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A B S T R A C T 

In this paper, we develop an original and reliable detection and classification framework for Alzheimer’s 

Disease (AD) in structural Magnetic Resonance Imaging (MRI). This work exploits recent advances made 

in segmentation and multimedia indexing and classification for Content Based Visual Information Retrieval 

(CBVIR). More precisely, our strategy exploits the concept of consensus segmentation to build two 

segmentation prototypes (Prototype Normal Control (Prototype NC) and Prototype Alzheimer’s Disease 

(Prototype AD)) of the brain in terms of cerebral Grey Matter (GM), White Matter (WM) and Cerebro-

Spinal Fluid (CSF) regions. A first classification is then performed by computing a specific distance between 

the three-class segmentation of each MR brain image w.r.t the two prototypes. Based on a threshold on this 

computed distance, brain images are then classified using either Minimal Distance (MD) or K-Nearest 

Neighbors (KNN) classifier. Our approach has been evaluated on the baseline data of MR images of 98 

subjects from the Open Access Series of Imaging Studies (OASIS) database, which contains a large number 

of subjects compared to current reported studies. The used subsets consist of 49 subjects who have been 

diagnosed with very mild to mild AD and 49 non-demented individuals. The experimental results show that 

our classification of patients with AD versus NC subjects achieves accuracy of 90% by performing a 

LeaveOne-Out Cross Validation (LOOCV). Results demonstrate the validity of the proposed method and 

especially its simplicity and high accuracy compared to the other state-of-the-art AD diagnosis approaches 

proposed in the literature. 

 

                                                    © 2020 Max Mignotte. Hosting by Science Repository. All rights reserved.  

 

Introduction 

 

Alzheimer’s disease is an irreversible neurodegenerative dementia that 

occurs most frequently in older adults and that gradually destroys 

regions of the brain that are responsible for memory, learning, thinking, 

and behaviour [1]. Current estimates indicate that 5.3 million Americans 

of all ages are afflicted with this illness and this number is expected to 

increase to 16 million people by 2050, unless a cure is found. The socio-

economic consequences of this increase are cumbersome and makes 

early diagnosis of AD a public health emergency. 

 

Medical information from structural Magnetic Resonance Imaging 

(sMRI) has long time been the most used neuroimaging modality to 

detect brain atrophy in AD studies [2, 3]. In fact, two main families of 

methods can be distinguished to extract features from MRI for AD 

classification which are the morphometric methods and volumetric 

methods. Several studies report the use of sophisticated measurement 

techniques that assess anatomical changes in areas compromised by AD 

such as the Hippocampal Volume (HV), the Lateral Ventricles Volume 

(LVV), CSF Volume (CSFV) [4-6]. These (so-called volumetric) 

methods are only based on form, size and/or shape derived features 

extracted from the brain structures. Indeed, such volumetric 

measurements, require the segmentation of these ROIs from the MR 

images, most often manually. Furthermore, a priori assumptions about 

the expectedly affected brain structures is needed to select the 

appropriate ROI [7].  

 

Aside from volumetric approaches, morphometric methods have gained 

great interest among which we can distinguish: Voxel Based 

Morphometry (VBM) which is a widely used whole-brain analysis 

https://www.sciencerepository.org/radiology-and-medical-diagnostic-imaging
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method, which allows an exploration of the differences in local 

concentrations of grey matter and white matter [8]. Tensor Based 

Morphometry (TBM) was proposed to identify local structural changes 

from the gradients of deformations fields [9]. Object Based 

Morphometry (OBM) was introduced to perform shape analysis of 

anatomical structures and recently, Features Based Morphometry (FBM) 

was proposed as a method for relevant brain features comparison using 

a probabilistic model on local image features in scale-space [10-13]. 

 

Voxel based methods work directly on the voxel grid and are 

computationally very efficient. An advantage of these approaches, 

compared to the ROI-based volumetric methods, is the fact that they do 

not require a priori assumptions about the location, the size or number of 

ROIs to be analysed, since they provide voxel wise measures determined 

in the entire brain [7]. More, there is no evidence that other regions 

(except hippocampus and entorhinal cortex) did not provide any 

information for AD and NC [14]. Recent studies on AD diagnosis found 

that the quantity of CSF is a biomarker of AD [15]. Indeed, smaller 

hippocampal volume is associated with greater CSF amount [5]. 

 

Nevertheless, these methods are less accurate due to the limited 

resolution of the voxel grid and less robust to noise, mainly because of 

the inherent inter subject anatomical variability and the effects of a brain 

pathology [7]. Indeed, some pathologies may affect not only a single 

anatomical structure or interconnected regions, but specific structures 

localized far away from each other. This kind of patterns are difficult to 

find and analyze with the standard morphometrical techniques [7]. To 

cope with this issue, we have developed an automatic content-based 

framework for recognition of Alzheimer’s disease subjects using MRI 

segmented scans with the concept of consensus segmentation. In our 

case, the principle of consensus segmentation allows us to build two 

reliable segmentation-based prototypes, one corresponding to healthy 

individuals and the second one corresponding to unhealthy subjects 

(with AD) from a training database of previously segmented brain MR 

images. First, let us stress us that the segmentation is a representation of 

an image into something that is easier to analyze than the MR image 

itself.  

 

In addition, these two consensus segmentation-based prototypes have 

also several appealing advantages whose the first one is to suppress or 

remove undesired components in the brain image (to be classified) such 

as the anatomical variability existing between individuals which are not 

relevant for the detection and quantification of AD. The second 

advantage is that the segmentation-based prototypes allows us to not to 

take into account the noise of the MR imaging modality into the 

classification procedure. In addition and finally, the difference between 

these two prototypes also allows us to localize the regions in the brain 

that are affected by the AD or to identify ROIs with a specific textural 

pattern in the segmentation which could represent an interesting early 

bio-marker of this disease (cf. Figure 3). These two segmentation-based 

prototypes (NC and AD), built from a training segmented database can 

be viewed and understood as being a mean and “denoised atlas” of a 

healthy or unhealthy subject (with AD). Indeed, in estimation theory, an 

estimator based on the average (or the weighted average) operation 

generally yields to an optimal denoised solution (when the noise is 

uncorrelated). In the consensus theory, this average (or consensus or 

compromise) can be achieved according to different defined criteria (see 

Section III Criteria or Distance Used in Consensus Segmentation Field). 

