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This paper presents a new and simple segmentation method based on the K-means clustering procedure
and a two-step process. The first step relies on an original de-texturing procedure which aims at convert-
ing the input natural textured color image into a color image, without texture, that will be easier to
segment. Once, this de-textured (color) image is estimated, a final segmentation is achieved by a spa-
tially-constrained K-means segmentation. These spatial constraints help the iterative K-means labeling
process to succeed in finding an accurate segmentation by taking into account the inherent spatial
relationships and the presence of pre-estimated homogeneous textural regions in the input image. This
procedure has been successfully applied on the Berkeley image database. The experiments reported in
this paper demonstrate that the proposed method is efficient (in terms of visual evaluation and quanti-
tative performance measures) and performs competitively compared to the best existing state-of-the-art
segmentation methods recently proposed in the literature.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Image segmentation is an important pre-processing step which
consists in dividing the image scene into spatially coherent regions
sharing similar attributes. This preliminary low-level vision task
has been widely studied in the last decades since it is of critical
importance in many image understanding algorithms, computer
vision and graphics applications. Presently, the problem of finding
a fast, simple and automatic method, able to efficiently segment a
color textured image remains open.

Due to their simplicity and efficiency, clustering approaches
were one of the first techniques used for the segmentation of (tex-
tured) natural images (Banks, 1990). After the selection and the
extraction of the image features (usually based on color and/or tex-
ture and computed on (possibly) overlapping small windows cen-
tered around the pixel to be classified), the feature samples,
handled as vectors, are grouped together in compact but well-
separated clusters corresponding to each class of the image. The
set of connected pixels belonging to each estimated class thus
defined the different regions of the scene. The method known as
K-means (or Lloyd’s algorithm) (Lloyd, 1982) (and its fuzzy version
called fuzzy C-means) are some of the most commonly used tech-
niques in the clustering-based segmentation field, and more gener-
ally, “by far, the most popular clustering algorithm used in
industrial applications and machine learning” (Berkhin, 2002).

Nevertheless, despite its popularity for general clustering,
K-means suffers from three major shortcomings for the difficult
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problem of the unsupervised segmentation of textured color
image;

(1) First, this clustering utilizes an iterative procedure that con-
verges monotonically to a local minima. This convergence to
a bad local solution may be due either (or both) to a bad ini-
tialization (i.e., a bad choice of the initial cluster centers) or
to the complexity or to the high-dimensional of the dataset
(such as the high dimensional feature descriptors required
to characterize different color textures).

(2) Such clustering method only involves a partitioning in the
feature space without (at all) considering spatial constraints.
This considerably reduces the efficiency of this algorithm for
the image segmentation issue. Since spatial relationships are
essential attributes of any image, spatial constraints should
be necessarily taken into account to achieve an efficient
noise robust image segmentation.

(3) Finally, the K-means assumes, often wrongly, the presence of
spherical clusters with equal volumes (or equivalently, the
shapes of each feature distribution associated to each class
are assumed to be Gaussian with identical variance).

In this paper, we propose an original and simple segmentation
strategy based on the K-means procedure that remedies these
above-enumerated problems. First, in order to apply the K-means
clustering algorithm in a reduced dimension space, in which the
search of well-separated clusters can converge faster to a better
local minima (related to a more accurate segmentation map), we
propose, in a first step, to simplify the input color textured image
into a color image without texture. Thanks to this pre-processing
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step (that we will call in the following a de-texturing procedure) the
difficult textured image segmentation problem (which necessarily
should use a set of high dimensional texture feature descriptors) is
reduced to solving a (noisy) color image segmentation which is
drastically less complex than a color textured image segmentation
problem.

In our application, this de-texturing procedure is simply based
on a simple combination of several K-means segmentations
applied on the input image expressed by different color spaces
and using, as input multidimensional feature descriptor, the set
of values of the re-quantized color histogram estimated around
the pixel to be classified. Once, a de-textured (color) image is
estimated, the final segmentation is simply achieved by a spa-
tially-constrained K-means segmentation using, as simple cues, a
feature vector with the set of color values contained around the
pixel to be classified. The spatial constraint allows to take into ac-
count the inherent spatial relationships of any image and helps the
iterative K-means labeling process to succeed in finding an optimal
solution, i.e., an accurate segmentation map.

