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In this paper, we propose a new unsupervised and simple approach to local symmetry detection of 

ribbon-like structure in natural images. The proposed model consists in quantifying the presence of a 

partial medial axis segment, existing between each pair of (preliminary detected) line segments de- 

lineating the boundary of two textured regions, by a set of heuristics related both to the geometrical 

structure of each pair of line segments and its ability to locally delimit a homogeneous texture re- 

gion in the image. This semi-local approach is finally embedded in a two-step algorithm with an am- 

plification step, via a Hough-style voting approach achieved at different scales and coordinate spaces 

which aims at determining the dominant local symmetries present in the image and a final denoising 

step, via an averaging procedure, which aims at removing noise and spurious local symmetries. The 

experiments, reported in this paper and conducted on the recent extension of the Berkeley Segmen- 

tation Dataset for the local symmetry detection task, demonstrate that the proposed symmetry detec- 

tor performs well compared to the best existing state-of-the-art algorithms recently proposed in the 

literature. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The problem of extracting automatically symmetry axes or con-

ours lying in the middle of elongated structures (also referred to

s ribbons or ridges in the literature) from natural image is an im-

ortant and still difficult mid-level computer vision task. This pre-

rocessing step, amounting to approximate reflective symmetry of

ach object present in the scene, can thus be the preliminary pre-

ttentive and/or useful complementary step of many high-level im-

ge understanding algorithms and computer vision systems such as

bject localization/recognition [7] , 3D reconstruction [2] , indexing

11] , gait analysis [27] , human action recognition [33] or motion

stimation problems [13,14] to name a few. 

The concept of symmetry both plays an important role in hu-

an visual and perceptual system (which turns out extremely sen-

itive to symmetry structures) and is a prolific phenomenon that

xists widely in the real world. Indeed, most man-made and bi-

logical objects exhibit symmetry to some extent. That is why

ymmetry is an important mid-level cue, which is receiving a

rowing attention in image analysis due to its inherent ability

o reveal the shapes of salient structures in medical applications
✩ This paper has been recommended for acceptance by Egon L. van den Broek. 
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30] , and also a powerful concept that facilitates object detection

or localization) and enhance recognition in many image under-

tanding systems in which some prior knowledge of a shape to

e recognized can be (jointly or subsequently) included [7,15,35] .

n addition, this symmetry-based mid-level cue can be efficiently

sed as semi-global constraints to low-level image tasks such as

egmentation and denoising problems ( e.g. , by simply favoring la-

el or gray-level homogeneity for pair of sites sharing the same,

reliminary detected, axis of symmetry [25] or for regulating a

onlinear diffusion process for adaptive image enhancement and

enoising in fingerprint imagery [1] . This symmetry-based cue can

lso be exploited as a feature to improve a real-time tracking pro-

edure of moving objects [19] such as hand tracking or a hand pos-

ure recognition system [3] . Besides, since symmetry cues are one

f the possible principles of the Gestalt laws, this mid-level feature

ould be useful to detect the other high-level cues of the Gestalt

aws of perceptual organization. In this work, we aim at extract-

ng local symmetry axes directly from the unsegmented image. By

his fact, this work is different from the silhouette-based symme-

ry detection approach first relying on a reliable map of segmented

hapes. 

In the case of the symmetry detection directly from the im-

ge, a possible approach is to use a global approach, processing the

ntire image as a signal from which symmetric properties are in-

erred often via frequency or Fourier analysis [16] . However, these

http://dx.doi.org/10.1016/j.patrec.2016.01.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.01.014&domain=pdf
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Fig. 1. From lexicographic order: original image number 134052 of the BSDS300 

and Line Segment Detection ( N L = 70 detected straight line segments) at three dif- 

ferent resolution levels (namely {0.25, 0.625, 1.0} filtered by the proposed soft edge 

potential map in the texture sense in order to detect only line segments that delin- 

eate the boundaries between different textured areas. 
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1 The scale of analysis is a choice left to the user and thus an (interesting and 

important) internal input parameters of the LSD algorithm. More precisely, in the 

LSD algorithm, this scaling is performed by a Gaussian sub-sampling (the image is 

in fact filtered with a Gaussian kernel to avoid aliasing and then sub-sampled). 
global approaches are limited to the detection of a single axis

of symmetry and are biased by the background structure of the

images. 

