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Abstract—In this paper, we develop an original and reliable
detection and classification framework for Alzheimer’s Disease
(AD) in structural Magnetic Resonance Imaging (MRI). This
work exploits recent advances made in segmentation and mul-
timedia indexing and classification for Content Based Visual
Information Retrieval (CBVIR). More precisely, our strate gy
exploits the concept of consensus segmentation to build twoseg-
mentation prototypes (Prototype Normal Control (Prototype NC)
and Prototype Alzheimer’s Disease (PrototypeAD)) of the brain
in terms of cerebral Grey Matter (GM), White Matter (WM)
and Cerebro-Spinal Fluid (CSF) regions. A first classification is
then performed by computing a specific distance between the
three-class segmentation of each MR brain image w.r.t the two
prototypes. Based on a threshold on this computed distance,brain
images are then classified using either Minimal Distance (MD)
or K-Nearest Neighbors (KNN) classifier. Our approach has been
evaluated on the baseline data of MR images of98 subjects from
the Open Access Series of Imaging Studies (OASIS) database,
which contains a large number of subjects compared to current
reported studies. The used subsets consist of49 subjects who have
been diagnosed with very mild to mild AD and49 non-demented
individuals. The experimental results show that our classification
of patients with AD versus NC subjects achieves accuracy of
90% by performing a Leave-One-Out Cross Validation (LOOCV).
Results demonstrate the validity of the proposed method and
especially its simplicity and high accuracy compared to the
other state-of-the-art AD diagnosis approaches proposed in the
literature.

Index Terms—Alzheimer’s disease, classification, consensual
segmentation, Global Consistency Error (GCE), K-Nearest
Neighbors (KNN), Minimal Distance Classifier (MDC), Magnetic
Resonance Image (MRI).

I. I NTRODUCTION

Alzheimer’s disease is an irreversible neurodegenerative
dementia that occurs most frequently in older adults and that
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gradually destroys regions of the brain that are responsible
for memory, learning, thinking, and behavior [1]. Current
estimates indicate that5.3 million Americans of all ages
are afflicted with this illness and this number is expected
to increase to16 million people by2050, unless a cure is
found. The socio-economic consequences of this increase are
cumbersome and makes early diagnosis of AD a public health
emergency.

Medical information from structural Magnetic Resonance
Imaging (sMRI) has long time been the most used neuroimag-
ing modality to detect brain atrophy in AD studies [2], [3].
In fact, two main families of methods can be distinguished
to extract features from MRI for AD classification which are
the morphometric methods and volumetric methods. Several
studies report the use of sophisticated measurement techniques
that assess anatomical changes in areas compromised by AD
such as the Hippocampal Volume (HV), the Lateral Ventricles
Volume (LVV), CSF Volume (CSFV) [4]–[6]. These (so-called
volumetric) methods are only based on form, size and/or shape
derived features extracted from the brain structures. Indeed,
such volumetric measurements, require the segmentation of
these ROIs from the MR images, most often manually. Fur-
thermore, a priori assumptions about the expectedly affected
brain structures is needed to select the appropriate ROI [7].
Aside from volumetric approaches, morphometric methods
have gained great interest among which we can distinguish:
Voxel Based Morphometry (VBM) [8] which is a widely used
whole-brain analysis method, which allows an exploration of
the differences in local concentrations of grey matter and
white matter. Tensor Based Morphometry (TBM) [9] was
proposed to identify local structural changes from the gradients
of deformations fields. Object Based Morphometry (OBM)
[10] was introduced to perform shape analysis of anatomical
structures and recently, Features Based Morphometry (FBM)
[11] was proposed as a method for relevant brain features
comparison using a probabilistic model on local image features
in scale-space [12], [13].
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Voxel based methods work directly on the voxel grid and
are computationally very efficient. An advantage of these
approaches, compared to the ROI-based volumetric methods,
is the fact that they do not requirea priori assumptions about
the location, the size or number of ROIs to be analyzed,
since they provide voxel wise measures determined in the
entire brain [7]. More, there is no evidence that other regions
(except hippocampus and entorhinal cortex) did not provide
any information for AD and NC [14]. Recent studies on AD
diagnosis found that the quantity of CSF is a bio-marker of
AD [15]. Indeed, smaller hippocampal volume is associated
with greater CSF amount [5].

Nevertheless, these methods are less accurate due to the
limited resolution of the voxel grid and less robust to noise,
mainly because of the inherent inter subject anatomical vari-
ability and the effects of a brain pathology [7]. Indeed, some
pathologies may affect not only a single anatomical structure
or interconnected regions, but specific structures localized far
away from each other. This kind of patterns are difficult to
find and analyze with the standard morphometrical techniques
[7]. To cope with this issue, we have developed an auto-
matic content-based framework for recognition of Alzheimer’s
disease subjects using MRI segmented scans with the con-
cept of consensus segmentation. In our case, the principle
of consensussegmentation allows us to build two reliable
segmentation-based prototypes, one corresponding to healthy
individuals and the second one corresponding to unhealthy
subjects (with AD) from a training database of previously
segmented brain MR images. First, let us stress us that the
segmentation is a representation of an image into something
that is easier to analyze than the MR image itself. In ad-
dition, these two consensus segmentation-based prototypes
have also several appealing advantages whose the first one
is to suppress or remove undesired components in the brain
image (to be classified) such as the anatomical variability
existing between individuals which are not relevant for the
detection and quantification of AD. The second advantage is
that the segmentation-based prototypes allows us to not to take
into account the noise of the MR imaging modality into the
classification procedure. In addition and finally, the difference
between these two prototypes also allows us to localize the
regions in the brain that are affected by the AD or to identify
ROIs with a specific textural pattern in the segmentation which
could represent an interesting early bio-marker of this disease
(cf. fig 2). These two segmentation-based prototypes (NC and
AD), built from a training segmented database can be viewed
and understood as being a mean and “denoised atlas” of an
healthy or unhealthy subjects (with AD). Indeed, in estimation
theory, an estimator based on the average (or the weighted

average) operation generally yields to an optimal denoised
solution (when the noise is uncorrelated). In the consensus
theory, this average (or consensus or compromise) can be
achieved according to different defined criteria (see Section
II-C).

