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Introduction: Semantic image segmentation

e Semantic image segmentation has recently be-
come the focus of considerable interest

e This task consists in assigning a predefined
class label to each pixel in an image

e Task with a complexity challenge

Methods

Various methods for scene parsing have been
proposed in the literature

e Classifying each pixel independently
|:[> High computational cost

e Pairwise Markov random field (MRF)
|:[> Learning and inference are often expensive

Key idea

Grouping pixels into super-pixels
4
A novel and simple energy-minimization model

Proposed system overview

Energy minimization
—— with ICM
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a) Input image

) Image segmentation (achieved by the GCEBFM algorithm [1])
) Corpus of images
Semantic segmentation of each image on the corpus

e) Scene parsing result
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Combined criteria used in our model

Criterion Name Dimension

Color Color histogram 125

Texture Oriented gradient 40
histogram

Shape Pixel area 1

Location Top height 1

Context  Context histogram 21

Our MC-SSM model

¢ A single class label is assigned to each region
by optimizing a global fithess function that mea-
sures the quality of the generated solution:
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where:

I': Input image

R;={ri,rs,...,r"}: Region segmentation of I
(to be semantically labeled)

m. Number of regions (r) In R;

{Zi,Sk}i<rk: A set (or a training corpus) of K
iImages 7, and their corresponding semantic
segmentations Sy, respectively

Sq. Set of all possible semantically labeled
segmentation maps of I (based on its partition
Into regions R;

a, B, v, 0, A. Weights of the different terms of
the energy function

{Z:,Sy}*: Set of images and associated se-
mantic segmentation solutions (belonging to the
training corpus) that contains a region seman-
tically labeled s and h is the total number of
those semantic segmentations in the corpus

{C}sr = {Ty, S}

Optimization

e Global optimization problem incorporating a
nonlinear objective function

e Algorithm: lterative Conditional Modes (ICM)[2]

Results

Example of segmentation results on two images from
the MSRC-21 dataset compared to other algorithms
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Image Unary [3] Robust P [4] Auto context[5] Geodesic [6] Our method

AL building grass | tree cow sheep @ sky | aeroplane water | face car

bicycle flower sign | bird book chair road cat body boat

Global accuracy on the MSRC-21 dataset

Algorithms Accuracy (%)
SuperParsing [7] »« 61.50
SIM [9] 69.70
SVM-BoW [10] 62.70
MC-SSM 66.07

Example results
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