An alternative to these global approaches consists in exploiting

a local pixel or feature-based approach and more precisely, either

the idea of quantifying the symmetry contribution of each (pre-

liminary detected) edge points [10] or (its soft version, i.e. ,) each

pair of pixels [31] , weighted by their intensity gradient amplitude

(in order to favor pairs of edge points belonging to each object

contour). In the same spirit, another strategy consists of match-

ing symmetric pairs of feature points (local features such as edge

features, contours, boundary points or SIFT/SURF feature points).

The “amount” of symmetry exhibited by each pair is quantified by

the relative location, orientation and scale of the features in the

pair. These pairwise symmetries are then either analytically deter-

mined or accumulated in a Hough-style voting space (or in an axis-

parameter space) to determine the dominant symmetries present

in the image [17,21] . Nevertheless, it is worth mentioning that the

reliability of these local features-based techniques suffers if the

feature point extraction step fails to generate sufficient number of

relevant feature points, which is the case of input images with a

smooth image with no texture. Besides, these latter approaches are

more suited to detect global reflection symmetries, associated with

each whole object present in the scene, rather than local symme-

tries, associated to each part of an object [28,35] . 

Finally, another way consists in combining a local and global or

a multi-scale approach. In this latter approach, the authors in [29]

generalize the medialness notion (which measures the degree of

belonging of the point to the medial axis of the object) and de-

fined it as a convolution product of the initial image with a kernel,

based on normalized Gaussian derivatives of intensity. In this optic,

a recent machine learning framework exploiting local and global

spectral features (on several scales) has also been recently pro-

posed in [34] to train a symmetry detector on a symmetry ground

truth dataset constructed on top of the well-known Berkeley Seg-

mentation Dataset (BSDS300) [22] and using human-assisted seg-

ment skeletonization. The availability of this new dataset (herein

further referenced as the LS-BSDS300 for Local Symmetries in the

BSDS300) has allowed, up to now, to measure, with good statis-

tical confidence, the performance of several symmetry detectors

proposed in the literature. Amongst the methods validated on this

new dataset, we can cite the following multi-scale and/or semi-

local approaches; Lindeberg [20] introduces a multi-scale ridge de-

tector by combining multiple eigenvalues of the image Hessian.

Levinshtein et al. [18] propose to detect partial medial axes af-

ter superpixel segmentation and learn an affinity function to per-

ceptually group adjacent superpixels belonging to the same object

which will then be approximated by fitting ellipses from which he

finally retrieves the major axes. Finally, let us mention the statis-

tical framework proposed in [35] in which the symmetry detec-

tion problem is formulated as a spatial Bayesian tracking task using

a particle filtering approach and an adaptive semi-local geometric

model of ribbons. 

In this paper, we propose a semi-local approach which con-

sists in exploiting the idea of quantifying the presence of a local

symmetry axis segment existing between each pair of preliminary

detected straight line segments delineating the boundary of two

textured regions in the scene. This preliminary detection task is

efficiently carried out, in our application, by an adaptive, accurate

and fast (linear-time) Line Segment Detector (LSD) (introduced by

Gioi et al. [9] ) and optimal according to the perception-based a

contrario (or Helmholtz) principle (which is also adaptive to im-

age content) and followed by a filtering process aiming to select

lines that delineates the boundaries between different textured ar-

eas. The likelihood of the presence of a partial medial axis seg-

ment, exhibited by each pair of lines, is estimated from a set of
euristics related both to the geometrical structure of each pair of

ines and its ability to locally delimit a homogeneous texture re-

ion in the image. This semi-local approach is finally embedded in

 two-stage algorithm with an amplification procedure combining

oth a Hough-style [8] voting scheme, achieved in different coordi-

ate spaces, and a denoising step based on an averaging technique.

he Hough-like voting scheme aims at determining the dominant

ocal symmetries present in the image while the averaging proce-

ure helps to remove noise and spurious local symmetries. 