The remainder of this paper is organized as follows: Section 2
describes the proposed model i.e., the so-called de-texturing
procedure and the spatially constrained K-means segmentation
model. Finally, Section 3 presents a set of experimental results
and comparisons with existing segmentation techniques.

2. Proposed model
2.1. De-texturing procedure

This de-texturing approach (described in Algorithm 2) is a
three-step process as follows:

(1) The first step is simply based on a K-means segmentation of
the input image using the Manhattan distance (L; norm) and
as simple cues (i.e.,, as input multidimensional feature
descriptor) the set of values of the re-quantized color histo-
gram, with equidistant binning, estimated around each pixel
to be classified. In our application, this local histogram is
equally re-quantized (for each of the three color channels)
in a N,=¢> bin descriptor, computed on an overlapping
squared fixed-size (Np) neighborhood centered around the
pixel to be classified (see Fig. 1 and Mignotte, 2008 for more
details).

(2) The preceding step defines an segmentation of the image
into small homogeneous texture regions (each one is defined
by the set of connected pixels belonging to a same texture
class or equivalently to a same cluster and to this end, we
use a simple flood fill algorithm). Given this partition R into

Estimation of the bin descriptor for each pixel

Nx  Set of pixel locations x within the Ny x Ny
neighborhood region centered at x

h[] Bin descriptor : array of N, floats (h[0], h[1],
oo, [Ny — 1)

N, = ¢3 (bin descriptor length with q integer)

|.] Integer part of .

for each pixel x € Ny with color value Ry,Gx, Bx do
e a LR g 55+ L5
° h[k‘] — h[k} + I/Ng

Fig. 1. Algorithm 1: Bin descriptor estimation for each pixel.

De-Texturing procedure

I.  Input image expressed in color space ¢
C  Setof color spaces = {rgb, hsv, yiq,xyz, ...}
Ky Number of classes of each K-means
h[] Bin descriptor used by K-means
Partition into regions obtained from I,
Wy Maximal size of each regions
Je  Rp, with a mean color value associated
to each region corresponding to I,

for each color space c € C do

e R, « K-means (K classes) on I. and using
as feature vector h[] (see Algo. 1)
e R, « Subdivide all the regions into small

disjoint pieces smaller than Wy pixels
e J. +— Replacement of each pixel value belong-

ing to each region of Ry by its mean color value

De-textured image «— averaging of these different .J,.

Fig. 2. Algorithm 2: De-texturing procedure.

regions of this image (see Fig. 3(b)-(d)), the second step of
this de-texturing procedure consists in [1] subdividing all
the regions with more than Wy (=5000 in our application)
pixel size into disjoint pieces of size lower than Wy pixels
in order to limit regions with a large number of pixels which
could be due to a bad segmentation.! To this end, we have
used the simple subdivision algorithm presented in pseudo-
code in (Mignotte, 2007), and [2] simply replacing each pixel
value belonging to each small regions R; of R by its mean
color value. This defines a simulation J. of the input image into
a region partition constrained to be spatially piecewise
uniform (in the color sense).

(3) The one and two above-mentioned steps are repeated on the
input image expressed in different color spaces and the
averaging of these different partitions into regions with an
uniform (i.e., constant) color level value allows to give our
de-textured image (see Fig. 2 and Fig. 3(e)).

Let us note that this de-texturing approach can be viewed as the
edge-preserving denoising algorithm proposed in (Mignotte, 2007)
for which, respectively:

(1) Each texture applied on each one of these distinct regions is
considered as a noise (a de-texturing is thus herein consid-
ered as a denoising approach).

(2) Each input (de-textured) image can be modeled by an union
of a number of nonoverlapping and distinct regions of uni-
form (i.e., constant) color level value.

(3) The set of Markov Chain Monte-Carlo (MCMC) simulations
of region partition maps used in (Mignotte, 2007) is herein
replaced by a set of K-means segmentations into regions,
on the input image expressed in different color spaces.

