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Introduction

In image restoration with Bayesian methods, the solution is reg-
ularized by introducing a priori constraints [1]. Expressed as
a prior distribution PX(x) of the unknown image x or analyt-
ically encoded through an energy function Ω(x) added to the
likelihood term, this prior or energy term aims at reflecting the
knowledge or beliefs concerning the types of images acceptable
as estimates. Most of the proposed prior models assume that
the original image to be recovered is smooth. However, this is a
global requirement and therefore not very effective in terms of
local smoothness.

Most of the recent adaptive edge-preserving methods in image
restoration propose to manipulate “edge-variables” in the reg-
ularization term. An alternative approach to apply smoothness
while preserving discontinuities, proposed in this work, is to
use “label variables” and more precisely, to apply a smooth-
ness constraint only on constant areas of the image to be recov-
ered. This problem of identifying constant regions in a given
image is called a segmentation problem. A simple, alternative
and adaptive local quadratic smoothness term would then con-
sist in penalizing solutions exhibiting a luminance distribution
with large variance within each regions (i.e., the set of connected
pixels belonging to the same class). This regularization strat-
egy, which assume as prior model that the image is piecewise
smooth over pre-estimated regions is the main contribution of
this work.

In this new inhomogeneous Bayesian restoration model, reg-
ularization is achieved during the iterative restoration pro-
cess with a segmentation-based a priori term. This adaptive
edge-preserving regularization term applies a local smooth-
ness constraints to pre-estimated constant areas of the image
to be recovered. These constant-valued regions (the segmenta-
tion map) of the target image are obtained by an unsupervised
Markovian segmentation on a preliminary Wiener deconvolu-
tion estimate. To compute the MAP estimate associated to the
restoration, we use a simple steepest descent procedure result-
ing in an efficient iterative process converging to a globally
optimal restoration.

Adaptive Prior Model
In order to impose local smoothness on constant areas of the
image to be restored, we propose the following quadratic reg-
ularization term, based on a partition into regions, and whose
goal is to penalize solutions exhibiting a luminance distribution
with large variance within each region

Ω(x) = ‖ρ(x)‖2 = ‖x − Γ(x)‖2

Γ(xs) designates the operator that gives the mean of grey level
values of the region of belonging to the pixel at location s.

In this context, the restoration problem of y (= h ∗ x + n) is
thus defined as the search of the global minima of the following
energy function

E(x) =
{

‖y − h ∗ x‖2 +
α

2
‖x − Γ(x)‖2

}

This search of the global minima is simply performed in our ap-
plication by a steepest descent procedure which moves the esti-
mates iteratively in the negative gradient direction, as follows

x̂[n+1] = x̂[n] − γ∇E(x)

where γ is the step size. A large step size γ is needed for fast
convergence, but a too large value may destabilize the itera-
tive algorithm. ∇E(x) with E(x) above-defined can be easily
defined and allows to obtain the following iterative procedure
of restoration

x̂[n+1] = x̂[n] + γ
(

h#∗ (y − h ∗ x[n]) − α ρ′(x̂[n]) ρ(x̂[n])
)

where h#(i, j) = h(−i,−j) (for h symmetric, we have h# = h), ∗
is the linear convolution operator, and, in this form of notation,
the multiplication (between ρ′ and ρ) is done pixel-by-pixel. Be-
sides, if µ denotes the mean of the grey level values of the region
to which the pixel at location s belongs, we have,

∂ρ(x)

∂xs
= 1 −

1

N

where N is the number of pixels of the region of belonging to
pixel at location s. The successive approximation of the solution
according to the minimization of the cost function E(x) results
in initializing x̂[0] with the restoration result given by the Iter-
ative Wiener filter [2], and by using the iterative process until
some convergence criterion is met.

Parameter Estimation Step
A. Iterative Wiener Filter

The proposed restoration algorithm assumes knowledge of an
oversegmentation of the original image x into homogeneous re-
gions. Since this image (before degradation) is unknown, the
first step of our algorithm consists of obtaining an approxima-
tion of the true image x, with an unsupervised iterative Wiener
filtering [2]. The quality of the restored image by this procedure
is sufficient to automatically estimate a Markovian segmenta-
tion that will be used in our restoration model.

B. Unsupervised Markovian Segmentation

To this end, we have adopted the monoscale version of the
Markovian segmentation model described in [3], and already
successfully applied to noisy sonar images, with Gaussian law,
as degradation model to describe the luminance distribution
within each class. In our application, we take K = 20 classes.

C. Partition Into Regions

We now exploit this over-segmentation in order to get a reli-
able partition R̂ of the image into homogeneous regions. To this
end, we simply search the set of disjoint regions (i.e., the set of
connected pixels belonging to the same class). In order to limit
regions with a large number of pixels, which could produce
an undesirable “staircase” or quantization effects by our reg-
ularization/prior term which tends to favor piecewise smooth
restorations, we subdivide all the regions with more than 100
pixel size.