With the features estimated, either by volumetric or voxel-
based methods, on training cases, a classifier can be trained
and applied to predict the diagnosis of a testing case, whose
features are extracted in the same way. Among the most
popular classifiers: Linear Discriminant Analysis (LDA) [16],
Neural Network [17], linear or non-linear Support Vector
Machines (SVM) [4], [18]–[20] and KNN [21].

Many of the classification studies on the detection of AD
were done with both men and women. However, it has been
demonstrated that brains of women are different from men to
the extent that it is possible to discriminate the gendervia MRI
analysis. Moreover, it has been shown that VBM is sensitive
to the gender differences [22]. For these reasons, we have
been very cautious in this study; therefore, as proposed in [1],
[17], [23]–[31], we have selected a set of98 MRI 1 women’s
brain volumes. This subsample from OASIS contains the same
number of AD patients and controls, therefore is a well class
balanced sample [23]. In addition, our study was also validated
for the entire database to demonstrate the stability of the
proposed method regardless of the set of data used. It must be
noted that this is a large number of subjects compared with
the other studies referred above as it has also been mentioned
in [29].

In this work we propose an automatic content analysis
based framework for recognition of AD using MRI scans.
Image content analysis and classification methodologies are
now more and more used for medical information mining and
retrieval [32], [33] with the aim of Computer-Aided Diagnosis
(CAD). The proposed method exploits recent advances made
in segmentation and multimedia indexing and classificationfor
content based visual information retrieval and, more precisely,
the concept of consensus segmentation to define two segmen-
tation prototypes (PrototypeNC and PrototypeAD) of the
brain in terms of cerebral GM, WM, and CSF. These two
prototypes are then used with a Minimal Distance Classifier
(MDC) and cleverly combined with the KNN algorithm to
increase the classification accuracy.

The rest of the paper is organized as follows: Section 2
presents the related work on the consensus of segmentation in
imaging, describes the combination model and the consensus
model, according to different criteria (or different metrics
between two segmentations), to built two segmentation pro-

1http://www.ehu.es/ccwintco/index.php/GIC-experimental-databases
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totypes PrototypeNC and PrototypeAD. Section 3 presents
the proposed MDC-KNN classifier. Section 4 presents exper-
imental results, and some comparisons with several state-of-
the-art methods and finally, Section 5 concludes this work and
outlines its further perspectives.

II. CONSENSUS OF SEGMENTATIONS IN IMAGING

A. Introduction

Image segmentation is a frequent pre-processing step in
computer vision whose goal is to simplify and transform the
representation of an image with a set of coherent significant
and spatial regions with similar attributes [34]. This low-level
vision task, which changes the representation of an image
into something that becomes easier to analyze, is often the
preliminary and crucial step in the development of many
image-understanding algorithms and computer vision systems.
In our case, the segmentation of a brain MR image into
three kinds of regions (classes), each one associated with a
specific brain anatomical tissue (CSF, WM and GM) has the
merit to efficiently reduce the information content of a brain
MR image and to suppress undesired components such as
noise or artifacts which are not relevant for the detection and
classification of AD.

Recently, the notion ofconsensussegmentation has recently
been proposed in the image processing community. Aconsen-
sus segmentation is conceptually the compromise (in terms
of level of details, contour accuracy, number of regions, etc.)
exhibited by each segmentation map (or spatial clustering)be-
longing to a set of segmentations. In some sense, theconsensus
segmentation is the average of all the individual segmentations
belonging to a (so-called) segmentation ensemble, according
to a defined criterion.

This concept ofconsensusclustering has been first exploited
in image processing as an interesting alternative for seg-
menting complex scenes. Indeed, in this case, a possible and
reliable segmentation approach consists in combining (fusing
or merging) multiple low-cost and rough image segmentation
results of the same scene associated with simpler segmentation
model2 to provide a consensussolution which is a final
improved segmentation map. In fact, this strategy can be
viewed and easily understood as a (special type of) denoising
problem in which each segmentation (to be merged) is in fact
a noisy segmentation solution (or observation). In estimation
theory, an estimator based on the average operation generally
yields to an optimal denoised solution (when the noise is
uncorrelated). In the same way, in the consensus theory, an
interesting denoised segmentation solution also turns to be the
average (in a statistical criterion sense) of all the individual
segmentations to be combined.

2by varying the internal parameters of a given segmentation algorithm (or
seeds for stochastic algorithms) and/or by using differentfeatures for an input
image or simply by using different segmentation algorithms.