1 After this splitting procedure, for example, a region with a size of 12,000 pixels
will be divided into two regions of Wy = 5000 pixels and one region with a size of
2000 pixels. Wy =5000 is thus the maximum size allowed of each region in the
segmentation map.
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(a) (b (c) (d) (e)

Fig. 3. From left to right; (a) a natural image from the Berkeley database (numbers 239,007 and 134,052), (b)-(d) its partition into regions obtained by the K-means
segmentation (Ko classes) using as feature vector h[] (see Algorithm 1) for the input image expressed in respectively, RGB, HSV, YIQ color spaces, (e) the averaging of these
different partition into regions (for which we have replaced each pixel value belonging to each region by its mean color value) finally defined the final de-textured image.

2.2. Spatially constrained K-means clustering vector with the set of color values contained around the pixel to
be classified.

As noted above, once a de-textured (color) image is estimated, Besides, in order to further help this K-means clustering process

the final segmentation is simply achieved by a spatially-con- to succeed in finding an accurate partition, a hard constraint

strained K-means segmentation using, as simple cues, a feature enforcing the spatial contiguity of each (likely) textural region is

Fig. 4. From top to bottom and left to right; (a) a natural image from the Berkeley database (number 134,052), (b) its soft edge map and (c) and (d) the sets of connected pixels
(i.e., regions) whose edge potential is respectively below ¢ = 0.25 and ¢ = 0.35. These regions are represented by colored regions. The white region corresponds to the sets of
pixels whose edge potential is above the threshold (and thus corresponding to inhomogeneous regions in the textural sense). (e) and (f) results of the final segmentation using
their respective map of homogeneous textured regions.
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imposed during the iterative K-means labeling process. To this end,
we first compute an edge map in the textural sense (see Fig. 4 and
the estimation of this edge map will be explained in the following
subSection 2.3). The most likely regions in this edge map are easily
estimated by identifying the sets of connected pixels whose edge
potential is below a given (and low) threshold ¢. In this way, we
easily identify regions in which only low textural gradient magni-
tudes have been detected. This procedure allows us to define a map
of (likely) homogeneous textural regions. The hard constraint
enforcing the spatial contiguity of each of the K-means cluster is
then simply done by assigning the majority class label in each
(pre-estimated) homogeneous textural region, for each iteration
of the K-means algorithm. This spatially constrained K-means is
ensured after a few iterations (e.g. typically 10 iterations in our
application) of the classical K-means clustering. Implicitly, this
procedure allows to consider non-spherical clusters in the K-means
clustering scheme since the distribution of each textural features
are no more spherical after the spatial constraint.

2.3. Edge map

In order to estimate an edge map (in the textural sense), which
will then be used to find the most likely textured regions and then
to constrain the K-means procedure, we compute, at each pixel, the
following distance

D(hi-o/2)s i Nos2)5) + D (hij-vos2) Migirvo/2))

where h is the Np-bin (descriptor) vector, i.e., the re-quantized local
color histogram, located at row i and column j (see Section 2.1 and
Algorithm 1), and D(h;_qj, hi,q;) is the L; norm between vectors (or
bin descriptors) h;_g4; and h;.4; computed on a squared No-size win-
dow centered respectively at location (i — d,j) and (i + d,j). In order
to propose a reliable edge map, we have averaged the different edge
maps obtained for the same input image but expressed in different
color spaces (and normalized this resulting and averaged potential
map between the interval [0 — 1]). Fig. 4 shows an example of a soft
edge map and two sets of regions obtained by two different thresh-
old values ¢. The spatial constraints of the K-means procedure con-
sists in assigning, at each iteration of the K-means segmentation
map, the majority class label existing in each colored region. Let
us point out that the white regions shown in Fig. 4(c)-(d) are not
exploited in these spatial constraints since they represent inhomo-
geneous regions in the textural sense, thus corresponding to the
sets of pixels whose edge potential is above the threshold value ¢&.
The spatially-constrained K-means segmentation algorithm is out-
lined below:

(1) Randomly choose K; initial cluster centers c}',. .. cy .
(2) At the kth step, assign sample x,, to the cluster with the
nearest center, i.e, to the cluster i if: me - c["]‘ <

me - cj[."]H, W # . 1

(3)
(a) For each region R; (defined by the set of connected pix-
els whose edge potential is below ¢) of the edge map:
(b) Find the majority cluster of samples x, R ie.,
the cluster | if: ¢ =arg Max 3, cr, Cicjer, jo L
{me - c}"]H < me - cj[."]H}where 7 is the indicator
function.
(c) Assign the majority cluster I to each sample x,,, belonging
to R;.
(4) Let CE."] denote the i-th cluster with n; samples after step 3c.
Determine new cluster centers by the mean of the samples
in the cluster ¢/*" = (1/n)%, _xXm
(5) R{ﬁpeat until convergence is achieved (ie., until ekl =
¢, Vi)

(6) Fuse each small region (i.e., set of connected pixels belong-
ing to the same cluster whose size is below 300 pixels) with
the neighboring region sharing its longest boundary.

3. Experimental results
3.1. Set up

In all the experiments, in order to promote diversity in the
K-means segmentation results or in the different estimated edge
maps (and also to somewhat increase the accuracy around
the boundaries between distinct texture regions, after the
averaging process), we have considered ten (N; = 10) different color
spaces (each color channel has been normalized between 0 and
255), namely RGB, HSV, YIQ, XYZ, LAB, LUV, 1513, HiH,H3, YC,C,,
TSL, (Martinkauppi et al., 2001; Banks, 1990; Braquelaire and Brun,
1997). For all K-means-based segmentations (first and second
step), the L; norm is used as clustering distance measure (experi-
ments have shown that the L; norm gives the same performance
measure as the euclidean norm while consuming less computa-
tional resources in our application).

e For the K-means based-de-texturing approach and the estima-
tion of the edge map, the number of bins for each local re-quan-
tized color histogram, the number of classes, and the size of the
overlapping squared window are respectively set to g=5, Ko =5
and Ng =7.

e For the spatially-constrained K-means clustering used in the
second step, on the de-textured color image, we have used as
input multidimensional feature descriptor, the set of color val-
ues estimated on an overlapping squared fixed-size (N; =5)
neighborhood centered around each pixel to be classified and
finally K; = 9 classes.

In order to obtain a more reliable color segmentation, we have
noticed that better segmentation results are achieved if we con-
sider, in the feature descriptor vector, all the color values ex-
pressed by each color space. The feature extraction step thus
yields to a [N; x N; x 3 x 10]-dimensional feature vector (i.e.,
number of pixels in the squared overlapping sliding window x 3
color channels x 10 color spaces). A final merging step is added
to each segmentation map that simply consists of fusing each small
region (i.e., regions whose size is below 300 pixels) with the region
sharing its longest boundary.

In these experiments, we tested our segmentation algorithm
on the Berkeley segmentation database (Martin et al., 2001) con-
sisting of 300 color images of size 481 x 321 (beforehand divided,
by their creators, into a disjoint training and test sets of respec-
tively 200 and 100 images). For each color image, a set of bench-
mark segmentation results, provided by human observers is
available and will be used to quantify the reliability of the pro-
posed segmentation algorithm. In order to ensure the integrity
of the evaluation, the internal parameters of the algorithm are
tuned on the train image set. The algorithm is then bench-marked
by using the optimal training parameters on the independent test
set.

3.2. Training

Experiments have shown that our overall segmentation proce-
dure is relatively sensitive to two parameters, namely, in order of
importance, the threshold value ¢ used to spatially constrain the
K-means procedure used on the de-textured color image and, to
a very lesser degree, the number of classes K; of the final cluster-
ing. These two parameters are thus tuned on the train image set
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Table 1

Average performance, in term of PRI measure, of our algorithm for the optimal
training set of its two internal parameters on the independent test set of the Berkeley
image database (Martin et al, 2001) and comparison with other algorithms:
(Unnikrishnan et al., 2005; Yang et al., 2008; Ilea and Whelan, 2008; Krinidis and
Pitas, 2009; Mignotte, 2008; Felzenszwalb and Huttenlocher, 2004; Hedjam and
Mignotte, 2009; Deng and Manjunath, 2001; Ma et al.,, 2007; Sfikas et al., 2008;
Comaniciu and Meer, 2002; Shi and Malik, 2000). The first value is the performance
metric on the entire database and values between square brackets correspond to
performances on the train and test image sets.