. Proposed model 

.1. Texture boundary segment extraction step 

Our symmetry detection approach relies mainly, first, on the re-

iable extraction, at different resolution scales, of the different line

egments existing in the image. More conceptually, this prelimi-

ary step thus relies on the fact that man-made objects and many

hapes accept an economic description in terms of straight lines. In

ddition, this representation style, in terms of main straight lines,

s also interesting due to its appealing ability to abstract away un-

anted (or useless) details, to clarify or simplify shapes and to

ocus on relevant features while allowing to offer a compact rep-

esentation of the geometric content of the scene with few line

egments [23] . To attain this goal, we rely on the fast Line Seg-

ent Detector (LSD) recently introduced in [9] which is a linear-

ime line segment detector that gives sub-pixel accurate detec-

ion results of a controlled pre-determined number of false detec-

ions according to the a contrario principle. It is worth mention-

ng that our symmetry detection procedure remains independent

f the choice of the underlying line detector as far as the latter

urns out both, as the LSD detector, reliable and fast. Indeed, in

ontrast to classic edge detector, this algorithm defines a line seg-

ent as a rectangular region whose points share roughly the same

mage gradient orientation (within a certain tolerance). In addition,

he LSD algorithm has the appealing property to achieve a line seg-

ent detection for a given resolution level of the input image 1 (see

ig. 1 ). This multiscale analysis capability of the LSD algorithm will

e fully exploited in our symmetry detection approach. This algo-

ithm is very efficient to detect line segments based on the em-

irical discovery made by Burns et al. [4] showing that connected
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Table 1 

The estimation of the bin descriptor h x , y 
written in pseudo-code. 
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Fig. 2. Left; the potential map of texture edge is estimated for each pixel of the 

RGB image located at coordinates s = (x, y ) by computing first, the normalized 

re-quantized local color histograms (or descriptor bin) h (see Table (1) ) within 

the squared N w × N w windows respectively located at coordinates (x − (N w / 2) , y ) , 

(x + (N w / 2) , y ) , (x, y − (N w / 2)) , (x, y + (N w / 2)) ( i.e. , respectively, within the win- 

dow number 1, 2, 3 and 4) and second, by the formula 0 . 5 · [ | h 3 − h 4 | 1 + | h 1 − h 2 | 1 ] 
(see Eq. (1) ) which exploits the local spatial gradient information between these 

adjacent re-quantized local color histograms. Right; example of potential map of 

texture edge obtained on the bottom left image of Fig 1 . The filtering process con- 

sists in selecting the best (subset of) N L straight lines, detected by the LSD, with the 

highest average potential (integrated on each point belonging to the line segment). 

Fig. 3. A crop of the image number 12 , 003 of the BSDS300 and the an- 

gles φl u , φl v , φu, v used in the symmetry potential terms �u, v associated to the 

geometrical structure of the pair of line segments l u , l v passing through the 

pixel u and v . 
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rectangular) regions with common orientation would almost al-

ays coincide with straight edges. 

However, by locating line-support regions formed by grouping

djacent pixels sharing the same gradient angle, the LSD algorithm

s able to only detect areas of strong discontinuities between uni-

orm regions (in the grey or color level sense), but not between

wo textured regions. In our case, in order to only keep significant

ines that delineates the boundaries between different textured ar-

as ( i.e. , to avoid many false line detections), we have to filter out

rrelevant lines resulting from the previous LSD detection stage.

o this end, we resort to a simple filtering approach exploiting a

reliminary estimation of a soft edge map, in the texture sense.

ne possibility, which we exploit here, is the simple texture gra-

ient based edge map proposed in [24] . Our filtering process then

onsists in simply estimating the average potential value located

n each detected straight lines and to retain the best N L line seg-

ents. This potential map of texture edge requires to compute, at

ach pixel, the following potential or gradient distance: 

