.
2 We shall assume throughout this paper that the degradation model (PSF and
variance of the white Gaussian noise) is known. It might be given analytically or given
numerically based on previous estimations or calibration experiments.
The proposed distribution (Eq. (2)) expresses that, for our
deconvolution or restoration problem, an acceptable a priori solu-
tion is likely the set of estimated images invariant by NL-means
denoising, i.e., an already denoised image exhibiting numerous
similarity of neighborhood configuration (exhibiting an high de-
gree of redundancy) as any natural images. The non-local similarity
graph (i.e., the set of weights used in the NL-means filter) is com-
puted from the only observable, i.e., y.

Eventually, the final result of restoration can be used to re-esti-
mate a better non-local similarity graph and to refine, in a second
pass, the restoration result. This regularization prior is described as
non-local since pixels belonging to the whole image are used for
the estimation of each new (denoised) pixel (in practice, in order
to reduce the computation time, the seek of the neighborhood is
limited to a window search around the pixel to be estimated).

2.2. Search of the solution

In our application, this search is performed by a steepest des-
cent procedure which moves the estimates iteratively in the nega-
tive gradient direction x̂½nþ1� ¼ x̂½n� � anrEðxÞ, with the following
iterative procedure:

x̂½nþ1� ¼ x̂½n� þ anðh# � ðy� h � x½n�ÞÞ � c � qq0ðx½n�Þjqðx½n�Þjq�1 ð3Þ

where h#ði; jÞ ¼ hð�i;�jÞ (the coordinates ði; jÞ represent the dis-
crete pixel locations and for h symmetric, we have h# ¼ h). In this
form of notation, the multiplication between q and q0 is done
point-by-point (or pixel by pixel) and the superscript indicates
the iteration number. We recall that q is the shape factor of our
prior error term (see Eq. (2)). an is the gradient step size which
changes adaptively at each iteration according to the following
equations (Sullivan and Chang, 1991):

an ¼
kqnk

2

kh � qnk
2 with qn ¼ h# � ðy� h � x½n�Þ ð4Þ

where, in this notation, pixels are organized in qn and in h � qn in
lexicographic order as one large column-vector and q0ðxsÞ can be
easily found and written by

q0ðxsÞ ¼ 1� 1
Zs

� �
� signðxs �NLM½y�ðxsÞÞ ð5Þ

where Zs is the normalizing constant (Buades et al., 2005) of the NL-
means filter for each site (or pixel of coordinate) s. Customarily,
Zs � 1, we have herein considered that q0ðxsÞ � signðxs�
NLM½y�ðxsÞÞ.
3. Regularization parameter estimation

A crucial element in this penalized likelihood framework as ex-
pressed by Eq. (1), is the proper choice of the regularization param-
eter c. If c is selected as small, the recovered image is dominated by
high-frequency noise components (the solution is the so-called un-
der-regularized). If c is too large, the effect of the prior will domi-
nate the solution and important information in the data will be
lost (leading to a well-known over-regularized estimated image).

Several methods have been presented for estimating the regu-
larization parameter and Thompson et al., 1991 review some of
them in the context of a particular simple class of (energy-based)
restoration models in which Xð:Þ in Eq. (1) is quadratic in x. It is
the case of the so-called total predicted mean squared-error
(TPME), the generalized cross-validation (GCV) or the equivalent
degrees of freedom criterions (EDF) whose reliable estimation is
facilitated with the help of eigen-analysis and spectral representa-
tion (Thompson et al., 1991). These simple methods cannot be
applied in our energy-based restoration models involving a
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Fig. 1. Examples of L-curves obtained in our non-local restoration model for the
different degradation models considered in Table 1. Each point of each curve is
obtained for a value of the regularization parameter cðc 2 ½0:0—10:0�Þ.
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non-quadratic regularization functional. In the (more general) case
of a non-quadratic regularizer, several computationally demanding
stochastic methods have been proposed to compute the regulariza-
tion parameter (or the so-called hyper-parameter) in the Maxi-
mum Likelihood (ML) sense. Amongst these, we can cite the
stochastic descent algorithm proposed by Younes (1989) (which
cannot be applied in the case of blur degradation) or the mean field
approximation method of Zhou et al. (1997), or a gradient descent
algorithm using a Markov Chain Monte Carlo sampling technique
(to sample from prior and posterior distributions) as proposed by
Jalobeanu et al. (2002). We can also cite, in the Stein’s risk sense,
the hyper-parameter stochastic estimation method proposed by
Batu and etin (2008) which requires a stochastic estimator of the
trace of a large matrix.