Let us mention that when the different anatomical classes
can be easily identified from the spatial clustering result,
as it is the case of a three-class segmentation of a brain
MR image (since the CSF, grey and white matter exhibit
regions with increasing mean value of grey level), the simplest
consensussegmentation model can be based on the local
majority vote criterion. This technique simply consists firstly
in collecting, for each pixel the class labels of the different
segmentation maps of the segmentation ensemble and secondly
by assigning to that central pixel, the class label that has
the majority vote. A spatially regularized variant of this
method consists in gathering the class labels contained in a
3D window centered on this pixel. Nevertheless, many other
consensus criteria in the segmentation field exist and which
have also the appealing advantage of not requiring the number
of classes and to previously identify the semantic class of
each segmented region. For example, we can mention the
consensus model proposed in [35] that averages or merges a set
of segmentation maps in the sense of inertia or intra-cluster
variance criterion (or its variant [36], in the weighted intra-
class inertia sense), in the Probability Rand Index [37] (PRI)
sense with different optimizers or strategies [38]–[42], in the
Variation of Information (VoI) [43], [44], Global Consistency
Error (GCE) [45], F-measure [46], in the sense of the Support
Vector Machine (SVM) criterion [47] (i.e., in the maximum
margin hyper-plane sense between the classes) or finally in
the sense of the Maximum A Posteriori (MAP) of the Logit
distribution [48] to name a few.

It is also worth mentioning that the notion ofconsensus
segmentation has been also recently exploited in CBVIR [49]
in order to help a user to browse through a large database in an
intuitive and efficient manner. For example, it is also used for
searching a specific subset or class of images in terms of their
segmentation-based descriptive content and, more precisely,
according to the geometrical layout and shapes of the different
objects detected and segmented within the image (and not
based on low level color or texture visual features as it has
been commonly and widely proposed in this domain and which
is limited in usefulness).

B. Consensus segmentation model principle

Let us consider that we have at our disposal, a set ofL
segmentations

{

Sk

}

k≤L
=

{

S1, S2, ..., SL

}

of sizeN pixels
to be averaged (or combined) in order to obtain either a final
improved segmentation result relatively to each member of
{

Sk

}

k≤L
if each segmentation mapSk results from the same

image or either to build a prototype if each segmentation is
related to an anatomical structure affected by a same disease.
In this latter case, which is herein considered, it allows usto
provide a kind of segmented anatomical atlas that captures the
segmented anatomy of unhealthy anatomical structure without
taking into account the inherent anatomical shape variability
existing between individuals which are not relevant for the
detection and quantification of Alzheimer disease.
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Conceptually, most of the consensus criteria used to fuse or
average a set of segmentations, is based upon the definition
of a distance or metric between two segmentation maps
(measuring the similarity between the two clusterings). This
is straightforwardly the case for the VoI [43], GCE [45], PRI
[41], F-measure [46] criterion and this distance can be easily
found for the other criteria (e.g., for the majority vote criterion
this distance could be simply the sum (for each pixel) of the
proportion of labels that are different to the label associated
with the final majority vote).

Based on this distance, the estimation of the consensus
or prototype of theseL segmentations can be conceptually
defined as the segmentation solutionŜ which is at the center of
the segmentation ensemble

{

Sk

}

k≤L
or equivalently as being

the segmentation̂S that minimizes the considered average
pairwise distance between the consensus segmentationŜ and
all other segmentationSk of the segmentation ensemble. For-
mally, this optimization problem called themedian partition
[50]) problem can be expressed as:

ŜDist. = arg min
S∈Sn

{ 1

L

L
∑

k=1

Dist.(S, Sk)
}

(1)

whereSn represents the set of all possible segmentations of
sizeN pixels and

∑L
k=1 Dist.(S, Sk) is commonly called the

consensus or cost function of this energy-based consensus
model for the considered distance or criterion. This optimiza-
tion problem can then be solved either with deterministic
gradient procedures, algebraic optimization methods, dynamic
programming or either with stochastic search or simulation
procedures or machine Learning based optimization schemes
[38]–[43], [45]–[48], [50].

C. Criteria or distance used in consensus segmentation field

1) Global Consistency Error (GCE):The Global Consis-
tency Error (GCE) [45] measures the extent to which one
segmentation map can be viewed as a refinement of another
segmentation. Segmentations which are related in this manner
are considered to be consistent, since they could representthe
same image segmented at different scales.

Let S1 = {C1
1, C

1
2, . . . , C

1

R1} andS2 = {C2
1, C

2
2, . . . , C

2

R2}
be respectively the first and second segmentation andR1 and
R2 being respectively the number of clustersC (or segments3)
in S1 andS2. For a given pixelpi, let C1

<pi>
andC2

<pi>
be

the cluster that contain that pixel. The local refinement error
(LRE) is then defined at pixelpi as:

LRE(S1, S2, pi) =
|C1

<pi>
\C2

<pi>
|

|C1
<pi>|

(2)

where \ denotes the set differencing operator and|C| the
cardinality of the set of pixelsC. As noticed in [45], this

3In fact, two different measures can be defined, one applying on clusters
or class, another applying on regions or segments. For an image, a region is
a set of connected pixels belonging to the same class and a class, a set of
pixels possessing similar textural characteristics.

clustering (or segmentation) error measure is not symmetric
and encodes a measure of refinement in one direction only. A
possible and natural way to combine the LRE at each pixel
into a measure which is symmetric is to consider:

GCE(S1,S2) =
1

2N

{ N
∑

i=1

LRE(S1,S2,pi) +
N
∑

i=1

LRE(S2,S1,pi)

}

(3)

This segmentation error, based on the GCE, is a distance
whose values lie in the range[0, 1]. A value of 0 indicates
that the two segmentations are identical (perfect match) and
a value of1 indicates maximum deviation between the two
segmentations being compared.

2) Variation of Information (VoI): The variation of in-
formation (VoI) metric is a recent information theory based
measure for comparing the similarity of two segmentation
results. This metric quantifies the information shared between
two segmentations by, more precisely, measuring the amount
of information that is lost or gained in changing from one
segmentation to another [49].