1 

2 

{ D ( h x,y −(N w / 2) , h x,y +(N w / 2) ) + D (h x −(N w / 2) ,y , h x +(N w / 2) ,y ) } (1) 

here h is the N b -bin re-quantized local color histogram, located

t row y and column x (see Algorithm 1 ), and D(h x −d,y , h x + d,y ) is

he L 1 norm between vectors (or bin descriptors) h x −d,y and h x + d,y 

omputed on a squared N w 

-size window centered respectively at

ocation (x − d, y ) and (x + d, y ) [24] . This textural gradient map,

ormalized to lie within 0 and 1, assumes simply that the repet-

tive character or element of a textured image ( i.e., a texton ) is

erein characterized by a mixture of colors (or more precisely by

he values of the re-quantized color histogram). 

At this stage, we have a sequence of N L straight line segments

delineating two texture regions) at N c different resolution scales

see Fig. 1 ). Each line segment l i ( i < N L ) is associated with a mean

otential value P l i 
(lying within [0 1]) which defines a confidence

evel that the line segment belongs to a texture contour. 

.2. Symmetry detection step 

These candidate line segments can be efficiently further ex-

loited, in a second step, as semi-global low-level features to ex-

ract the different partial medial axis in an image. More precisely,

he second step of our model consists in quantifying the presence

f a partial medial axis segment, existing between each pair of

preliminary detected) line segments, delineating the boundary of

wo textured regions, by a set of heuristics related both to the ge-

metrical structure of each pair of line segments and its ability to

ocally delimit a homogeneous texture region in the image. 

To attain this goal, the amount of symmetry exhibited by each

air of pixels belonging to two different texture boundary seg-

ents is accumulated in a voting space, via an accumulation ma-

rix, SY ( s ) congruent with the image domain [6] , and quantify-
ng, after accumulation, the symmetry magnitude located at pixel

 = (x, y ) : 

Y 

(
u + v 

2 

)
= 

∑ 

<u, v> 
P u, v ϒu, v L u, v D u, v �u, v (2) 

here the summation is over all pairs of pixels (u, v ) (see Fig. 3 )

elonging to two different line segments and (u + v ) / 2 corre-

ponds to the midpoint of the line segment joining the pixels u

nd v . P u, v and ϒu, v are two symmetry potential terms related

o the ability of each pair of line segments ( i.e. , the line segment

assing through the pixel u and the other passing through v ) to

ocally delimit a homogeneous texture region in the image. More

recisely, 

 u, v = 

1 

2 

(P l u + P l v ) (3)

u, v = (1 + �2 (u, v )) −1 (4)

ith P l u is a confidence value that the line segment passing

hrough the pixel u ( i.e. , l u ) belongs to a texture contour (see

ection 2.1 and Fig. 2 ). Moreover �(u, v ) corresponds to the num-

er of texture boundary segments crossed by the line segment

oining the pixels u and v . Therefore, the overall symmetry score

lso increases if there are no intervening texture boundaries across

he line passing through u and v . Finally, L u, v , D u, v and �u, v are

hree symmetry potential terms related to the geometrical struc-

ure of each pair of line segments ( i.e. , the line segment passing

hrough the pixel u and the other passing through v ) defined as: 

 u, v = 

( Lg [ l u ] + Lg [ l v ]) 

2 

(5) 

 u, v = exp 

{ 

−‖ u − v ‖ 2 
} 

(6) 
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Fig. 4. From lexicographic order: original image number 134 , 052 of the BSDS300 

and images mapped in three different log-polar domains w.r.t. three different image 

centers. 
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where Lg[ l u ] is the length (in pixels) of the line segment l u and S

is the mean size of the image (at the full original resolution level).

These two heuristics aim to favor a symmetry axis between u and

v (by increasing the overall score) if the texture boundary contours

l u and l v are long and the distance between u and v is close. 