Another technique, called the L-curve (Hansen, 1992) has been
proposed in the case of the Tikhonov regularization (i.e., when
XðxcÞ ¼ kLxck2 where L is either an identity matrix, a gradient or
a Laplacian operator for respectively a zero, first- or second-order
regularization method). The L-curve is simply a logarithmic plot
of Lðy; xcÞ ¼ ky� h � xck2 (called the residual norm or the likeli-
hood energy term) versus the logarithmic plot of XðxcÞ (the prior
or regularization energy term) as c, the regularization parameter,
varied. The name L-curve derives from the characteristic shape of
this curve. When c is very large, the curve is essentially an horizon-
tal line; the restored image is excessively smooth (over-regularized)
and the final estimate is dominated by regularization errors. When c
is very small, the curve is essentially a vertical line; in this case, we
have a ML restoration (without prior) and thus the error between
the undegraded and recovered (under-regularized) image is domi-
nated by perturbation errors. The transition between these two re-
gions of under and over-regularization, separated by the ‘‘corner”
point, has been proposed in (Hansen, 1992) as an optimal value
of the regularization parameter where regularization and pertur-
bation errors (or bias and variance of the final estimate) are
approximately balanced. The L-curve estimation technique re-
mains computationally very demanding since it requires the com-
putation of many repeated MAP restored images for a wide range
of values of the regularization parameter. Once these points have
been computed, a certain interpolation method is used to obtain
a rational function (approximating the L-curve). The curvature of
this rational function is then computed to determine the best value
of the regularization parameter. In the case of our non-local regu-
larization framework, this estimation technique is much simpler
(deterministic and faster) to compute since the obtained curve
ðlogLðy; xcÞ, log XðxcÞÞ has a V-shape (see Fig. 1). More precisely,
our modeling leads to a curve where part of the curve to the right
of the corner is not horizontal but a nearly vertical diagonal line.
This characteristic results from the specific nature of our non-local
prior which contrary to Tikhonov-type regularizations, does not
smooth the image but gradually increases the bias (or the regular-
ization error) of the estimate (by creating high frequency compo-
nents contained in some textons) when c gradually increases. In
our case, the corner can easily be searched by a simple steepest
descent procedure which starts with c½0� ¼ r=12 and c½1� ¼ r=8
(for example) and then moves c iteratively in the negative gradient
direction with a fixed step size by the following iterative
procedure:

ĉ½qþ2� ¼ ĉ½q� � bsign
1

log Xðxc½qþ1� Þ�log Xðxc½q� Þ
logLðy;xc½qþ1� Þ�logLðy;xc½q� Þ

0
B@

1
CA

c½qþ1� ¼ c½q�

ð6Þ

(with Lðy; xcÞ ¼ ky� h � xck2) where the term under the fraction is
the numerical approximation (first-order) of the derivative of the
curve at c½q� and sign(.) is the sign function. We recall that xc½q�
designates the restored image at convergence (we stop the iterative
procedure (3) after stability of the restored image), for regulariza-
tion parameter equals to c½q� obtained at iteration q. We have taken
b ¼ 0:1 and we stop the procedure when the numerical approxima-
tion of the derivative changes of sign. Some authors (Lie, 2005; Xu,
1998; Ng and Allebach, 2006) have recently observed that the
L-curve estimation technique always slightly over-smoothes the
solution (i.e., it selects a slightly large c). In order to take this char-
acteristic (that we have observed in our application) into account,
we have decided to weight the final estimated ĉ by 1/2.5.