V oI(S1, S2) = H(S1) +H(S2)− 2 I(S1, S2) (4)

WhereH and I are respectively the entropies of and mutual
information between segmentationS1 and S2. The VoI is a
true distance on the space of clusterings which is positive,
symmetric and obeys the triangle inequality. It takes a value
of 0 when two clusterings are identical and positive otherwise.
It is bounded bylogN (N is the number of pixels), and ifS1

andS2 have at mostRmax clusters, it is bounded by2 logRmax

[51].

3) Probabilistic Rand Index (PRI):The Rand index [37]
simply computes the proportion of pairs of pixels with com-
patible region (or cluster3) label relationships between the two
segmentations to be compared. iflS1

i designates the region or
cluster labels associated to the segmentation mapsS1 at pixel
location i and if I is the identity function, the Rand index is
given by:

PRand(S1, S2)=
1

N(N − 1)

∑

i,j i6=j

{

I(lS1

i =lS1

j and lS2

i =lS2

j ) +

I(lS1

i 6=lS1

j and lS2

i 6=lS2

j )
}

(5)

A value of1 indicates that the two segmentations are identical
and a value of0 indicates that the two segmentations do not
agree on any pair of points (e.g., when all the pixels are
gathered in a single region in one segmentation whereas the
other segmentation assigns each pixel to an individual region).
When the number of labels inS1 and S2 are much smaller
than the number of pixelsN , a computationally inexpensive
estimator of the RI can be found in [37]. Since the PRI is a
measure of similarity lying in[0, 1], a distance based on the
PRI criterion can be[1− PRand(S1, S2)].

4) The F Measure:The global F measure (or harmonic
mean of precision-recall measure) [52] provides a performance
score, evaluating the agreement between region boundaries
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between two segmentations. This latter measure is, in fact,
deduced from the well-known precision/recall values. Quali-
tatively, the precision measure (P) is defined as the fraction
of detections that are true boundaries; this measure is low
when there is significant over-segmentation, or when a large
number of boundary pixels have poor localization. The Recall
(R) measure gives the fraction of the true boundaries detected
[46]. A particular (vision) application can define a relative cost
α related to these two quantities, which controls a harmony
betweenP andR [52] (or equivalently focuses attention at a
specific point on the precision-recall curve). The F measureis
defined as:

Fα(S1, S2) =
PR

αR+ (1− α)P
(6)

The best F measure, for a givenα reflects the optimal
compromise between how much true signal is required and
how much false alarms can be tolerated. Since the F measure
of similarity lying in [0, 1], a symmetric distance based on the
F criterion can be[1− (1/2){Fα(S1, S2) + Fα(S2, S1)}].

III. PROPOSED CLASSIFICATION MODEL

A. Data description

The data analyzed in this paper was obtained from the
OASIS database4. The data set consists of a cross-sectional
collection of 416 subjects aged 18 to 96 years, including 218
subjects aged 18 to 59 years and 198 subjects aged 60 to
96 years. For the older subjects, 98 subjects NC and 100
subjects who were diagnosed with very mild to moderate AD.
The detailed statistics of the data set was described in the
literature [53]. As proposed in [1], [17], [23]–[31], a subset of
the OASIS database,i.e., 98 right-handed women (aged65−96
years) is considered herein and was selected in order to evalu-
ate the detection performance of the proposed classifier. More
precisely, the used subset consists of49 subjects who have
been diagnosed with very mild to mild AD (class1) and 49
non-demented (class2). The designation of demented and non-
demented is based on the Clinical Dementia Rate (CDR). The
CDR is a dementia-staging factor that categorizes subjectsfor
impairment in each of the six domains: memory, orientation,
judgment and problem solving, function in community affairs,
home and hobbies, and personal care. Absence of dementia
is indicated by a CDR of0, very mild, mild and moderate
are respectively represented by CDRs of0.5, 1 and 2. The
demographic information of these subjects is summarized in
Table I.

B. MRI data preprocessing

In this work, we used T1-weighted magnetic resonance
images of the brain, that were captured with a T Vision
1.5 scanner. As described in [53], all (axial section) MRI
images were: (a) corrected for inter-scan head movement and

4http://www.oasis-brains.org

TABLE I: Demographic information of the subjects in the
two classification classes. Education codes correspond to the
following levels of education: 1: less than high school grad.,

2: high school grad., 3: some college, 4: college grad.,
5: beyond college

Very mild to mild AD Normal Control

No. of subjects 49 49
Age 78.08 (66-96) 77.77 (65-94)
Education 2.63 (1-5) 2.87 (1-5)
Socioeconomic status 2.94 (1-5) 2.88 (1-5)
CDR (0.5/1/2) 31/17/1 0
MMSE 24 (15-30) 28.96 (26-30)

rigidly aligned to the Talairach and Tournoux space [54],
(b) transformed to a template with a12-parameter affine
registration and merged into a1-mm isotropic image [53],
(c) skull stripping with the Brain Extraction Tool (BET5) and
corrected for intensity inhomogeneity [55], and finally (d)
segmented intoK = 3 classes corresponding to the three
existing cerebral tissues (CSF, WM and GM). This3-class
segmentation is obtained by applying firstly,10 times theK-
means clustering algorithm with different seeds and different
number of neighbors of the pixel to be classified and secondly
by combining them with a simple majority vote scheme6.