�u, v = 

{ 

1 − cos (φl u + φl v − 2 φu, v ) if φl u ,l v <τ

0 otherwise 
(7)

The symmetry potential term �u, v is adapted from the phase

weight function proposed in [31] and aims at favoring (by increas-

ing the overall score) a symmetry axis between u and v if the gra-

dients at pixels u and v are oriented in the same direction towards

each other. In our application, φl u , φu, v are respectively the angles

of l u and the angle of the line passing through the pixel u and v
relatively to the x -axis (see Fig. 3 ). φl u ,l v is the angle between the

line segments l u and l v . τ is a parameter of the model which will

be later estimated by a trial-and-error procedure on the training

dataset (see Section 3 ). 

In summary, the symmetry magnitude, located at mid-point of

the line segment joining the pixels u and v , will be all the more

high if the following conditions are met: (1) the texture boundary

contours l u and l v delineate two different texture regions in the

image ( Eqs. (3) and ( 4 )) and are long ( Eq. (5) ). (2) The distance

between u and v is close ( Eq. (6) ). (3) The gradients at pixel u and

v are oriented in the same direction towards each other and finally

the segment [ u, v ] is perpendicular to the medial axis of l u and l v 
( Eq. (7) ). 

2.3. Detection amplification/denoising step 

In our application, let us note that the performance of the pro-

posed symmetry detection algorithm is highly dependent on the

first crucial step which aims at extracting reliable texture bound-

ary segments in the input image ( Section 2.1 ). In order to make

more robust this detection step, we resort to two strategies for im-

proving the final result of symmetry detection. These two strate-

gies have ultimately and conceptually the same goal: to provide a

more accurate final estimation of the symmetry map, by combin-

ing (with a simple averaging process) the set of estimates obtained

when the original input image is represented at different resolu-

tion levels and different coordinate spaces (an estimator based on

the average operation generally yields to an optimal denoised so-

lution when the noise is uncorrelated). More precisely and as al-

ready said in Section 2.1 , the first one consists in detecting the set

of candidate line segments at N c different resolution scales, thus

simulating and taking into account edge detection at different de-

tail levels in the image. This strategy can be easily implemented

since the scale factor is already an intrinsic internal parameter of

the LSD algorithm. 

The second strategy, already used in [26] for the edge detec-

tion problem, is to detect the set of candidate line segments in

different coordinate spaces, especially in log-polar domains w.r.t.

N p different equally spaced centers of reference ( i.e ., points of in-

terest) within the input image. Each center of reference thus de-

fines a log-polar mapping associated with a different point of view

within the image plane. This sequence of polar mappings will pos-

sibly transform, for one of them, a given curved contour fragment

into a straight line segment which will be then efficiently detected

by the LSD algorithm 

2 (see Fig. 4 ). In order to detect a curved con-
2 It is worth mentioning that a fix number N p of log-polar maps can not ob- 

viously transform all long contour fragments into straight lines. When the polar 

transforms are not able to ensure this property, these contour fragments are just 

approximated by concatenations of small straight segments in the log-polar do- 

main. Indeed, at least locally; a smoothly curved contour will be often efficiently 

approximated by concatenations of small straight segments. 

e  

[  

[  

h  

a  

(  

d

our that delineates the boundary between different textured areas,

e also use the filtering step (described in Section 2.1 ) computed

n this particular polar domain. 

For each of the N L straight line segments detection achieved in

 polar coordinate space for a given reference center (at N c differ-

nt resolution scales), we compute, in the same way described in

ection 2.2 ) a new matrix SY p c thus quantifying the symmetry mag-

itude located at pixel expressed in polar coordinate (for a given

enter of reference c ). We finally carry out an inverse log-polar

ransformation of this accumulation matrix and a simple averag-

ng technique, over all these N p log-polar transformations, allows

s to obtain, in the Cartesian domain a final symmetry accumu-

ation map which will be averaged with the one directly obtained

n the Cartesian domain. This finally defines a final soft symmetry

ap and a non-maximum suppression step [5] is then employed

o produce thin symmetry axis (see Fig. 5 and Algorithm 3 ). 

. Experimental results 

.1. Parameters 

In order to limit the computational requirement of our algo-

ithm, we set the number of resolution scales to N c = 3 (from the

esolution level R min to the full resolution level) and the number of

og-polar coordinate spaces to N p = 10 (w.r.t. N p different equally

paced centers of reference taken on the diagonal of a rectangular

indow, centered on the image). We will see, later in this section,

hat the performance measure of good symmetry detection is all

etter than N p is high (up to a certain extent). 