4. Experimental results

4.1. Set-up

In all experiments, we have considered the NL-means algorithm
with the following parameters: the size of the search window and
the neighborhood ðSÞ is set to 7� 7. The decay of the weights in the
similarity measure is set to h ¼ 10r (as proposed in Buades et al.
(2005)) where r is the standard deviation of the Gaussian noise
and we have considered a classical Euclidean distance (and not a
Gaussian weighted Euclidean distance as proposed in (Buades
et al., 2005)). We precompute the set of weights in order to de-
crease the computational requirement of the non-local denoising
procedure, herein applied to each iteration of the steepest descent
iteration and take a shape factor q ¼ 1:5. We start the iterative gra-
dient descent (Eq. (3)) with x½0� ¼ y and we stop the iterative proce-
dure after stability of the restored image.

We now present a set of experimental results and comparisons
illustrating the performance of the proposed approach. For the first
four experiments, we have replicated the scenarios used in the
evaluation of state-of-the-art methods described in (Guerrero-Co-
lon and Portilla, 2006; Bioucas-Dias et al., 2006; Chantas et al.,
2006; Foi et al., 2006; Mignotte, 2006; Figueiredo and Nowak,
2005, 2003; Bioucas-Dias, 2006; Neelamani et al., 2004; Banham
and Katsaggelos, 1996; Jalobeaunu et al., 2001; Liu and Moulin,
1998), with which we compare the proposed approach. We have
also replicated the degradation model described in (May et al.,
1998; Molina et al., 2000). In these cases, two edge-preserving
methods were implemented and tested; respectively; (1) The use
of a compound Gauss–Markov random fields, with an Ising model
representing the upper level and a line process to model the abrupt
transitions (and acting as an activator or inhibitor of the relation
between two neighbor pixels). In this model, the solution is



Table 1
Blur, noise variance and BSNR (dB) for experiments Exp1–6

Blur r2 BSNR

Exp1 9� 9 uniform [CAMERAMAN 256� 256] .308 40
Exp2 hij ¼ ð1þ i2 þ j2Þ�1; i; j ¼ �7; . . . ;7 [CAMERAMAN 256� 256] 2 32
Exp3 hij ¼ ð1þ i2 þ j2Þ�1; i; j ¼ �7; . . . ;7 [CAMERAMAN 256� 256] 8 26
Exp4 [1,4,6,4,1]t [1,4,6,4,1]/256 [LENA 512� 512] 49 16.5
Exp5 5� 5 uniform [CAMERAMAN 256� 256] 33.3 20
Exp6 1½1þ i2 þ j2

=16��3i; j ¼ �9; . . . ;9 [CAMERAMAN 256�256] 62.5 17

Table 3
ISNR/PSNR (dB) for experiments Exp5–6

Methods ISNR (dB)

Exp5 Exp6

Sup. N-L Rest. 3.81 2.77
Unsup. N-L Rest. 3.80 2.64
Unsup. N-L Rest2. 4.24 2.99

Mignotte (2006) 3.50 1.9
May et al. (1998) 3.43 –
Molina et al. (2000) – 0.17 ðPSNR ¼ 21:1Þ
Charbonnier et al. (1997) (in Molina et al. (2000)) – 0.16 ðPSNR ¼ 20:8Þ

Table 4
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estimated thanks to an extension of the classical simulated anneal-
ing. (2) The ARTUR model of Charbonnier et al. (1997) also imple-
mented and tested in (Molina et al., 2000) in the restoration
context. In these experiments, original images are CAMERAMAN

(experiments 1, 2, 3, 5 and 6) of size 256� 256 and LENA (experi-
ment 4) (of size 512� 512). Table 1 displays blur, noise and the
resulting BSNR (the ratio between the variance of the noise and
the variance of blurred image without noise) for each of the
experiments.

In order to also test the proposed estimation approach, we have
thus considered, for comparisons

(1) Algorithm Sup. N-L Rest: the proposed ‘‘supervised” non-
local restoration approach with a regularization parameter
manually tuned (by trials and errors) to give the best resto-
ration result in the ISNR sense. To this end, we have set
c ¼ 0:04;0:18; 0:30;1:2;0:48;0:53, respectively, for Exp1–6.

(2) Algorithm Unsup. N-L Rest: the non-local restoration
approach combined with the regularization parameter esti-
mation proposed in Section 3.