With the features estimated, either by volumetric or voxel-based 

methods, on training cases, a classifier can be trained and applied to 

predict the diagnosis of a testing case, whose features are extracted in 

the same way. Among the most popular classifiers: Linear Discriminant 

Analysis (LDA), Neural Network, linear or non-linear Support Vector 

Machines (SVM) and KNN [16-21]. 

 

Many of the classification studies on the detection of AD were done with 

both men and women. However, it has been demonstrated that brains of 

women are different from men to the extent that it is possible to 

discriminate the gender via MRI analysis. Moreover, it has been shown 

that VBM is sensitive to the gender differences [22]. For these reasons, 

we have been very cautious in this study; therefore, as proposed in, we 

have selected a set of 98 MRI (link) women’s brain volumes [1, 17, 23-

31]. This subsample from OASIS contains the same number of AD 

patients and controls, therefore is a well class balanced sample [23]. In 

addition, our study was also validated for the entire database to 

demonstrate the stability of the proposed method regardless of the set of 

data used. It must be noted that this is a large number of subjects 

compared with the other studies referred above as it has also been 

mentioned in [29]. 

 

In this work we propose an automatic content analysis-based framework 

for recognition of AD using MRI scans. Image content analysis and 

classification methodologies are now more and more used for medical 

information mining and retrieval with the aim of Computer-Aided 

Diagnosis (CAD) [32, 33]. The proposed method exploits recent 

advances made in segmentation and multimedia indexing and 

classification for content based visual information retrieval and, more 

precisely, the concept of consensus segmentation to define two 

segmentation prototypes (Prototype NC and Prototype AD) of the brain 

in terms of cerebral GM, WM, and CSF. These two prototypes are then 

used with a Minimal Distance Classifier (MDC) and cleverly combined 

with the KNN algorithm to increase the classification accuracy. 

 

The rest of the paper is organized as follows: Consensus Of 

Segmentations in Imaging presents the related work on the consensus of 

segmentation in imaging, describes the combination model and the 

consensus model, according to different criteria (or different metrics 

between two segmentations), to build two segmentation prototypes 

Prototype NC and Prototype AD. Proposed classification model presents 

the proposed MDC-KNN classifier. Results and Discussion presents 

experimental results, and some comparisons with several state-of-the-art 

methods and finally, Conclusion concludes this work and outlines its 

further perspectives. 

 

Consensus of Segmentations in Imaging 

 

I Introduction 

 

Image segmentation is a frequent pre-processing step in computer vision 

whose goal is to simplify and transform the representation of an image 

with a set of coherent significant and spatial regions with similar 

attributes [34]. This low-level vision task, which changes the 

representation of an image into something that becomes easier to 

analyze, is often the preliminary and crucial step in the development of 

many image-understanding algorithms and computer vision systems. In 

our case, the segmentation of a brain MR image into three kinds of 

http://www.ehu.eus/ccwintco/index.php/GIC-experimental-databases
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regions (classes), each one associated with a specific brain anatomical 

tissue (CSF, WM and GM) has the merit to efficiently reduce the 

information content of a brain MR image and to suppress undesired 

components such as noise or artifacts which are not relevant for the 

detection and classification of AD. 

 

Recently, the notion of consensus segmentation has recently been 

proposed in the image processing community. A consensus 

segmentation is conceptually the compromise (in terms of level of 

details, contour accuracy, number of regions, etc.) exhibited by each 

segmentation map (or spatial clustering) belonging to a set of 

segmentations. In some sense, the consensus segmentation is the average 

of all the individual segmentations belonging to a (so-called) 

segmentation ensemble, according to a defined criterion. 

 

This concept of consensus clustering has been first exploited in image 

processing as an interesting alternative for segmenting complex scenes. 

Indeed, in this case, a possible and reliable segmentation approach 

consists in combining (fusing or merging) multiple low-cost and rough 

image segmentation results of the same scene associated with simpler 

segmentation model (by varying the internal parameters of a given 

segmentation algorithm (or seeds for stochastic algorithms) and/or by 

using different features for an input image or simply by using different 

segmentation algorithms) to provide a consensus solution which is a 

final improved segmentation map. In fact, this strategy can be viewed 

and easily understood as a (special type of) denoising problem in which 

each segmentation (to be merged) is in fact a noisy segmentation solution 

(or observation). In estimation theory, an estimator based on the average 

operation generally yields to an optimal denoised solution (when the 

noise is uncorrelated). In the same way, in the consensus theory, an 

interesting denoised segmentation solution also turns to be the average 

(in a statistical criterion sense) of all the individual segmentations to be 

combined. 

 

Let us mention that when the different anatomical classes can be easily 

identified from the spatial clustering result, as it is the case of a three-

class segmentation of a brain MR image (since the CSF, grey and white 

matter exhibit regions with increasing mean value of grey level), the 

simplest consensus segmentation model can be based on the local 

majority vote criterion. This technique simply consists firstly in 

collecting, for each pixel the class labels of the different segmentation 

maps of the segmentation ensemble and secondly by assigning to that 

central pixel, the class label that has the majority vote. A spatially 

regularized variant of this method consists in gathering the class labels 

contained in a 3D window centered on this pixel.  

 

Nevertheless, many other consensus criteria in the segmentation field 

exist and which have also the appealing advantage of not requiring the 

number of classes and to previously identify the semantic class of each 

segmented region. For example, we can mention the consensus model 

proposed in that averages or merges a set of segmentation maps in the 

sense of inertia or intra-cluster variance criterion (or its variant, in the 

weighted intra-class inertia sense), in the Probability Rand Index (PRI) 

sense with different optimizers or strategies, in the Variation of 

Information (VoI), Global Consistency Error (GCE), F-measure, in the 

sense of the Support Vector Machine (SVM) criterion (i.e., in the 

maximum margin hyper-plane sense between the classes) or finally in 

the sense of the Maximum A Posteriori (MAP) of the Logit distribution 

to name a few [35-48].  