ALGORITHMS PRI (Unnikrishnan et al.,
2005)

HUMANS in (Yang et al., 2008) 0.8754

SCKMk, -9/:-037] 0.796 [train > 0.803
test < 0.782]

CTex (Ilea and Whelan, 2008) 0.800

MIS;-50) (Krinidis and Pitas, 2009) 0.798

FCR[K;=13|K>=6|x=0.135] (Mignotte, 2008) 0.788

FH (Felzenszwalb and Huttenlocher, 2004) in 0.784

(Yang et al., 2008)
HMC (Hedjam and Mignotte, 2009) 0.783

JSEG (Deng and Manjunath, 2001) in (Ilea and 0.770
Whelan, 2008)

CTM;;-0.15 (Yang et al., 2008; Ma et al., 2007) 0.762
St-SVGMM x-15) (Sfikas et al., 2008) 0.759
Mean-Shift (Comaniciu and Meer, 2002) in 0.755

(Yang et al., 2008)
NCuts (Shi and Malik, 2000) in (Yang et al., 2008) 0.722

by doing a local discrete grid search routine, with a fixed step-size,
on the parameter space and in the feasible ranges of parameter val-
ues (namely ¢ € [0.0 — 1.0] [step-size: 0.01], K; € [4 — 10] [step-size:
1]). The best couple of parameter is obtained for [K; = 9|¢ = 0.37].

3.3. Comparison with state-of-the-art methods

We have compared our segmentation algorithm (called SCKM,
for Spatially Constrained K-Means, K; and ¢ being its two internal
parameters) against several unsupervised algorithms. For each of
these algorithms, the internal parameters are set to optimal values
and/or correspond to the internal values suggested by the authors.
All color images are normalized to have the longest side equals to
320 pixels. The segmentation results are then supersampled in or-
der to obtain segmentation images with the original resolution
(481 x 321) before the estimation of the performance metric.

The comparison is based on the PRI® performance measure
(Unnikrishnan et al., 2005) which seems to be also highly correlated
with human hand-segmentations (Yang et al., 2008) (a score equal to
PRI = 0.796, for example, simply means that, on average, 79.6% of
pairs of pixel labels are correctly classified in the segmentation
results).

Table 1 shows the obtained PRI results for the different algo-
rithms. In terms of PRI measure, we observe that the discussed fu-
sion strategy gives competitive results over the set of images of the
Berkeley image database. Without the spatial constraint (i.e., with

2 The grid search routine is a standard optimization algorithm which consists, for
several initial guesses of the parameter vector to be estimated, in employing a moving
n-dimensional (n is the number of parameters and n=2 in our application) grid
containing three values per parameter low, medium, and high with spacing
determined by step-size. The algorithm tries to center the grid around the best
performance score for each dimension (parameter), moving in an appropriate
direction during each iteration. The optimization is successful when the grid becomes
centered on the best performance score across all dimensions.

3 We have used the Matlab source code, proposed by Allen Y. Yang in order to
estimate the PRI performance measure presented in the following Section. This code
is kindly available on-line at address http://www.eecs.berkeley.edu/~yang/software/
lossy_segmentation/.
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| —i
03 04 05 06
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Fig. 5. Distribution of the PRI performance measure over the 300 images of the
Berkeley database (for SCKMk, —g:~0.37))-

¢=0, and K; =9), we obtain about PRI = 0.754. We can thus notice
than a good value of ¢ allows to significantly improve the segmen-
tation result. Consequently, it is really necessary to help the opti-
mization process to succeed in finding an optimal solution. To
this end, the hard constraint enforcing the spatial contiguity is use-
ful in this very difficult segmentation method. Fig. 5 shows the dis-
tribution of the PRI measure over the 300 images of the Berkeley
image database (for the algorithm SCKM, —g;:—037)).

