
SPATIO-TEMPORAL FASTMAP-BASED MAPPING FOR HUMAN
ACTION RECOGNITION

Lilia Chorfi Belhadj and Max Mignotte
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. ABSTRACT

.

.

This paper presents a simple and efficient method for action recognition based on the learning of an explicit representation for an intrinsic dynamic shape
manifold of human action. The proposed model relies on a short temporal set of FastMap dimensionality reduction-based technique for embedding a sequence
of raw moving silhouettes, associated to an action video into a low-dimensional space, in order to characterize the spatio-temporal property of the action, as
well as to preserve much of the geometric structure. The objective is to provide a recognition method that is both simple, fast and applicable in many scenarios.
Moreover, we demonstrate the robustness of our method to partial occlusion, deformation of shapes, significant changes in scale and viewpoint, irregularities in
the performance of an action, and low-quality video.
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. Introduction

.

.

▶ Human activity recognition:
▷ Local representations
▷ Global representations:

▶ Spatio-temporal template matching
▶ Manifold learning based

▶ Our solution: hybrid-framework which combines both manifold learning and spatio-temporal template
matching technique
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.
Spatio-Temporal Action Volume (STV)

.

.

Build a centered motion field of a moving body by aligning the 2D center of mass corresponding to each
normalized binary silhouettes to a reference point:

▶ To represent how as opposed to where

▶ Global translational speed of the movement is less informative than the motion of body parts relative to
the torso of the person over time

Figure : Generating Spatio-Temporal Action Volume (STV)
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Spatio-Temporal Action Shapes (STAS)

.

.

▶ To treat both periodic and non-periodic actions and to compensate for different lengths of the sequences:
▷ Use a temporal sliding window of 10 frames with an ovelap of 5 frames along the temporal axis.

▶ Divide STV into H ×W vectors
▷ (H ,W ) are, respectively, height and width of the image
▷ Each pixel-vector has a dimension T (number of frames in the STV)
▷ Each pixel-vector contains the intensity values that the pixel takes over T consecutive frames of a

video sequence.

▶ FastMap mapping from TD to 1D along the temporal axis
▷ Each pixel-vector in the initial space corresponds to a point in the reduced space
▷ These points will represent the pixel intensity values of the STAS image

▶ Mean correlation rates for the FastMap reduction technique:
▷ estimate the correlation ρ of the Euclidean distance between each pairwise vectors-pixels in the high

dimensional space (let X be this vector) and their corresponding Euclidean distances in 1-dimensional
space (let Y be this vector) following equation:

ρX ,Y = corr(X ,Y ) =
cov(X ,Y )

σXσY
=

X tY / |X | − X̄ Ȳ

σXσY
(1)

where X t , |X |, X̄ and σX respectively represent the transpose, cardinality, meann and standard
deviation of X .

Actions Bend Jack Jump Pjump Run Side Skip Walkk Wave1 Wave2
Correlation 0.79 0.88 0.86 0.92 0.74 0.89 0.80 0.90 0.50 0.82
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Sample images representing the different action STAS
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Experimental Results

.

.

▶ Use a Nearest Neighbors Classifier with leave-one-out procedure to label the test actions

▶ Recognition results on the Weizmann dataset:

method [1]’14 NNC 92.3%

method [2]’08 NNC 95.56%

method [3]’15 NNC 96.3%

method [4]’07 NNC 97.83%

method [5]’15 SVM 99.1%

method [6]’15 SVM 100%

method [7]’15 SVM 100%

Our method FastMap 100%

Actions 1 2 3 4 5 6 7 8 9 10

Corrupted dataset

method [4] 8 8 8 8 8 8 8 8 8 8

method [2] 2 8 6 2 8 8 8 6 8 7

method [8] 8 8 8 8 3 8 8 8 8 5

method [9] 8 8 8 8 2 8 8 8 8 5

Our method 8 8 8 8 8 8 8 8 8 8

Actions 1 2 3 4 5 6 7 8 9 10

Changing of viewpoints dataset

method [4] 8 8 8 8 8 8 8 8 8 8

method [2] 8 8 8 8 8 8 6 10 2 2

method [9] 8 8 8 8 8 8 8 2 5 2

Our method 8 8 8 8 8 8 8 8 6 6

▶ Recognition results on the KTH dataset:

Representation Accuracy

method [10]’10 low-level 82%

method [11]’08 low-level 84.3%

method [12]’10 low-level 87.3%

method [13]’10 low-level 90.57%

method [14]’15 low-level 92.13%

method [6]’15 low-level 93.98%

method [5]’15 low-level 95.8%

method [15]’10 high-level 94.5%

method [16]’12 high-level 98.9%

method [17]’14 high-level 99.54%

Our method low-level 92.04%

.

. Conclusion

.

.

Our method:

▶ is simple, inexpensive and fast allowing simple action recognition.

▶ does not require video alignment, and is applicable in many scenarios.

▶ is robust to partial occlusion, deformation of shapes, significant changes in scale and viewpoint,
irregularities in the performance of an action, and low-quality video.
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