 

It is also worth mentioning that the notion of consensus segmentation 

has been also recently exploited in CBVIR in order to help a user to 

browse through a large database in an intuitive and efficient manner [49]. 

For example, it is also used for searching a specific subset or class of 

images in terms of their segmentation-based descriptive content and, 

more precisely, according to the geometrical layout and shapes of the 

different objects detected and segmented within the image (and not based 

on low level color or texture visual features as it has been commonly and 

widely proposed in this domain and which is limited in usefulness). 

 

II Consensus Segmentation Model Principle 

 

Let us consider that we have at our disposal, a set of L segmentations 

{Sk}k≤L={ S1 ,S2 , …, SL} of size N pixels to be averaged (or combined) 

in order to obtain either a final improved segmentation result relatively 

to each member of {Sk}k≤L if each segmentation map Sk results from the 

same image or either to build a prototype if each segmentation is related 

to an anatomical structure affected by a same disease. In this latter case, 

which is herein considered, it allows us to provide a kind of segmented 

anatomical atlas that captures the segmented anatomy of unhealthy 

anatomical structure without taking into account the inherent anatomical 

shape variability existing between individuals which are not relevant for 

the detection and quantification of Alzheimer disease. 

 

Conceptually, most of the consensus criteria used to fuse or average a 

set of segmentations, is based upon the definition of a distance or metric 

between two segmentation maps (measuring the similarity between the 

two clusterings). This is straightforwardly the case for the VoI, GCE, 

PRI F-measure criterion and this distance can be easily found for the 

other criteria (e.g., for the majority vote criterion this distance could be 

simply the sum (for each pixel) of the proportion of labels that are 

different to the label associated with the final majority vote) [41, 43, 45, 

46]. 

 

Based on this distance, the estimation of the consensus or prototype of 

these L segmentations can be conceptually defined as the segmentation 

solution 𝑆which is at the center of the segmentation ensemble {Sk}k≤L or 

equivalently as being the segmentation 𝑆 that minimizes the considered 

average pairwise distance between the consensus segmentation 𝑆 and all 

other segmentation Sk of the segmentation ensemble. Formally, this 

optimization problem called the median partition) problem can be 

expressed as: 

�̂�𝐷𝑖𝑠𝑡. = arg 𝑚𝑖𝑛𝑆∈𝑆𝑛
{
1

𝐿
∑ 𝐷𝑖𝑠𝑡. (𝑆, 𝑆𝑘)

𝐿

𝑘=1

}                                     (1) 

where Sn represents the set of all possible segmentations of size N pixels 

and ∑ 𝐷𝑖𝑠𝑡. (𝑆, 𝑆𝑘)𝐿
𝑘=1  is commonly called the consensus or cost function 

of this energy-based consensus model for the considered distance or 

criterion [50]. This optimization problem can then be solved either with 

deterministic gradient procedures, algebraic optimization methods, 

dynamic programming or either with stochastic search or simulation 

procedures or machine Learning based optimization schemes [38-43, 45-

48, 50]. 
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III Criteria or Distance Used in Consensus Segmentation Field 

 

i Global Consistency Error (GCE) 

 

The Global Consistency Error (GCE) measures the extent to which one 

segmentation map can be viewed as a refinement of another 

segmentation [45]. Segmentations which are related in this manner are 

considered to be consistent, since they could represent the same image 

segmented at different scales.  

 

Let S1={ 𝐶1
1, 𝐶2

1, …,  𝐶𝑅1
1  } and S2={ 𝐶1

2, 𝐶2
2, …,  𝐶𝑅2

2  } be respectively 

the first and second segmentation and 𝑅1  and  𝑅2 being respectively the 

number of clusters C (or segments; In fact, two different measures can 

be defined, one applying on clusters or class, another applying on regions 

or segments. For an image, a region is a set of connected pixels 

belonging to the same class and a class, a set of pixels possessing similar 

textural characteristics) in S1 and S2. For a given pixel 𝑝𝑖, let  𝐶<𝑝𝑖>
1   and  

𝐶<𝑝𝑖>
2    be the cluster that contain that pixel. The local refinement error 

(LRE) is then defined at pixel 𝑝𝑖  as: 

𝐿𝑅𝐸(𝑆1,𝑆2,𝑝𝑖) =
|𝐶<𝑝𝑖>

1    \  𝐶<𝑝𝑖>
2  |

| 𝐶<𝑝𝑖>
1  |

                                    (2) 

 

where \ denotes the set differencing operator and |C| the cardinality of 

the set of pixels C. As noticed in, this clustering (or segmentation) error 

measure is not symmetric and encodes a measure of refinement in one 

direction only [45]. A possible and natural way to combine the LRE at 

each pixel into a measure which is symmetric is to consider: 

 

This segmentation error, based on the GCE, is a distance whose values 

lie in the range [0,1]. A value of 0 indicates that the two segmentations 

are identical (perfect match) and a value of 1 indicates maximum 

deviation between the two segmentations being compared. 

 

𝐺𝐶𝐸(𝑆1,𝑆2,𝑝𝑖)
=

1

2𝑁
{∑ 𝐿𝑅𝐸(𝑆1,𝑆2,𝑝𝑖)

𝑁

𝑖=1

+ ∑ 𝐿𝑅𝐸(𝑆2,𝑆1,𝑝𝑖)

𝑁

𝑖=1

}    (3) 

 

 

 

 

ii Variation of Information (VoI) 

 

The variation of information (VoI) metric is a recent information theory-

based measure for comparing the similarity of two segmentation results. 

This metric quantifies the information shared between two 

segmentations by, more precisely, measuring the amount of information 

that is lost or gained in changing from one segmentation to another [49]. 