In order to ensure the integrity of the evaluation, all the in-

ernal parameters of our model are tuned on the training dataset

f the LS-BSDS300, by doing a local discrete grid search, with a

xed step-size, on the parameter space and in a given range of pa-

ameter values; namely, for the number of straight lines detected

t each coordinate space ( i.e. , Cartesian or log-polar w.r.t differ-

nt center of reference) and for each color channel, N L ∈ [20: 100]

step-size: 10], σ ∈ [0: 1.0] [step-size: 0.1] (see Eq. (6)) , τ ∈ [0: π ]

step-size: 0.5] (see Eq. (7)) , R min ∈ [0.1: 1.0] [step-size: 0.05]. We

ave finally found that N L = 70 , σ = 0 . 1 , τ = 2 and R min 

= 0 . 25

llows us to ensure a maximal F-measure score on the training set

which was sensibly the same score of the one obtained on the test

ataset). 



M. Mignotte / Pattern Recognition Letters 74 (2016) 53–60 57 

Fig. 5. Symmetry magnitude map result (in video inverse) obtained by the pro- 

posed algorithm on the Berkeley image number 134 , 052 (see Fig. 1 ) and symme- 

try detection results super-imposed on the original image (in red) obtained after a 

non-maximum suppression step [5] and the global optimal thresholding operation 

ensuring the maximal F-measure on the LS-BSDS300 dataset. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article.) 

Table 2 

Comparison of scores ( i.e ., the score based on the op- 

timal threshold obtained from each image) between 

the BISDA and the results obtained only in the Carte- 

sian space and those only obtained in the N p log-polar 

spaces, on the 89 images of the test set of the LS- 

NSDS300. Each value points out the number of images 

that obtain the best F score. 

Cartesian Log-polar BISDA 

Number of best 24 15 50 

F scores 59 30 –
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Table 3 

The local symmetry detection algorithm written in 

pseudo-code. 

v  

s  

r  

t  

f  

i  

 0.4

 0.405

 0.41

 0.415

 0.42

 0.425

F
-M

ea
su

re
.2. Initial test 

If we consider the symmetry magnitude map directly estimated

ith the Cartesian image, we obtain a F-measure 3 score of 0.408

recall: 0.51, precision: 0.33). If we consider only the average sym-

etry magnitude map obtained in different log-polar spaces, we

btain an F-measure score of 0.373 (recall: 0.47, precision: 0.31).

y averaging the last two symmetry magnitude maps, we obtain

he proposed symmetry detection model and an F-measure score

f 0.422 (recall: 0.521, precision: 0.354 for the threshold: 0.142)

see Fig. 7 ). 

In order to study the complementarity of each coordinate space,

e have recorded the number of individual results obtaining the

est F score ( i.e ., the score based on the optimal threshold ob-

ained from each image) for respectively the three cases previously

entioned. ( i.e ., the symmetry detection results obtained respec-

ively on the Cartesian space, the log-polar spaces and those ob-

ained by the averaging of the two symmetry magnitude maps pre-
3 The F-measure correspond to the harmonic mean of the precision and recall 

cores computed on the 89 test images of the LS-BSDS300 for an optimal global 

hreshold. 

F

(

iously obtained) and also recorded the number of best obtained

cores between only the first two cases and summarized all the

esults in Table 2 . Based on these results, we can conclude that

he symmetry detection strategy, in each coordinate space, per-

orms differently and well for different images. This is not surpris-

ng since a textured color image can really be visually different in
 0  2  4  6  8  10