In our application, the majority vote is achieved with a
spatial window (of size3 × 3 pixels and centered on the
pixel s to be classified) that collects the class labels of the10
segmentation results obtained by eachK-mean clustering and
by finally assigning to that central pixels, the class label that
has the majority vote. This strategy ensures both an efficient
spatial regularization of the final segmentation result andalso
a reliable decision fusion between results obtained by these
K-mean clusterings. In this segmentation, theCSF, the white
matterand thegrey matterare represented by a dark, a grey,
and a white region respectively, in order to visually express
the activity level of the blood flow. The preprocessing steps
are summarized in Fig. 1 for the T1 image of one subject.

C. Prototypes NC and AD

Our classification model is based on a two-step classifi-
cation procedure whose the first step relies on a minimum
distance based classifier using two consensus segmentation
based prototypes of the brain, in terms of CSF, WM and GM
regions and built from the entire OASIS basis (see Sections
II-B & II). More precisely, one brain prototype correspondsto
unhealthy individuals (with AD or class1) and is obtained by
combining all segmentations related to subjects who have been
diagnosed with very mild to mild AD (from100 subjects) and
the second one (class2), corresponding to healthy subjects, is

5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BEText
For all the above-mentioned pre-treatments, we use the Statistical Parametric
Mapping SPM software (VBM8 toolbox) with its parameters by default.

6We have noticed that this simple segmentation technique provides better
classification results than a SPM software (Statistical Parametric Mapping)
based segmentation technique (the classification accuracyis better by 2%).

5



Fig. 1: Snapshot of a specific subject. (a) One original scan.(b) Atlas-registered image. (c) Brain masked version of Fig. 1
(b). (d) The GM/WM/CSF segmentation image

Fig. 2: Prototype AD (Alzheimer) and NC (Normal Control) according to different criteria of merging (GCE [45], FM [46],
LSQ [35], VOI [43], PRI [41])

built from the set of non-demented subjects contained in the
OASIS database (316 healthy subjects).

As already said (see Section II), these two consensus
segmentation based prototypes can be achieved according to
different criteria (each criterion being, in fact, conceptually
based on the definition of a specific distance between two
segmentation maps). In this work, we will test and compare the
efficiency of different consensus criteria for the two prototypes
used in our classification scheme. The methodology for the
creation of the two consensus segmentation based prototypes
is illustrated in Fig. 3.

D. Two-step classification

The proposed hybrid classification technique named MDC-
KNN (for Minimum Consensus Distance-KNN), combining
the previously estimated prototypes (PrototypeNC and Pro-
totype AD) and the KNN (weighted KNN as proposed in [56])
algorithm consists of three stages:

1) Calculate the two Consensus distances between the
segmentation related to an input MRI image and re-

spectively the Prototype PrototypeNC (D NC) and the
Prototype PrototypeAD (D AD).

2) Choose the classifier KNN or (prototype-based) Minimal
distance (MD). The choice of classifier (KNN or MD)
depends on the difference between DNC and D AD.
If the difference is large (greater than a threshold T
which was set to1.5%7), then, in this case (case1
or 2 of Fig. 4), we choose the MD classifier since in
this case we are certain that the segmentation is very
close to one of the two prototypes and consequently we
can thus rely on this classification procedure. Otherwise,
we apply the weighted KNN classifier (case3 of Fig. 4)
in with the GCE distance (see Section II-C1) between
the segmentation related to an input MRI image and the
3-class segmentations obtained for each image of the
training data set8.

3) Classification.

7We have computed than the distance (in percentage of pixel difference)
between PrototypeNC & Prototype AD is 15%. Based on this, we have set
this threshold T to an order of magnitude (÷10) lower (i.e., T = 1.5%).
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Fig. 5: The methodology of the proposed two-step classification method (see Section III-D)

Let us note that our two-step classification procedure which
combines, in the first step, the MD classifier based on two
consensus segmentation based prototypes followed by the
second step, which uses a classical weighted KNN classifier,
can be also viewed as a single hierarchical KNN classifier.
Indeed the MD classifier based on our two prototypes can be
seen as a simple 1-nearest neighbor in which the prototype
summarizes the set of segmented brains belonging to a same
pathology class (healthy or AD). The schematic diagram for
the proposed two-step classification methodology is outlined
in Fig. 5.

IV. RESULTS AND DISCUSSION

In this section we describe our experiments and report the
results of the proposed method. In order to investigate the
detection performance of the proposed MDC-KNN classifier,
a set of appropriate experiments were conducted. For the
experimental purposes, specific software was developed in
C++. All experiments were executed in an Intel i7-3.3 GHz
PC with 16 GB RAM.

8To examine the performance of the classifier, a leave-one-out cross-
validation approach was taken, and every subject was selected once as the
test data, with the remaining subjects forming the trainingdata.

A. Evaluation criteria

We evaluate the performance of the proposed classifica-
tion method, against recent leading classification methods,
in terms of sensitivity=TP/(TP + FN), specificity=TN/(TN +
FP) and accuracy=(TN + TP)/(TN+TP+FN+FP) where True
Positives (TP) are AD patients correctly identified as AD, True
Negatives (TN) are controls correctly classified as controls,
False Negatives (FN) are AD patients incorrectly identified
as controls and False Positives (FP) are controls incorrectly
identified as AD. Sensitivity is the proportion of AD subjects
correctly classified, and the specificity is the proportion of
correctly classified controls [57], [58] (see Table II).

In addition, we also compare the performance of our
classification method with different consensus criteria for the
creation of the two prototypes (see Section III-C and Figures
3, 2 and 5), namely; GCE, FM, Least Square (LSQ), VoI, PRI
and Majority vote (see Tables III and VI).

The validation was performed using a leave-one-out cross-
validation. In this scheme, a single MRI is classified using the
classifier trained with the remaining observations.