 

𝑉𝑜𝐼(𝑆1, 𝑆2) = 𝐻(𝑆1) + 𝐻(𝑆2) − 2𝐼(𝑆1, 𝑆2)                            (4) 

 

Where H and I are respectively the entropies of and mutual information 

between segmentation 𝑆1 and 𝑆2. The VoI is a true distance on the space 

of clusterings which is positive, symmetric and obeys the triangle 

inequality. It takes a value of 0 when two clusterings are identical and 

positive otherwise. It is bounded by logN (N is the number of pixels), 

and if  𝑆1 and 𝑆2 have at most 𝑅𝑚𝑎𝑥clusters, it is bounded by 2log 𝑅𝑚𝑎𝑥  

[51]. 

 

iii Probabilistic Rand Index (PRI) 

 

The Rand index simply computes the proportion of pairs of pixels with 

compatible region (or cluster; In fact, two different measures can be 

defined, one applying on clusters or class, another applying on regions 

or segments [37]. For an image, a region is a set of connected pixels 

belonging to the same class and a class, a set of pixels possessing similar 

textural characteristics) label relationships between the two 

segmentations to be compared. if 𝑙𝑖
𝑆1designates the region or cluster 

labels associated to the segmentation maps 𝑆1 at pixel location 𝑖 and if  𝐼 

is the identity function, the Rand index is given by: 

 

A value of 1 indicates that the two segmentations are identical and a 

value of 0 indicates that the two segmentations do not agree on any pair 

of points (e.g., when all the pixels are gathered in a single region in one 

segmentation whereas the other segmentation assigns each pixel to an 

individual region). When the number of labels in  𝑆1 and  𝑆2 are much 

smaller than the number of pixels N, a computationally inexpensive 

estimator of the RI can be found in [37]. Since the PRI is a measure of 

similarity lying in [0,1], a distance based on the PRI criterion can be [1 

– Prand (𝑆1, 𝑆2)]. 

 

 

𝑃𝑅𝑎𝑛𝑑(𝑆1, 𝑆2) =  
1

𝑁(𝑁 − 1)
 ∑ { 𝐼 (𝑙𝑖

𝑆1 =  𝑙𝑗
𝑆1   𝑎𝑛𝑑 𝑙𝑖

𝑆2 =  𝑙𝑗
𝑆2) +  𝐼 (𝑙𝑖

𝑆1 ≠ 𝑙𝑗
𝑆1   𝑎𝑛𝑑 𝑙𝑖

𝑆2 ≠ 𝑙𝑗
𝑆2)

𝑖,𝑗 𝑖≠𝑗

}                (5) 

 

 

iv The F-Measure 

 

The global F-measure (or harmonic mean of precision-recall measure) 

provides a performance score, evaluating the agreement between region 

boundaries between two segmentations [52]. This latter measure is, in 

fact, deduced from the well-known precision/recall values. 

Qualitatively, the precision measure (P) is defined as the fraction of 

detections that are true boundaries; this measure is low when there is 

significant over-segmentation, or when a large number of boundary 

pixels have poor localization. The Recall (R) measure gives the fraction 

of the true boundaries detected [46]. A particular (vision) application can 

define a relative cost α related to these two quantities, which controls a 

harmony between P and R (or equivalently focuses attention at a specific 

point on the precision-recall curve) [52]. The F-measure is defined as: 

 

𝐹𝛼(𝑆1, 𝑆2) =  
𝑃𝑅

𝛼𝑅 + (1 −  𝛼)𝑃
                                             (6) 

 

The best F-measure, for a given α reflects the optimal compromise 

between how much true signal is required and how much false alarms 

can be tolerated. Since the F-measure of similarity lying in [0,1], a 

symmetric distance based on the F criterion can be [1 − (1/2){ 𝐹𝛼(𝑆1, 𝑆2) 

+ 𝐹𝛼(𝑆2, 𝑆1)}]. 
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Proposed Classification Model 

 

I Data Description 

 

The data analyzed in this paper was obtained from the OASIS database 

(link). The data set consists of a cross-sectional collection of 416 subjects 

aged 18 to 96 years, including 218 subjects aged 18 to 59 years and 198 

subjects aged 60 to 96 years. For the older subjects, 98 subjects NC and 

100 subjects who were diagnosed with very mild to moderate AD. The 

detailed statistics of the data set was described in the literature [53]. As 

proposed in, a subset of the OASIS database, i.e., 98 right-handed 

women (aged 65-96 years) is considered herein and was selected in order 

to evaluate the detection performance of the proposed classifier [1, 17, 

23-31]. More precisely, the used subset consists of 49 subjects who have 

been diagnosed with very mild to mild AD (class 1) and 49 non-

demented (class 2). The designation of demented and non-demented is 

based on the Clinical Dementia Rate (CDR). The CDR is a dementia-

staging factor that categorizes subjects for impairment in each of the six 

domains: memory, orientation, judgment and problem solving, function 

in community affairs, home and hobbies, and personal care. Absence of 

dementia is indicated by a CDR of 0, very mild, mild and moderate are 

respectively represented by CDRs of 0.5, 1 and 2. The demographic 

information of these subjects is summarized in (Table 1). 

 

Table 1: Demographic information of the subjects in the two 

classification classes. Education codes correspond to the following 

levels of education: 1: less than high school grad., 2: high school grad., 

3: some college, 4: college grad., 5: beyond college. 