(3) Algorithm Unsup. N-L Rest2: the Unsup. N-L Rest. algorithm
whose final result of restoration is used to reestimate a bet-
ter non-local similarity graph (i.e., the family of weights
fwði; jÞg) followed by a non-local restoration procedure
(Sup. N-L Rest) with a regularization parameter c fixed to
the value estimated by the first step. In this second step,
the neighborhood size S is set to one or three pixels. This
choice will be made explicit in the following (see Section
4.2).

The obtained result is compared to the existing state-of-the art
algorithms in Tables 2 and 3. The best ISNR results provided by the
existing restoration algorithms and the results provided by our ap-
proach for each degradation level are indicated in bold. In order to
compare the quality of the restoration result in (Molina et al.,
Table 2
ISNR (dB) for experiments Exp1–4

Methods ISNR (dB)

Exp1 Exp2 Exp3 Exp4

Sup. N-L Rest. 7.34 6.44 4.82 3.83
Unsup. N-L Rest. 7.08 6.39 4.80 3.82
Unsup. N-L Rest2. 7.81 7.14 5.24 3.84

Guerrero-Colon and Portilla (2006) 7.33 7.45 5.55 –
Bioucas-Dias et al. (2006) 8.52 - – 2.97
Chantas et al. (2006) 8.91 – – 3.77
Foi et al. (2006) 8.58 8.29 6.34 4.55
Mignotte (2006) 8.23 7.58 5.70 1.63
Figueiredo and Nowak (2005) 8.16 7.46 5.24 2.84
Bioucas-Dias (2006) 8.10 7.40 5.15 2.85
Figueiredo and Nowak (2003) 7.59 6.93 4.88 2.94
Neelamani et al. (2004) 7.30 – – –
Banham and Katsaggelos (1996) 6.70 – – –
Jalobeanu et al. (2002) – 6.75 4.85 –
Liu and Moulin (1998) – – – 1.08
2000) which use the peak signal-to-noise ratio (PSNR) (defined in
dB between two images x and x̂ of size N pixels by
10log10ð½N � 2552�=½kx� x̂k2�Þ), we use the following conversion
ISNR ¼ PSNRky� xk2

=ðN � 2552Þ, i.e., ISNR ¼ PSNR� MSEðy� xÞ=
2552 where MSE(.) represents the average mean square error of
the considered degradation model.

Table 4 shows the time in seconds and the number of iterations
taken by each restoration, for each considered degradation model
(cf. Table 1) (system used: AMD Athlon 64 Processor 3500+,
2.2 GHz, 4424 bogomips and running on Linux).

4.2. Discussion

In order to test the limit of our prior, we experimented with use
of the original (undegraded) image to find the ‘‘optimal” weights
which will then be used in our restoration procedure. Table 5 sum-
marizes the ISNR results for the different experiments (and for dif-
ferent neighborhood sizes, c being empirically set to an optimal
value). The table shows that when the neighborhood size is small,
Time in seconds for the different experiments

Time (s) (Nb. iterations)

Sup. N-L Rest Unsup. N-L Rest Unsup. N-L Rest 2

Exp1 281(978) 407 635
Exp2 35(101) 129 161
Exp3 27(75) 78 103
Exp4 20(7) 72 86
Exp5 19(90) 33 50
Exp6 314(82) 487 765

Table 5
ISNR (dB) obtained for optimal weights estimated on the original (undegraded image)
for experiments Exp1–6

Sup. N-L Rest. ISNR (dB)