(a) (b) (c)

(d) (e) (f)
(a) Original image, (b) Noisy-blurred image with uniform blur of size 9 × 9, and AWGN with

σ2 = 0.308 (BSNR=40 dB), (c) Iterative Wiener filter [2] (ISNR=5.7 dB), (d) Unsupervised twenty-

class segmentation, (e) Partition into regions of the segmentation presented in (d), (f) Restored image

using the proposed approach (ISNR=8.04 dB).

Experimental Results
————————

We have taken for all the following experiments K = 20 classes
for the segmentation step and ζ = 0.2 for the restoration step.

Blur σ2 BSNR
Exp1 9 × 9 uniform 0.308 40

Exp2 hij = (1 + i2 + j2) 2 32
i, j = −7, . . . , 7

Exp3 [1, 4, 6, 4, 1]t[1, 4, 6, 4, 1]/256 49 18

Blur, noise variance and BSNR (dB) for each experiment

ISNR (dB)
Method Exp1 Exp2 Exp3
Proposed algorithm 8.04 7.23 1.34
Figueiredo &. Nowak [4] 7.59 6.93 2.94
Neelamani et al. [5] 7.30 - -
Banham & katsaggelos [6] 6.70 - -
Jalobeanu et al. [7] - 6.75 -
Liu & Moulin [8] - - 1.08

ISNR (dB) of the proposed algorithm and of the methods [4], [5], [6], [7], [8] for the three experiments

From top to bottom: Noisy-blurred image Exp2 (see Table I) and restored image using the proposed

approach (ISNR=7.23 dB) (see Table II).

Several Segmentations
An improvement of this model is to consider several partitions
into regions, allowing to minimize the effects of the dependence
of a bad segmentation map on the restoration result †.

† M. Mignotte. A segmentation-based regularization term for image deconvolution. IEEE Trans. on image
processing, accepted for publication.

Segmentation-Based Deconvolution Algorithm
(Mig-1)

NSeg Number of segmentations/partitions
K Number of classes of the segmentation
σ2 Variance of the noise

1. x̂[0] ← Iterative Wiener Filtering of y

2. Unsupervised Segmentations/Partitions
for k = 1 to NSeg do

• K-means clustering of each pixel of x̂[0] into K
clusters, initially randomly chosen (SEED= k)
• Φ[0]←ML fitting of Gaussian law for each cluster
• z

[0]
ML ← ML segmentation of x̂[0] based on Φ[0]

• Φ← ICE algorithm on x̂[0] (initialized with z
[0]
ML

and SEED= k)
• zML← ML segmentation of x̂[0] based on Φ
• zMAP ← ICM segmentation (initialized with zML)

and based on PZ|X,Φ(.|x̂[0], Φ)
• zk ← Partition into regions (of less than 100

pixel size) of zMAP

α← ζ ‖y−h∗x̂[0]‖2

Ω(x̂[0])

3. Segmentation-Based Deconvolution
while [E(x̂[n+1]) − E(x̂[n])]/E(x̂[n+1]) ≤ 10−5σ2

do
• x̂[n+1] ← x̂[n] +

(

h#∗ (y − h ∗ x̂[n])

−α ρ′(x̂[n])
[

x̂[n] −
1

NSeg

NSeg
∑

k=1

Γk(x̂[n])
]

)

• Compute the MAP

E(x̂[n+1])←
{

‖y − h ∗ x̂[n+1]‖2

+
α

2
‖x̂[n+1] −

1

NSeg

NSeg
∑

k=1

Γk(x̂[n+1])‖2
}

n← n + 1
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[3] M. Mignotte, C. Collet, P. Pérez, and P. Bouthemy. Sonar image segmentation using a hierarchical MRF model.
9(7):1216–1231, 2000.

[4] M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based image restoration. 12:906–916, 2003.

[5] R. Neelamani, H. Choi, and R. G. Baraniuk. Wavelet-domain regularized deconvolution for ill-conditioned
systems. In IEEE International Conference on Image Processing -ICIP’99, volume I, pages 204–208, October 1999.

[6] M. R. Banham and A. K. Katsaggelos. Spatially adaptive wavelet-based multiscale image restoration.
5(4):619–634, 1996.

[7] A. Jalobeaunu, N. Kingsbury, and J. Zerubia. Image deconvolution using hidden markov tree modeling of
complex wavelet packets. In IEEE International Conf. Image Proc. -ICIP-2001, October 2001.

[8] J. Liu and P. Moulin. Complexity-regularized image restoration. In IEEE International Conference on Image
Processing -ICIP’98, pages 555–559, October 1998.