 Very mild to mild AD Normal Control 

No. of subjects 49 49 

Age 78.08 (66-96) 77.77 (65-94) 

Education 2.63 (1-5) 2.87 (1-5) 

Socioeconomic status 2.94 (1-5) 2.88 (1-5) 

CDR (0.5/1/2) 31/17/1 0 

MMSE 24 (15-30) 28.96 26-30) 

 

II MRI Data Pre-processing 

 

In this work, we used T1-weighted magnetic resonance images of the 

brain, that were captured with a T Vision 1.5 scanner. As described in, 

all (axial section) MRI images were: a) corrected for inter-scan head 

movement and rigidly aligned to the Talairach and Tournoux space, b) 

transformed to a template with a 12-parameter affine registration and 

merged into a 1-mm isotropic image, c) skull stripping with the Brain 

Extraction Tool (BET; For all the above-mentioned pre-treatments, we 

use the Statistical Parametric Mapping SPM software (VBM8 toolbox) 

with its parameters by default) (link) and corrected for intensity 

inhomogeneity, and finally d) segmented into K = 3 classes 

corresponding to the three existing cerebral tissues (CSF, WM and GM) 

[53-55]. This 3-class segmentation is obtained by applying firstly, 10 

times the K-means clustering algorithm with different seeds and different 

number of neighbours of the pixel to be classified and secondly by 

combining them with a simple majority vote scheme (We have noticed 

that this simple segmentation technique provides better classification 

results than a SPM software (Statistical Parametric Mapping) based 

segmentation technique (the classification accuracy is better by 2%)). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Snapshot of a specific subject. A) One original scan. B) Atlas-

registered image. C) Brain masked version of Figure 1B. D) The 

GM/WM/CSF segmentation image. 

 

In our application, the majority vote is achieved with a spatial window 

(of size 3 × 3 pixels and centered on the pixel s to be classified) that 

collects the class labels of the 10 segmentation results obtained by each 

K-mean clustering and by finally assigning to that central pixel s, the 

class label that has the majority vote. This strategy ensures both an 

efficient spatial regularization of the final segmentation result and also a 

reliable decision fusion between results obtained by these K-mean 

clusterings. In this segmentation, the CSF, the white matter and the grey 

matter are represented by a dark, a grey, and a white region respectively, 

in order to visually express the activity level of the blood flow. The pre-

processing steps are summarized in (Figure 1) for the T1 image of one 

subject. 

 

III Prototypes NC and AD 

 

Our classification model is based on a two-step classification procedure 

who’s the first step relies on a minimum distance-based classifier using 

two consensuses segmentation-based prototypes of the brain, in terms of 

CSF, WM and GM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Methodology for the NC and AD prototype creation. 

http://www.oasis-brains.org/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BEText
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Regions and built from the entire OASIS basis (see Sections Consensus 

of Segmentations in Imaging & II Consensus Segmentation Model 

Principle). More precisely, one brain prototype corresponds to unhealthy 

individuals (with AD or class 1) and is obtained by combining all 

segmentations related to subjects who have been diagnosed with very 

mild to mild AD (from 100 subjects) and the second one (class 2), 

corresponding to healthy subjects, is built from the set of non-demented 

subjects contained in the OASIS database (316 healthy subjects). 

 

As already said (see Section Consensus of Segmentations in Imaging), 

these two-consensus segmentation-based prototypes can be achieved 

according to different criteria (each criterion being, in fact, conceptually 

based on the definition of a specific distance between two segmentation 

maps). In this work, we will test and compare the efficiency of different 

consensus criteria for the two prototypes used in our classification 

scheme. The methodology for the creation of the two-consensus 

segmentation-based prototypes is illustrated in (Figure 2). 

 

 

 

 

 

 

 

 

 

Figure 3: Prototype AD and NC according to different criteria of 

merging (GCE, FM, LSQ, VOI, PRI) [35, 41, 43, 45, 46]. 

 

IV Two-Step Classification 

 

The proposed hybrid classification technique named MDC-KNN (for 

Minimum Consensus Distance-KNN), combining the previously 

estimated prototypes (Prototype NC and Prototype AD) and the KNN 

(weighted KNN as proposed in) algorithm consists of three stages [56]: 

 

i. Calculate the two Consensus distances between the 

segmentation related to an input MRI image and respectively 

the Prototype Prototype NC (D NC) and the Prototype 

Prototype AD (D AD). 

ii. Choose the classifier KNN or (prototype-based) Minimal 

distance (MD). The choice of classifier (KNN or MD) 

depends on the difference between D NC and D AD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: |DNC − DAD| large (case 1 or 2) or low (case 3). 

If the difference is large (greater than a threshold T which was set to 

1.5%; We have computed than the distance (in percentage of pixel 

difference) between Prototype NC & Prototype AD is 15%. Based on 

this, we have set this threshold T to an order of magnitude (÷10) lower 

(i.e., T = 1.5%)), then, in this case (case 1 or 2 of Figure 4), we choose 

the MD classifier since in this case we are certain that the segmentation 

is very close to one of the two prototypes and consequently we can 

thus rely on this classification procedure. Otherwise, we apply the 

weighted KNN classifier (case 3 of Figure 4) in with the GCE distance 

(see Section Global Consistency Error (GCE)) between the 

segmentation related to an input MRI image and the 3-class 

segmentations obtained for each image of the test set training data set 

(To examine the performance of the classifier, a leave-one-out cross-

validation approach was taken, and every subject was selected once as 

the test data, with the remaining subjects forming the training data). 

 

iii. Classification: Let us note that our two-step classification 

procedure which combines, in the first step, the MD classifier 

based on two consensuses segmentation-based prototypes 

followed by the second step, which uses a classical weighted 

KNN classifier, can be also viewed as a single hierarchical KNN 

classifier. Indeed, the MD classifier based on our two prototypes 

can be seen as a simple 1-nearest neighbour in which the 

prototype summarizes the set of segmented brains belonging to 

a same pathology class (healthy or AD). The schematic diagram 

for the proposed two-step classification methodology is outlined 

in (Figure 5). 

 

Results and Discussion 

 

In this section we describe our experiments and report the results of the 

proposed method. In order to investigate the detection performance of 

the proposed MDC-KNN classifier, a set of appropriate experiments 

were conducted. For the experimental purposes, specific software was 

developed in C++. All experiments were executed in an Intel i7-3.3 GHz 

PC with 16 GB RAM. 

 

I Evaluation Criteria 

 

We evaluate the performance of the proposed classification method, 

against recent leading classification methods, in terms of 

sensitivity=TP/(TP + FN), specificity=TN/(TN + FP) and accuracy=(TN 

+ TP)/(TN+TP+FN+FP) where True Positives (TP) are AD patients 

correctly identified as AD, True Negatives (TN) are controls correctly 

classified as controls, False Negatives (FN) are AD patients incorrectly 

identified as controls and False Positives (FP) are controls incorrectly 

identified as AD. Sensitivity is the proportion of AD subjects correctly 

classified, and the specificity is the proportion of correctly classified 

controls (Table 2) [57, 58]. 