The validation of the whole methodology was performed
for two experimental groups, the first one consisted of a well-
balanced subset of the original OASIS dataset, including 98
right-handed women (aged 65-96 years). More precisely, 49
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Fig. 3: Methodology for the NC and AD prototype creation

Fig. 4: |DNC −DAD| large (case1 or 2) or low (case3)

control subjects and 49 patients diagnosed with AD, The
demographic information about these subjects is summarized
in Table I. The second one was the whole OASIS dataset,
consisted of 416 subjects aged 18 to 96. The subjects are all
right-handed and include both men and women subjects (156
males and 260 females). 100 of the included subjects over
the age of 60 have been clinically diagnosed with very mild

to moderate AD. More precisely, 316 subjects with CDR=0,
70 subjects with CDR=0.5, 28 subjects with CDR=1 and 2
subjects with CDR=2.

At first we will make the classification into two classes (NC
vs.AD). Nevertheless, when we include the subjects with CDR
= 0.5, CDR=1 and CDR=2, we have 4 classes of the disease
(NC, very mild AD, mild AD and moderate AD) that are
not easily separable, to distinguish between these classeswe
divided the task in two steps as shown in Figure 5.

B. Performance measures & comparison with state-of-the-art
methods

1) Classification results into two classes (NC vs. AD):The
actual feature dataset (98 subjects:49 AD and49 NC) has been
used in several works in the literature, hence results obtained
with a variety of classifier models are publicly available
for comparison, for example, [1] applied a K-NN classifier
defined in the LC (Lattice Computing) context, on the 98
female subjects. He obtained80% accuracy,79% specificity
and80% sensitivity, also, authors in [24] studied the feature-
extraction process with VBM analysis and achieved the best
results with 85% accuracy for the rbf-DAB-SVM classifier
(see Table II). The AD detection statistics, accuracy, sensitivity
and specificity, of the proposed MDC-KNN classifier by per-
forming a leave-one-out cross validation9 test, in comparison
with the state-of-the-art models [1], [23], [24], [28], [30] are
summarized in Table II regarding an OASIS subset of98
subjects (see Section III-A).

TABLE II: Classification results comparison between our
method and the morphometric approaches proposed in [1]
and several other approaches (using a leave-one-out cross

validation test and the same dataset)

Classifier type Accuracy Sensitivity Specificity
MDC-KNN (GCE meas.) 0.90 0.90 0.91
rbf-DAB-SVM 0.85 0.78 0.92
PCA+Multi-Kernel SVM 0.84 0.85 0.86
PCA+Linear SVM 0.83 0.83 0.83
LVQ2 0.83 0.74 0.92
LVQ1 0.81 0.72 0.90
MDC (GCE meas.) 0.80 0.81 0.79
LC-KNN 0.80 0.80 0.79
rbf-AB-SVM 0.79 0.78 0.80
PCA+SRAN 0.79 0.79 0.79
MLP-BP 0.78 0.69 0.88
PNN 0.78 0.62 0.94
Linear SVM 0.78 0.72 0.88
Indep-rbf-SVM 0.75 0.56 0.95
Kernel-LICA-DC 0.74 0.96 0.52
Indep-Linear-SVM 0.74 0.51 0.97
KNN (GCE meas.) 0.73 0.71 0.75
Linear-AB-SVM 0.71 0.54 0.88
RBF 0.66 0.65 0.68

9This procedure iteratively leaves out the information on each subject and
trains the model on the remaining subjects for subsequent class assignation
of the person that was not included in the training procedure.
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Fig. 6: Performance comparison between our method and the morphometric approaches proposed in [1] for ADvs. NC

TABLE III: Comparison of the classification results of our
approach with different consensus criteria for the creation of

prototypes (98 subjects)

Criterion Accuracy Sensitivity Specificity
GCE 0.90 0.90 0.91
FM 0.88 0.81 0.95
Least Square 0.88 0.86 0.90
VoI 0.79 0.61 0.97
PRI 0.85 0.85 0.86
Majority Vote 0.89 0.88 0.90

TABLE IV: Confusion matrix of classification accuracy for
classifier MDC-KNN (GCE measure)

2 class problem NC subjects AD subjects
NC subjects 45 4
AD subjects 5 44

In order to evaluate the performance of our classification
pipeline to distinguish Alzheimer’s disease (AD) patientsfrom
normal control subjects, we can use confusion matrix (See
Table IV):

• Altogether, the classifier made 98 predictions (98 subjects
were classified in AD or NC class).

• Out of 98 subjects, our model correctly classified 89
subjects: 44 were correctly classified as AD, and 45 of
them were correctly classified as NC. This result to90%
accuracy.

• Further, 5 out of 98 subjects were classified falsely: 5
subjects, which were actual NC, were not predicted as
NC (False Negative). And 4 subjects, which were actual
AD, were not predicted as AD (False Positive).

By computing additional measures such as Matthews Correla-
tion Coefficient (MCC) and F1 Score from the classification
matrix, we can get additional insights about our approach (See
Table V).

By examining the results of Table II & Fig. 6, it follows
that the proposed classifier MDC-KNN with GCE measure (for
the MD classifier) andK = 3 (this number was empirically
tested) demonstrated superior performance than some conven-
tional classifiers such as RBF, MLP-BP, PNN, Linear SVM
(12% higher accuracy) and some advanced classification mod-
els (Indep-linear-SVM, Indep-rbf-SVM, linear-AB-SVM, rbf-
AB-SVM, Kernel-LICA-DC, LVQ1, LVQ2, rbf-DAB-SVM,
PCA+Linear SVM, PCA+SRAN, PCA+Multi-Kernel SVM).
Let us note that the single KNN classifier (without being
combined with our prototype based MD classifier) with the
GCE distance reaches a classification value of only73%.
Conversely, the single MD classifier (without being combined
with our KNN classifier) with the GCE distance reaches a
classification value of only80% (See Table II). In addition,
we have processed a total of416 MR images from100 AD
and 316 control subjects and noticed that our classification
results is stable over the entire database and thus reliable(see
Table VI).