Number of averaged log-polar spaces

ig. 6. Evolution of the F-score as a function of the number of log-polar transforms 

the other parameters of the model have been kept identical). 
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Fig. 7. (a) : F-measure scores by several other state-of-the art symmetry detection methods on the LS-BSDS300 (illustration is adapted from [35] ). (b) : F-measure scores for 

different variants of our approach. Namely; F-measure curve by considering; (1) only the symmetry magnitude map directly estimated on the Cartesian image, (2) only 

the average symmetry magnitude map obtained by log-polar inverse transformations of the N p different log-polar transformation of the Cartesian image, (3) the proposed 

symmetry detection model, obtained by averaging the two symmetry magnitude maps obtained in (1) and (2) (in cases 1 and 2, the other parameters of the model have 

been kept identical). (c) : F-measure scores obtained by suppressing one of the six heuristics (constant factor equal to 1 for, respectively, P u, v (C1, Eq. (3) ), ϒu, v (C2, Eq. (4) ), 

L u, v (C3, Eq. (5)) , D u, v (C4, Eq. (6) ), �u, v (C5, Eq. (7) ), and without the filtering process) and F-measure scores obtained by considering a Hough-like accumulation (see Eq. 

(2) ) in the voting space without the heuristics C1, C2, C3, C4 and C5, ( i.e ., P u, v = ϒu, v = L u, v = D u, v = �u, v = 1 but with the line filtering process). 
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the two spaces (see Fig. 4 ) and consequently the symmetry detec-

tion scheme can provide significantly different estimation results.

It also means that the symmetry responses in the log-polar trans-

formed space extract complementary information which can be ef-

ficiently combined with the Cartesian space or, otherwise said, that

the log-polar transformed space complements the results obtained

in the Cartesian space 4 

We have also evaluated the performance of our algorithm as a

function of respectively, the number of log-polar transforms (the

other parameters of the model have been kept identical). Results

are summarized in Fig. 6 and shows the benefit of taking into ac-

count (up to a certain extent) several detections of texture bound-

ary segments in different log-polar coordinate spaces 5 

Finally, in order to evaluate the contribution and importance of

each separate heuristic ( Eqs. (3) –(7) ) and the filtering process (see

Section 2.1 wherein we propose to select the N L line segments de-

lineating, at best, the boundary of two textures regions) to the

overall performance of our symmetry detection model, we have

compared the performances, in terms of F-measure and precision-

recall curves, on the same plot, obtained for different combinations

and different subsets of the heuristics of the proposed model. More

precisely, in the first set of experiments, we have suppressed one

of the six heuristics (constant factor equal to 1 for respectively,

P u, v , ϒu, v , L u, v , D u, v , �u, v , and without the above-mentioned filter-

ing process) and estimate the resulting precision recall curve and

F-score (see Fig. 7 (c)). In addition, we have also evaluated the F-

score by considering a Hough-like accumulation (see Eq. (2) ) in

the voting space without the heuristics C1, C2, C3, C4 and C5, ( i.e .,

P u, v =ϒu, v =L u, v =D u, v =�u, v =1 but with the line filtering pro-

cess). From these experiments, we can conclude that, the more ef-
4 A good example is given by the symmetry detection result obtained on the im- 

age number 300 , 091 for which the F-score greatly improves from F = 0 . 619 (in the 

Cartesian space) to F = 0 . 755 after averaging with the log-polar response (these im- 

ages are available on the website of this paper). 
5 Above N p = 10 log polar maps, the F-measure score reaches a plateau and fluc- 

tuates slightly around F = 0420 . This phenomenon may be due to the sampling of 

the reference centers of the polar coordinate space which are spatially distributed 

on the diagonal of the image. A potential source of enhancement of the model 

would be to adaptively choose the N p appropriate centers of reference within the 

image (possibly with selected SIFT points) or with a better sub-sampling strategy. 

I  

d  

m  

t

3

 

(  
cient and discriminant heuristic remains (by increasing order of

ignificance) the line filtering process, D u, v and �u, v . On the other

and, the heuristics P u, v , ϒu, v and L u, v provide (comparatively) mi-

or improvements ( P u, v brings minor improvement certainly be-

ause the line filtering process has already retained the most sig-

ificant texture boundaries). 