 

In addition, we also compare the performance of our classification 

method with different consensus criteria for the creation of the two 

prototypes (see Section Prototypes NC and AD and Figures 2, 3 & 5), 

namely; GCE, FM, Least Square (LSQ), VoI, PRI and Majority vote 

(Tables 3 & 6). The validation was performed using a leave-one-out 

cross-validation. In this scheme, a single MRI is classified using the 

classifier trained with the remaining observations. 
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Figure 5: The methodology of the proposed two-step classification method. 

 

The validation of the whole methodology was performed for two 

experimental groups, the first one consisted of a well-balanced subset of 

the original OASIS dataset, including 98 right-handed women (aged 65-

96 years). More precisely, 49 control subjects and 49 patients diagnosed 

with AD, the demographic information about these subjects is 

summarized in (Table 1). The second one was the whole OASIS dataset, 

consisted of 416 subjects aged 18 to 96. The subjects are all right-handed 

and include both men and women subjects (156 males and 260 females). 

100 of the included subjects over the age of 60 have been clinically 

diagnosed with very mild to moderate AD. More precisely, 316 subjects 

with CDR=0, 70 subjects with CDR=0.5, 28 subjects with CDR=1 and 

2 subjects with CDR=2. 

 

At first, we will make the classification into two classes (NC vs. AD). 

Nevertheless, when we include the subjects with CDR = 0.5, CDR=1 and 

CDR=2, we have 4 classes of the disease (NC, very mild AD, mild AD 

and moderate AD) that are not easily separable, to distinguish between 

these classes we divided the task in two steps as shown in (Figure 5). 

 

II Performance Measures & Comparison with State-of-the-Art 

Methods 

 

i Classification Results into Two Classes (NC vs. AD) 

 

The actual feature dataset (98 subjects: 49 AD and 49 NC) has been used 

in several works in the literature, hence results obtained with a variety of 

classifier models are publicly available for comparison, for example, 

applied a KNN classifier defined in the LC (Lattice Computing) context, 

on the 98 female subjects [1]. He obtained 80% accuracy, 79% 

specificity and 80% sensitivity, also, authors in studied the feature-

extraction process with VBM analysis and achieved the best results with 

85% accuracy for the rbf-DAB-SVM classifier (Table 2) [24]. The AD 

detection statistics, accuracy, sensitivity and specificity, of the proposed 

MDC-KNN classifier by performing a leave-one-out cross validation 

(This procedure iteratively leaves out the information on each subject 

and trains the model on the remaining subjects for subsequent class 

assignation of the person that was not included in the training procedure) 

test, in comparison with the state-of-the-art models are summarized in 

(Table 2) regarding an OASIS subset of 98 subjects (see Section Data 

Description ) [1, 23, 24, 28, 30]. 

 

In order to evaluate the performance of our classification pipeline to 

distinguish Alzheimers disease (AD) patients from normal control 

subjects, we can use confusion matrix (Table 4): 

 

i. Altogether, the classifier made 98 predictions (98 subjects were 

classified in AD or NC class). 

ii. Out of 98 subjects, our model correctly classified 89 subjects: 44 

were correctly classified as AD, and 45 of them were correctly 

classified as NC. This result to 90% accuracy. 

iii. Further, 5 out of 98 subjects were classified falsely: 5 subjects, 

which were actual NC, were not predicted as NC (False 

Negative). And 4 subjects, which were actual AD, were not 

predicted as AD (False Positive). 
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By computing additional measures such as Matthews Correlation 

Coefficient (MCC) and F1 Score from the classification matrix, we can 

get additional insights about our approach (Table 5). 

 

Table 2: Classification results comparison between our method and the morphometric approaches proposed in and several other approaches (using a leave-

one-out cross validation test and the same dataset) [1]. 

Classifier type Accuracy Sensitivity Specificity 

MDC-KNN (GCE meas.) 0.90 0.90 0.91 

rbf-DAB-SVM 0.85 0.78 0.92 

PCA+Multi-Kernel SVM 0.84 0.85 0.86 

PCA+Linear SVM 0.83 0.83 0.83 

LVQ2 0.83 0.74 0.92 

LVQ1 0.81 0.72 0.90 

MDC (GCE meas.) 0.80 0.81 0.79 

LC-KNN 0.80 0.80 0.79 

rbf-AB-SVM 0.79 0.78 0.80 

PCA+SRAN 0.79 0.79 0.79 

MLP-BP 0.78 0.69 0.88 

PNN 0.78 0.62 0.94 

Linear SVM 0.78 0.72 0.88 

Indep-rbf-SVM 0.75 0.56 0.95 

Kernel-LICA-DC 0.74 0.96 0.52 

Indep-Linear-SVM 0.74 0.51 0.97 

KNN (GCE meas.) 0.73 0.71 0.75 

Linear-AB-SVM 0.71 0.54 0.88 

RBF 0.66 0.65 0.68 

 

Table 3: Comparison of the classification results of our approach with 

different consensus criteria for the creation of prototypes (98 subjects). 

Criterion Accuracy Sensitivity Specificity 

GCE 0.90 0.90 0.91 

FM 0.88 0.81 0.95 

Least Square 0.88 0.86 0.90 

VoI 0.79 0.61 0.97 

PRI 0.85 0.85 0.86 

Majority Vote 0.89 0.88 0.90 

 

By examining the results of (Table 2 & Figure 6), it follows that the 

proposed classifier MDC-KNN with GCE measure (for the MD 

classifier) and K = 3 (this number was empirically tested) demonstrated 

superior performance than some conventional classifiers such as RBF, 

MLP-BP, PNN, Linear SVM (12% higher accuracy) and some advanced 

classification models (Indep-linear-SVM, Indep-rbf-SVM, linear-AB-

SVM, rbf-AB-SVM, Kernel-LICA-DC, LVQ1, LVQ2. 