Let us note that our method (MDC-KNN) achieves the best
result with the GCE measure or criterion and the second best
result with the MajorityVote criterion (see Tables III & VI).
This indicates that the GCE is an interesting distance measure
between segmentations with which useful consensus-based
segmentations can be efficiently exploited in a classification
framework.

2) Classification results into four classes (NC, very mild
AD, mild AD and moderate AD):Previous classification aims
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TABLE V: Computation of basic measures from the confusion matrix of Table IV

Measure Value Derivations
Sensitivity 0.900 TPR = TP / (TP + FN)
Specificity 0.917 SPC = TN / (FP + TN)
Precision 0.918 PPV = TP / (TP + FP)
Accuracy 0.908 ACC = (TP + TN) / (TP + TN + FP + FN)
F1 Score 0.909 F1 = 2TP / (2TP + FP + FN)
Matthews Correlation Coefficient 0.817 TP∗TN−FP∗FN√

((TP+FP )∗(TP+FN)∗(TN+FP )∗(TN+FN))

TABLE VI: Comparison of the classification results of our
approach with different consensus criteria for the creation of

prototypes (for the entire database :416 subjects)

Criterion Accuracy Sensitivity Specificity
GCE 0.90 0.88 0.91
FM 0.89 0.88 0.90
Least Square 0.88 0.86 0.89
VOI 0.81 0.62 0.88
PRI 0.86 0.85 0.87
Majority Vote 0.90 0.87 0.91

to distinguish between two separated classes (ADvs. NC).
Nevertheless, when we include the subjects with CDR = 0.5,
CDR=1 and CDR=2, we have 4 classes of the disease (NC,
very mild AD, mild AD and moderate AD), and it is interesting
to distinguish between these different classes. To this end, we
can divide the task into two stages:

• Step I: in this step, all the subjects are taken and classified
as NC or AD as described in Fig. 5, the AD class includes
patients with very mild to moderate AD, this first step can
be viewed as a diagnosis step.

• Step II: in this step, we use the MDC classifier based
on three new prototypes,i.e., respectively built from
brain segmented images having (in the training base)
a CDR=0.5, CDR=1 and CDR=2 (Fig. 7) to classify
them into the very mild AD, mild AD and moderate AD
classes, this second step allows us to quantify the severity
of the disease.

The classification performance with the second experimental
group achieved86% with the GCE measure for the entire
database (416 subjects) and87% for the subset of database
(98 subjects).

Fig. 7: From the lexicographic older: prototypes using the
GCE distance and built from (a): CDR=0.5 (very mild AD),

(b) CDR=1 (mild AD), (c) CDR=2 (moderate AD)

TABLE VII: Confusion matrix of the classification accuracy
for the classifier MDC-KNN (GCE measure) for a 4-class

classification task (416 subjects)

4 class problem NC
Very mild

AD
Mild
AD

Moderate
AD Accuracy

NC 274 26 16 0 86.7%
Very mild AD 8 58 4 0 82.9%
Mild AD 0 2 24 2 85.7%
Moderate AD 0 0 0 2 100%

C. Computation time

The averaged computation time of every stage is listed in
Table VIII. The preprocessing (registration) costs the most
time, namely 35 minutes for the total dataset (48 Gigabytes
representing 416 subjects). The 3-class segmentation of the
dataset costs about 20 minutes. Afterwards, the creation of
the two prototypes cost approximately 5 minutes. Each ad-
ditional registration, for a subject outside the dataset, takes
approximately 5 sec. Finally, the classification of MDC-KNN
takes 0.7 sec. In practice, let us note that the constructionof
the prototype with the registration and the segmentation ofthe
initial dataset is off-line. Consequently, it costs at most5 sec.
to perform a new registration, 3 sec. for the segmentation step
and about 0.7 sec. to get the computer-aided diagnosis for each
new patient for a non-optimized C++ code under Linux for a
Intel i7 3.3 GHz PC.

TABLE VIII: Averaged computation time

Stage Time
Registration of the dataset 35 min.
Segmentation of the dataset 20 min.
Prototypes construction 5 min.
Additional registration and segmentation 8 sec.
MDC-KNN classification 0.7 sec.

D. Discussion

First, we would like to recall that the use of consensus
segmentation-based prototypes is the core idea of our proposed
detection and classification approach and emphasize why
these prototypes have several appealing characteristics for our
classification task.
Since these two consensus models are built from segmentation
maps, it allows us to reduce the information content of a
brain MR image and to suppress undesired components such
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as noise which may degrade the classification performance.
Second, as a consensus model, it also allows us to suppress
undesired components in the brain image such as the anatomi-
cal variability existing between individuals (of the same group)
which are not relevant for the detection and quantification of
AD (and consequently to improve the classification scheme).