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6

Window size ½1� 1� 16.99 11.50 8.17 4.09 6.53 5.10
Window size ½3� 3� 8.01 7.35 6.07 4.44 6.03 5.09
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very good ISNR results are possible. Restoration results can excel
when neighborhood size equals to one pixel. In the latter case,
the family of weights thus encodes the similarity between the true
(undegraded) luminances of each pair of pixels within a search
window. However, this experience is anecdotal, since we do not
know the original image (and we also need a neighborhood size
sufficiently large enough to ensure a reliable estimation of the
weight values against the noise). It shows that improvement could
be obtained if a better similarity non-local graph was estimated
(i.e., if a more reliable estimation procedure was used to assess
the set of weights). In order to take the preceding remark into ac-
count, we have tested the strategy using the final result of restora-
tion to reestimate a better non-local similarity graph which will be
used in a second pass to refine the restoration result. The experi-
ments have yielded several interesting results. If the non-local
graph is reestimated with the same original neighborhood size
(i.e., 7� 7 pixels), this latter strategy does not emerge as an effi-
cient means of improving the restoration result. However, this
strategy turns out to be very efficient if the neighborhood size is
smaller than the one used in the first step of the restoration algo-
rithm. This remark also confirms the aforementioned experience
(using the true undegraded image to find the ‘‘optimal” weights).
Since the restoration result of Sup. N-L Rest or Unsup. N-L Rest are
already widely denoised and closer to the true (undegraded) image
than the degraded image, the neighborhood size in the second step
has to be smaller. For Unsup. N-L Rest2 we use one pixel for the
Fig. 2. From left to right, original image, noisy-blurred image for Exp1 (see Table 1) an
Rest2.) ISNR ¼ 7:79 dB (see Table 2).

Fig. 3. From left to right, original (cropped) Lena image noisy-blurred image for Exp4 (s
Rest2.) ISNR ¼ 3:79 dB (see Table 2).
neighborhood size when the variance of the noise ðr2Þ is below
15, otherwise we use three pixels for the neighborhood size.

We can observe that the proposed non-local restoration method
leads to interesting and sometimes competitive restoration results
for various level of blur and noise degradations in benchmark tests,
especially for degradation exhibiting more noise than blur and
even for blur expressed by a point spread functions exhibiting
zeros in the frequential domain (such as the uniform blur and for
which the distance used in the similarity graph could be altered).
Figs. 2 and 3 show some restoration results for Exp1 and Exp4.

Our NL-means-based regularization term (encoding the inher-
ent redundancy property of any textured images) seems particu-
larly efficient for LENA image (Exp4) which contains several
textures (thus exhibiting numerous similar neighborhood configu-
rations or repetitive patches on each textured area). In this case the
ISNR obtained by our restoration method shows very good result
comparatively to the other algorithms. In the case of the ISNR res-
toration results related to Exp1–3 and Exp5–6 on the CAMERAMAN im-
age (which is less textured and has relatively more piecewise
homogeneous regions or ‘‘geometric structures”), our model re-
mains competitive. However, a segmentation-based regularization
term Mignotte (2006) or any regularization term, promoting a
piecewise smooth restored image, seems more appropriate.

We have tested the influence of the variation of the parameters
q (the norm of the NL-means prior) and the ‘‘size of the neighbor-
hood” on the result of the SNR improvement measure (for all the
d restored image using the proposed restoration approach (algorithm Unsup. N-L

ee Table 1) and restored image using the proposed approach (algorithm Unsup. N-L
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experiments and for our algorithm Sup. N-L Rest). Fig. 4 shows the
evolution of the ISNR improvement along several discrete values of
qðq 2 ½1; . . . ;2�Þ and ‘‘neighborhood size” 2 ½3; . . . ;13� pixels. Exper-
iments show that our proposed restoration model is not overly
sensitive if q 2 ½1:3; . . . ; 1:8� and if the ‘‘neighborhood size” param-
eter (used in the first pass of our restoration algorithm and thus di-
rectly on the degraded image) is between 5� 5 and 9� 9.

We can also observe that the estimation procedure presented
for the regularization parameter is particularly well suited to this
model. Starting from the initial value given in Section 3, only 3–6
iterations are necessary to converge and to produce reliable and
nearly optimal value for this parameter.

5. Conclusion

In this paper, we have presented a deconvolution/restoration
approach whose regularization term encodes the inherent high
redundancy of any natural images. This new prior derived from
the denoising algorithm proposed by Buades et al. allows to effi-
ciently constrain a deconvolution procedure, demonstrating its
ability to summarize the intrinsic redundancy property of any nat-
ural image. In this context, the L-curve based approach proposed
by Hansen et al. is well suited to a robust, fast, deterministic and
easy estimation of the optimal value of the regularization parame-
ter. Finally, we believe that this adaptive regularization strategy
could also be efficiently extended in order to regularize a number
of inverse problems in image processing or computer vision such
as tomography, superresolution, segmentation or reconstruction
problems.
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