 

Table 4: Confusion matrix of classification accuracy for classifier 

MDC-KNN (GCE measure). 

2 class problem NC subjects AD subjects 

NC subjects 45 4 

AD subjects 5 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Performance comparison between our method and the morphometric approaches proposed in for AD vs. NC [1]. 
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Table 5: Computation of basic measures from the confusion matrix of (Table 4). 

Measure Value Derivations 

Sensitivity 0.900 TPR = TP / (TP + FN) 

Specificity 0.917 SPC = TN / (FP + TN) 

Precision 0.918 PPV = TP / (TP + FP) 

Accuracy 0.908 ACC = (TP + TN) / (TP + TN + FP + FN) 

F1 Score 0.909 F1 = 2TP / (2TP + FP + FN) 

Matthews Correlation Coefficient 0.817  

 

rbf-DAB-SVM, PCA+Linear SVM, PCA+SRAN, PCA+Multi-Kernel 

SVM). Let us note that the single KNN classifier (without being 

combined with our prototype-based MD classifier) with the GCE 

distance reaches a classification value of only 73%. Conversely, the 

single MD classifier (without being combined with our KNN classifier) 

with the GCE distance reaches a classification value of only 80% (Table 

2). In addition, we have processed a total of 416 MR images from 100 

AD and 316 control subjects and noticed that our classification results 

are stable over the entire database and thus reliable (see Table 6). 

 

Table 6: Comparison of the classification results of our approach with 

different consensus criteria for the creation of prototypes (for the entire 

database: 416 subjects). 

Criterion Accuracy Sensitivity Specificity 

GCE 0.90 0.88 0.91 

FM 0.89 0.88 0.90 

Least Square 0.88 0.86 0.89 

VOI 0.81 0.62 0.88 

PRI 0.86 0.85 0.87 

Majority Vote 0.90 0.87 0.91 

 

Let us note that our method (MDC-KNN) achieves the best result with 

the GCE measure or criterion and the second-best result with the 

Majority Vote criterion (Tables 3 & 6). This indicates that the GCE is an 

interesting distance measure between segmentations with which useful 

consensus-based segmentations can be efficiently exploited in a 

classification framework. 

 

ii Classification Results into Four Classes (NC, Very Mild AD, 

Mild AD and Moderate AD) 

 

Previous classification aims to distinguish between two separated classes 

(AD vs. NC). Nevertheless, when we include the subjects with CDR = 

0.5, CDR=1 and CDR=2, we have 4 classes of the disease (NC, very 

mild AD, mild AD and moderate AD), and it is interesting to distinguish 

between these different classes. To this end, we can divide the task into 

two stages: 

 

i. Step I: in this step, all the subjects are taken and classified as NC 

or AD as described in (Figure 5), the AD class includes patients 

with very mild to moderate AD, this first step can be viewed as 

a diagnosis step. 

ii. Step II: in this step, we use the MDC classifier based on three 

new prototypes, i.e., respectively built from brain segmented 

images having (in the training base) a CDR=0.5, CDR=1 and 

CDR=2 (Figure 7) to classify them into the very mild AD, mild 

AD and moderate AD classes, this second step allows us to 

quantify the severity of the disease. 

 

The classification performance with the second experimental group 

achieved 86% with the GCE measure for the entire database (416 

subjects) and 87% for the subset of database (98 subjects). 

 

III Computation Time 

 

The averaged computation time of every stage is listed in (Table 8). The 

preprocessing (registration) costs the most time, namely 35 minutes for 

the total dataset (48 Gigabytes representing 416 subjects). The 3-class 

segmentation. 

 

 

 

 

 

 

 

 

 

Figure 7: From the lexicographic older: prototypes using the GCE 

distance and built from a) CDR=0.5 (very mild AD), b) CDR=1 (mild 

AD), c) CDR=2 (moderate AD). 

 

Table 7: Confusion matrix of classification accuracy for classifier 

MDC-KNN (GCE measure) for a 4-class classification task (416 

subjects). 

4 class 

problem 
NC 

Very 

mild AD 

Mild 

AD 

Moderate 

AD 
Accuracy 

NC 274 26 16 0 86.709% 

Very mild 

AD 

8 58 4 0 82.857% 

Mild AD 0 2 24 2 85.714% 

Moderate 

AD 

0 0 0 2 100% 

 

Of the dataset costs about 20 minutes. Afterwards, the creation of the 

two prototypes cost approximately 5 minutes. Each additional 

registration, for a subject outside the dataset, takes approximately 5 sec. 

Finally, the classification of MDC-KNN takes 0.7 sec. In practice, let us 

note that the construction of the prototype with the registration and the 

segmentation of the initial dataset is off-line. Consequently, it costs at 

most 5 sec. to perform a new registration, 3 sec. for the segmentation 

step and about 0.7 sec. to get the computer-aided diagnosis for each new 

patient for a non-optimized C++ code under Linux for a Intel i7 3.3 GHz 

PC. 
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Table 8: Averaged computation time. 

Stage Time 

Registration of the dataset 35 min. 

Segmentation of the dataset 20 min. 

Prototypes construction 5 min. 

Additional registration and segmentation 8 sec. 

MDC-KNN classification 0.7 sec. 

 

IV Discussion 

 

First, we would like to recall that the use of consensus segmentation-

based prototypes is the core idea of our proposed detection and 

classification approach and emphasize why these prototypes have 

several appealing characteristics for our classification task. 

 

Since these two consensus models are built from segmentation maps, it 

allows us to reduce the information content of a brain MR image and to 

suppress undesired components such as noise which may degrade the 

classification performance. Second, as a consensus model, it also allows 

us to suppress undesired components in the brain image such as the 

anatomical variability existing between individuals (of the same group) 

which are not relevant for the detection and quantification of AD (and 

consequently to improve the classification scheme). 