We have compared the performance of our classification
method with different segmentation consensus criteria, for
the creation of the two prototypes namely; GCE, F-Measure,
Least Square (LSQ), VoI, PRI and Majority vote. It turns out
that the GCE seems the most relevant criterion for modeling
a healthy or unhealthy segmented brain consensus, for the
specific application of detection and quantification of AD.
This is not surprising and can be explained by the fact that
the GCE use a (purely) geometrical criterion for building
the consensus segmentation-based prototypes. Conceptually
speaking, the GCE searches the segmentation solution that
minimizes the geometrical difference or overlap (see Equation
2) between its segmented regions (in terms of CSF, WM and
GM) and the segmented regions of the different segmentation
maps to be combined. It is meaningful since recent studies on
AD diagnosis found that the excess of CSF or locally the lack
of GM (relative to the WM region), at certain specific parts
of the brain, is a good bio-marker of AD.
Another explanation may be due to the nature of this GCE
criterion which can take into account the inherent multiscale
nature of any segmentation by measuring the level of refine-
ment existing between two segmentations.

Let us also add that the proposed approach yields higher
classification accuracy compared to the other state-of-the-art
methods. In addition, the proposed method produces small
classification errors with the appealing property to be well
balanced across the predictions, as indicated in the confusion
matrices.

Combining MDC and KNN seems especially interesting
in our classification method maybe because our two-step
procedure can be considered as a hierarchical, multiscale or a
coarse-to-fine KNN classifier in which the MD classifier can
be regarded, at the coarsest scale, as a 1-nearest neighbourin
which each prototype is assumed to summarize (with a well-
suited geometrical criterion, as proposed by GCE) the set of
segmented brains belonging to a same pathology class.

Finally, it is worth mentioning that, in the clinical prac-
tice, the results presented in our paper should be used in
conjunction with other data (Neuropsychological Tests, Early
Diagnosis, etc.) to reach a classification performance thatmay
turn out useful in practice. Indeed, we will be able to see, in
the following section, how mixed the two-class distributions
are (i.e., the two prototypes are closed to each other in term
of GCE similarity distance, see Fig. 8).

E. Visualization of image databases

In order to appreciate all the relevancy of the GCE distance,
used in our classification procedure, it may be interesting to
find a strategy to provide a quick overview of how are dis-
tributed the49 healthy and49 unhealthy brains of our subset of

the OASIS database with our two prototypes according to the
GCE distance. This can be done with the Multi-Dimensional
Scaling (MDS) and the technique described in [49] with, in our
application the GCE distance between pair of segmentations
(instead of the VoI distance as applied in [49]). To this end,
it consists in computing the distance matrix describing the
dissimilarities between each existing pair of segmentations, in
term of GCE distance, and used this distance matrix with a
technique which will attempt to find an embedding, in a (for
example) 2D space, such that pairwise distances between these
segmentations are preserved as much as possible. This embed-
ding method, aiming at preserving the original relationships of
these images (in term of a given distance), is done with the
MDS visualization technique in the least square sense. It is
now used in navigation systems, browsing or image database
in which it may be interesting to arrange the images of the
database according to their descriptive content extractedby a
segmentation process, or otherwise said, based on the spatial
arrangement of the different objects detected or segmentedin
the image (instead of simply their own color or texture) [49].

This 2D MDS visualization map of the MRIs based on the
GCE distance is shown in Fig. 8. The MDS estimates a (pos-
sible) 2D mapping with17% of error (or loss of information if
we consider the MDS technique as a dimensionality reduction
scheme). In spite of this error, we can see two clusters; the
blue brains are related to the healthy brains and are in a cluster
located at the bottom and left of the image and conversely the
red brains, corresponding to unhealthy brains are in a cluster
located at the top and right of the image.

V. CONCLUSION

In this paper, we have presented a novel and reliable
prototype-based classification framework, in structural MRI,
for the early detection and classification of the Alzheimer’s
disease. The proposed framework relies on two prototypes,
based on the recent concept of consensus segmentation, to
define two average models of segmented brain, corresponding
to healthy subjects or unhealthy individuals affected by de-
mentia. These two consensus segmentation-based prototypes
have several appealing characteristics for our classification
task. First, since these two consensus models are built from
segmentation maps, it allows us to reduce the information
content of a brain MR image and to suppress undesired com-
ponents such as noise which may degrade the classification
performance. Second, as a consensus model, it also allows
us to suppress undesired components in the brain image such
as the anatomical variability existing between individuals (of
the same group) which are not relevant for the detection and
quantification of AD. In this study, different consensus criteria
of segmentations have been tested and it turns out that the
Global Consistency Error seems the most relevant criterionfor
modeling a healthy or unhealthy brains consensus which could
be subsequently used for the early detection of AD in structural
MRI. This can be due to the inherent nature of this criterion
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Fig. 8: A MDS visualization map of the considered subset of the OASIS database (49 healthy and49 unhealthy subjects)
based on the GCE distance between (pair of) segmentations according to their similarity. MRIs framed in blue are NC and

MRIs framed in red are AD. the large red and blue frame is respectively the AD and NC prototypes

which can take into account the inherent multiscale nature of
an image segmentation by measuring the level of refinement
existing between two segmentations. Experiments, conducted
on 98 subjects show the validity of the proposed method and
especially its simplicity and high accuracy compared to the
other state-of-the-art AD diagnosis approaches proposed in the
literature. In addition,

• Our approach is less time-consuming compared to the
state of the arts computer-based Volumetric methods, and
is fully automatic (it does not require the intervention of
an expert during the classification/retrieval phase).

• It is extensible to other diseases that can be diagnosed by
brain MRI such as Schizophrenia.

• The method could be extended by combining axial, coro-
nal, and sagittal MRI data for improving the classification
accuracy.

• The method is fast and reliable, so it can be used for
clinical applications.

• As the proposed approach rely on the training phase, so
increasing the number of the data in the training set can
improve the performance of the approach and leads to a
better detection in subjects with/without AD.
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