.3. Comparison with state-of-the-art methods 

We now compare our approach with other state-of-the-art

ocal symmetry detection methods, particularly the ones that

ave been already validated on the LS-BSDS300 [18,20,34,35] .

e can notice (see Fig. 7 ), that our symmetry detection model

F-measure = 0.422) compares favorably to the one proposed

y Levinshtein et al. [18] (F-measure = 0.356) or by Lindeberg

20] (F-measure = 0.360) and the proposed method achieves

 score nearly identical to the approach proposed by Tsogkas

34] (F-measure = 0.434) or identical to the method proposed

y Widynski (once rounded to the nearest thousandth) [35] (F-

easure = 0.422). Fig. 8 illustrates a few symmetry detection re-

ults obtained by the proposed algorithm after a non-maximum

uppression step and the optimal thresholding operation. Finally,

ig. 9 shows qualitative comparison and symmetry detection re-

ults for the proposed method and four other state-of-the-art local

ymmetry detectors (from left to right: [18,20,34,35] and the pro-

osed method). 

Let us also remark that the methods proposed by Widynski

t al. [35] or Tsogkas and Kokkinos [34] are, by nature, very dif-

erent from the method proposed in this paper (see the Section 1 ).

t means that these three methods perform differently and well for

ifferent images and thus extract complementary symmetry infor-

ation and consequently, could be efficiently combined together

o achieve better results. 

.4. Algorithm 

The proposed symmetry detection procedure takes, on average

per image), 1 min for an Intel©Core i7, 3.2 GHz, 6403 bogomips
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Fig. 8. Example of several local symmetry detection results obtained by our algo- 

rithm and super-imposed (in red) on some images from the BSDS300. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 9. Qualitative comparison and symmetry detection results against three other 

state-of-the-art local symmetry detectors (from left to right: [18,20,34,35] and the 

proposed method. 
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nd non-optimized code running on Linux 6 . Let us add that our al-

orithm and especially the set of log-polar transforms, along with

he line segment detection process can be easily computed in par-

llel, for example by using the parallel abilities of a graphic proces-

or unit (GPU) (embedded on most graphics hardware nowadays

vailable on the market) [12] . The code, data, and all that is nec-

ssary for reproduction of the results are freely accessible on the

uthor’s website (directory: ResearchMaterial/bisda.html). 

. Conclusion 

In this paper, we propose a multi-scale and multi-coordinate es-

imation approach to symmetry detection in natural images. The

roposed approach mainly consists in exploiting the idea of quan-

ifying the presence of a local symmetric part of an object exist-

ng between each pair of preliminary detected straight line seg-

ents corresponding to the boundary of two textured regions in
6 More precisely and by decreasing order, the Hough voting procedure takes ≈
0% of the total computational cost of the algorithm, the estimation of the potential 

aps in the texture sense: ≈ 5%, the segment filtering procedure: ≈ 2%, the log and 

nverse log-polar transformations: ≈ 1.5% and finally the LSD procedure: ≈ 1.5%. 

 

 

 

 

he scene. This estimation process is made reliable due to the in-

erent property that man-made objects and many shapes accept

n economic description in terms of straight lines and, thus, that

his constraint-based and compact image representation can be

sed to efficiently describe the geometric content of the scene.

his estimation process is also made reliable because of our multi-

oordinate approach which will possibly transform, for one of the

onsidered log-polar mapping, a given curved contour fragment

nto a straight line segment which will be then exploited to detect

 partial medial axis in this particular log-polar domain. We have

valuated our method on the LS-BSDS300 and demonstrate both

ts efficiency compared to existing works on symmetry detection

nd also the importance of our multi-coordinate strategy. A poten-

ial source of enhancement of the model would be to adaptively

hoose the N p appropriate centers of reference within the image

possibly with selected SIFT points) or with a better sub-sampling

trategy. Another direction worth exploring would be to adaptively

stimate the parameter N L according to the complexity of the im-

ge or finally to add other heuristics related both to the geometri-

al structure of each pair of line segments and their ability to lo-

ally delimit a homogeneous texture region in the image, such as

he parametric gradient profile model proposed by Sun et al. [32]

hat does not use the gradient value of a texture contour, but the

ymmetry and the monotonicity of its distribution profile. 
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