 

We have compared the performance of our classification method with 

different segmentation consensus criteria, for the creation of the two 

prototypes namely; GCE, F-Measure, Least Square (LSQ), VoI, PRI and 

Majority vote. It turns out that the GCE seems the most relevant criterion 

for modeling a healthy or unhealthy segmented brain consensus, for the 

specific application of detection and quantification of AD. This is not 

surprising and can be explained by the fact that the GCE use a (purely) 

geometrical criterion for building the consensus segmentation-based 

prototypes. Conceptually speaking, the GCE searches the segmentation 

solution that minimizes the geometrical difference or overlap (see 

Equation 2) between its segmented regions (in terms of CSF, WM and 

GM) and the segmented regions of the different segmentation maps to 

be combined. It is meaningful since recent studies on AD diagnosis 

found that the excess of CSF or locally the lack of GM (relative to the 

WM region), at certain specific parts of the brain, is a good biomarker of 

AD.  

 

Another explanation may be due to the nature of this GCE criterion 

which can take into account the inherent multiscale nature of any 

segmentation by measuring the level of refinement existing between two 

segmentations. Let us also add that the proposed approach yields higher 

classification accuracy compared to the other state-of-the-art methods. 

In addition, the proposed method produces small classification errors 

with the appealing property to be well balanced across the predictions, 

as indicated in the confusion matrices. 

 

Combining MDC and KNN seems especially interesting in our 

classification method maybe because our two-step procedure can be 

considered as a hierarchical, multiscale or a coarse-to-fine KNN 

classifier in which the MD classifier can be regarded, at the coarsest 

scale, as a 1-nearest neighbour in which each prototype is assumed to 

summarize (with a well-suited geometrical criterion, as proposed by 

GCE) the set of segmented brains belonging to a same pathology class. 

Finally, it is worth mentioning that, in the clinical practice, the results 

presented in our paper should be used in conjunction with other data 

(Neuropsychological Tests, Early Diagnosis, etc.) to reach a 

classification performance that may turn out useful in practice. Indeed, 

we will be able to see, in the following section, how mixed the two-class 

distributions are (i.e., the two prototypes are closed to each other in term 

of GCE similarity distance, Figure 8). 

 

 V Visualization of Image Databases 

 

In order to appreciate all the relevancy of the GCE distance, used in our 

classification procedure, it may be interesting to find a strategy to 

provide a quick overview of how are distributed the 49 healthy and 49 

unhealthy brains of our subset of the OASIS database with our two 

prototypes according to the GCE distance. This can be done with the 

Multi-Dimensional Scaling (MDS) and the technique described in with, 

in our application the GCE distance between pair of segmentations 

(instead of the VoI distance as applied in) [49]. To this end, it consists in 

computing the distance matrix describing the dissimilarities between 

each existing pair of segmentations, in term of GCE distance, and used 

this distance matrix with a technique which will attempt to find an 

embedding, in a (for example) 2D space, such that pairwise distances 

between these segmentations are preserved as much as possible.  

 

This embedding method, aiming at preserving the original relationships 

of these images (in term of a given distance), is done with the MDS 

visualization technique in the least square sense. It is now used in 

navigation systems, browsing or image database in which it may be 

interesting to arrange the images of the database according to their 

descriptive content extracted by a segmentation process, or otherwise 

said, based on the spatial arrangement of the different objects detected 

or segmented in the image (instead of simply their own color or texture) 

[49]. 

 

This 2D MDS visualization map of the MRIs based on the GCE distance 

is shown in (Figure 8). The MDS estimates a (possible) 2D mapping with 

17% of error (or loss of information if we consider the MDS technique 

as a dimensionality reduction scheme). In spite of this error, we can see 

two clusters; the blue brains are related to the healthy brains and are in a 

cluster located at the bottom and left of the image and conversely the red 

brains, corresponding to unhealthy brains are in a cluster located at the 

top and right of the image. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: An MDS visualization map of the considered subset of the 

OASIS database (49 healthy and 49 unhealthy subjects) based on the 

GCE distance between (pair of) segmentations according to their 

similarity. MRIs framed in blue are NC and MRIs framed in red are AD. 

the large red and blue frame is respectively the AD and NC prototypes. 
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Conclusion 

 

In this paper, we have presented a novel and reliable prototype-based 

classification framework, in structural MRI, for the early detection and 

classification of the Alzheimer’s disease. The proposed framework relies 

on two prototypes, based on the recent concept of consensus 

segmentation, to define two average models of segmented brain, 

corresponding to healthy subjects or unhealthy individuals affected by 

dementia. These two-consensus segmentation-based prototypes have 

several appealing characteristics for our classification task. First, since 

these two consensus models are built from segmentation maps, it allows 

us to reduce the information content of a brain MR image and to suppress 

undesired components such as noise which may degrade the 

classification performance. Second, as a consensus model, it also allows 

us to suppress undesired. 

 

Components in the brain image such as the anatomical variability 

existing between individuals (of the same group) which are not relevant 

for the detection and quantification of AD. In this study, different 

consensus criteria of segmentations have been tested and it turns out that 

the Global Consistency Error seems the most relevant criterion for 

modelling a healthy or unhealthy brains consensus which could be 

subsequently used for the early detection of AD in structural MRI. This 

can be due to the inherent nature of this criterion which can take into 

account the inherent multiscale nature of an image segmentation by 

measuring the level of refinement existing between two segmentations. 

Experiments conducted on 98 subjects show the validity of the proposed 

method and especially its simplicity and high accuracy compared to the 

other state-of-the-art AD diagnosis approaches proposed in the literature. 

In addition, 

 

i. Our approach is less time-consuming compared to the state of 

the arts computer-based Volumetric methods and is fully 

unsupervised automatic (it does not require the intervention of 

an expert during the classification/retrieval phase). 

ii. It is extensible to other diseases that can be diagnosed by brain 

MRI such as Schizophrenia and brain tumours. 

iii. The method could be extended by combining axial, coronal, and 

sagittal MRI data for improving the classification accuracy. 

iv. The method is fast and reliable, so it can be used for clinical 

applications. 

v. As the proposed approach rely on the training phase, so 

increasing the number of the data in the training set can improve 

the performance of the approach and leads to a better detection 

in subjects with/without AD. 
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