Figs. 6 and 7 display some examples of segmentations obtained
by our algorithm. The results for the entire database are avail-
able on-line at http address www.iro.umontreal.ca/~mignotte/
ResearchMaterial/sckm.html. While being simple, this segmenta-
tion procedure gives excellent segmentation results with a very
competitive PRI score (which indicates that, on average, 79.6% of
pairs of pixels are correctly classified on the entire Berkeley data-
base and 78.2% on the test base).

The segmentation procedure takes, on average, less than 20s
per image (for an AMD Athlon 64 Processor 3500+, 2.2 GHz,
4435.67 bogomips and non-optimized code running on Linux) for
the entire segmentation procedure. Table 2 compares the average
computational time for an image segmentation and for different
segmentation algorithms whose PRI is greater than 0.76.

3.4. Sensitivity to parameters

We have tested the influence of the final merging procedure and
its threshold on the final PRI score. Without the final merging pro-
cedure (i.e., with a threshold equals to zero), we obtain a PRI equals
to 0.789 (on the entire Berkeley database) and by considering a
threshold twice greater, i.e., by merging each region whose size
is below 600 pixels, with the region sharing its longest border,
we obtain a PRI equals to 0.795. These experiments thus show that
our segmentation model tends to slightly over-segment and that
our model is not too sensitive to this parameter to the extent that
it is around 300. We have also tested and quantified the influence
of the variation of the parameters Ny, Ny, q, Ko, K; and ¢ as respec-
tively a function of the number of pixels, bins or classes. Fig. 8
shows the evolution of the PRI score for several discrete values of
these parameters (holding all other parameters constant at their
optimal values). Experiments show that our model is not too sen-
sitive to parameters Ny, N1, Ko and g but sensitive to K; and ¢ and
this justifies the learning phase on these two parameters. Let us
also note that for Ny = 1, we obtain a PRI score equals to 0.792. This
shows that this parameter is not essential (i.e., it is not essential to
also take the color value of the neighbors of the pixel to be classi-
fied), although N; = 5 allows to “regularize” a bit the K-means pro-
cedure on the de-textured color image and to get a slightly better
PRI score.
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Fig. 6. Example of segmentations obtained by our algorithm SCKM, —:037 on several images of the Berkeley image database (see also Table 1 and Fig. 5 for quantitative
performance measures and http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/sckm.html for the segmentation results on the entire database).

We have also tested the influence and efficiency of our de-tex-
turing procedure in our segmentation method. To this end, we
have used the proposed spatially constrained K-means on the ori-
ginal input image, instead of the de-textured image (with Ky, &, q
and Ny keeping their optimal values). We obtain a PRI score equals

to 0.773. This shows that our de-texturing helps the K-means
clustering process to succeed in finding a better solution of seg-
mentation, by simplifying the textural data to be segmented and/
or by helping the K-means to converge toward a better local
minima.
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Fig. 7. Example of segmentations obtained by our algorithm SCKM, —g:-037 on several images of the Berkeley image database (see also Table 1 and Fig. 5 for quantitative
performance measures and http://www.iro.umontreal.ca/~mignotte/ResearchMaterial/sckm.html for the segmentation results on the entire database).

Table 2

Average CPU time for different segmentation algorithms.
ALGORITHMS PRI CPU time (s) On [image size] Given in reference
CTex 0.800 ~85 [184 x 184] Ilea and Whelan (2008)
MIS;-s0; 0.798 ~2.9 [320 x 200] Krinidis and Pitas (2009)
SCKM g, —9/:—0.37) 0.796 ~20 [320 x 200]
FCRyi, ~13(i,61c-0.135] 0.788 ~60 [320 x 200] Mignotte (2008)
FH 0.784 ~1 [320 x 200] Felzenszwalb and Huttenlocher (2004)
HMC 0.783 ~80 [320 x 200] Hedjam and Mignotte (2009)
JSEG 0.770 ~6 [184 x 184] Ilea and Whelan (2008)
CTM,-0.15 0.762 ~180 [320 x 200] Yang et al. (2007)

We have shown, in Fig. 9, the four worst segmentations (in the a part of an animal (with its texture camouflage) with its natural
PRI sense), obtained by our segmentation method. Experiments environment (or more generally a textured region with the same
show that our method tends to over-segment some images con- average color of its background). In this latter case, this merging
taining regions with large texture elements or sometimes to merge may be due to the fact that two different textured regions, but with
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Fig. 8. Left: evolution of the PRI for respectively: [1] No and N; as a function of the number of pixels, [2] q as a function of the number of bins, [3] Ko as a function of the

number of classes. Right: evolution of the PRI for respectively: K; and ¢&.

Fig. 9. The four Berkeley images associated with the four worst PRI scores obtained by our segmentation method (SCKM, -o/:0.37), from left to right, image number 26,031

(PRI =0.393), 54,005 (PRI = 0.459), 175,043 (PRI = 0.370), 69,040 (PRI = 0.438).

the same average color, will be assigned the same color value after
the de-texturing step. To some extent, the spatial constraints of the
final K-means procedure on the de-textured image, which is com-
puted with the original textural cues (based on local histogram of
each region) of the input image, is supposed to counterbalance a
bit this. Nevertheless, two textured regions, with almost identical
local histograms and two identical average colors will be merged
by our segmentation method. It seems that this is the main draw-
back of our segmentation method which could be improved on this
point.

We also present, in Fig. 10, some segmentation results for
increasing values of Ny. Although we have previously shown that
our segmentation model is less sensitive to Ny (comparatively to
¢ and K;), this parameter, however, seems to be an important inter-
nal parameter of our segmentation algorithm because it is related
to the accuracy of the detected boundary location. Indeed, experi-
ments show that this parameter must be large enough to fully

model the texture elements (i.e., the so-called texton) but should
not be too large in order not to wrongly detect the boundaries, be-
tween distinct textured regions, as an existing region (and thus to
affect the accuracy of the boundary location). A good compromise,
between good classification of the segmentation and contour accu-
racy, seems to be the value that we gave, i.e., No=7. In order to
quantify this contour accuracy, we have computed the Boundary
Displacement Error (BDE) measure (lower distance is better) pro-
posed by Freixenet et al. (2002) on the entire Berkeley database.
The BDE measures the average displacement error of boundary
pixels between two segmented images. Particularly, it defines the
error of one boundary pixel as the distance between the pixel
and the closest pixel in the other boundary image. For our algo-
rithm, we obtain for N; =1 and N; = 5, respectively, BDE = 9.8 and
BDE =10.0 compared to 9.9 for the algorithm called CTM and
10.0 for the algorithm called FH (results available in (Yang et al.,
2008)), which, in terms of contour accuracy is comparable.

Fig. 10. Segmentation results for increasing values of Np.

From left to right, Ny is equal to 3, 7, 15 and 3, 7 (holding all other parameters constant at their optimal values).
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Let us finally add that, ideally, in order to get a more efficient
segmentation algorithm, Ny, ¢ and K; should be automatically esti-
mated for each image.

3.5. Algorithm

The source code (in C++ language under Linux) of our algo-
rithm (with the set of segmented images) are publicly available
at the following http address www.iro.umontreal.ca/~mignotte/
ResearchMaterial/sckm.html in order to make possible eventual
comparisons with future segmentation algorithms or different per-
formance measures.

4. Conclusion

In this paper, we have presented an original, simple and effi-
cient segmentation procedure based on the K-means procedure.
The proposed method overcomes the inherent problems of this
simple automatic clustering procedure using spherical distribu-
tions on the difficult problem of the textured color image segmen-
tation. First, the clustering is done on a simplified (de-textured
image), on which the search of well-separated clusters is easier.
Besides, some spatial constraints help the iterative K-means label-
ing process to succeed in finding an accurate segmentation by tak-
ing into account the inherent spatial relationships and the
presence of pre-estimated homogeneous textural regions in the
input image. Implicitly, this procedure allows to consider non-
spherical clusters in the K-means clustering scheme since the dis-
tribution of each textural feature vector is no more spherical after
the spatial constraint. While being simple to implement or to
understand and relatively fast compared to the best existing algo-
rithms, the proposed segmentation procedure performs competi-
tively among the recently reported state-of-the-art segmentation
methods.
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