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Abstract—In this paper, we develop an original and reliable gradually destroys regions of the brain that are respomsibl
detection and classification framework for Alzheimer's Digase for memory, learning, thinking, and behavidr| [1]. Current
(AD) in structural Magnetic Resonance Imaging (MRI). This —agtimates indicate tha.3 million Americans of all ages

work exploits recent advances made in segmentation and mul- fflicted with this ill d thi ber | ted
timedia indexing and classification for Content Based Visup &€ alficted wi IS 1linéss and this number IS expecte

Information Retrieval (CBVIR). More precisely, our strategy !0 increase tol6 million people by 2050, unless a cure is
exploits the concept of consensus segmentation to build tveeg- found. The socio-economic consequences of this increase ar

mentation prototypes (Prototype Normal Control (Prototype_NC)  cumbersome and makes early diagnosis of AD a public health
and Prototype Alzheimer’s Disease (PrototypeAD)) of the brain emergency.

in terms of cerebral Grey Matter (GM), White Matter (WM)

and Cerebro-Spinal Fluid (CSF) regions. A first classificabn is — \agical information from structural Magnetic Resonance
then performed by computing a specific distance between the

three-class segmentation of each MR brain image w.r.t the tw Imaging (SMRI) has long time been the most used neuroimag-

prototypes. Based on a threshold on this computed distancbrain ~ ing modality to detect brain atrophy in AD studies [2]]) [3].
images are then classified using either Minimal Distance (MD In fact, two main families of methods can be distinguished

or K-Nearest Neighbors (KNN) classifier. Our approach has ben  tg extract features from MRI for AD classification which are

evaluated on the baseline data of MR images ¢f8 subjects from ; ;
the Open Access Series of Imaging Studies (OASIS) database,ﬂ:edmorphonl?;rlc metr:cods ﬁ.n(tj. V(t)llfjmemc methodts. Sevgral
which contains a large number of subjects compared to curren studies report the use of sophisticated measurement trasBi

reported studies. The used subsets consist ¢ subjects who have that assess anatomical changes in areas compromised by AD
been diagnosed with very mild to mild AD and49 non-demented such as the Hippocampal Volume (HV), the Lateral Ventricles
individuals. The experimental results show that our clasdication  \olume (LVV), CSF Volume (CSFV)[4]£[6]. These (so-called
of patients with AD versus NC subjects achieves accuracy of yo|ymetric) methods are only based on form, size and/oreshap
00% by performing a Leave-One-Out Cross Validation (LOOCV). derived features extracted from the brain étructures ddde
Results demonstrate the validity of the proposed method and X . T
especia”y its S|mp||c|ty and h|gh accuracy Compared to the SUCh V0|umetI‘IC measurements, I’equn’e the Segmenta“on Of
other state-of-the-art AD diagnosis approaches proposechithe these ROIs from the MR images, most often manually. Fur-
literature. thermore, a priori assumptions about the expectedly &ffect
Index Terms—Alzheimer's disease, classification, consensualbrain structures is needed to select the appropriate ROI [7]
segmentation, Global Consistency Error (GCE), K-Nearest Aside from volumetric approaches, morphometric methods
Neighbors (KNN), Minimal Distance Classifier (MDC), Magneic  have gained great interest among which we can distinguish:
Resonance Image (MRI). Voxel Based Morphometry (VBM)[8] which is a widely used
whole-brain analysis method, which allows an exploratién o
the differences in local concentrations of grey matter and
white matter. Tensor Based Morphometry (TBM) [9] was
proposed to identify local structural changes from the gnats
Alzheimer's disease is an irreversible neurodegeneratiot deformations fields. Object Based Morphometry (OBM)
dementia that occurs most frequently in older adults antl tHa0] was introduced to perform shape analysis of anatomical
structures and recently, Features Based Morphometry (FBM)
The authors are with thévision lab. of the D'e_part(?rpent d’Informatique [11] was proposed as a method for relevant brain features
et de Recherche Opérationnelle (DIRO), Universite de tdah, Fac- . . o .
ulté des Arts et des Sciences, Montréal, H3C 3J7, QC, Gang&email: comparison using a prObab'I'S“C model on local Image feeestu
mignotte@iro.umontreal.ca in scale-spacée [12][13].

|. INTRODUCTION



Voxel based methods work directly on the voxel grid andverage) operation generally yields to an optimal denoised
are computationally very efficient. An advantage of thesmlution (when the noise is uncorrelated). In the consensus
approaches, compared to the ROI-based volumetric methatigory, this average (or consensus or compromise) can be
is the fact that they do not requigepriori assumptions about achieved according to different defined criteria (see $acti
the location, the size or number of ROIs to be analyzel:C).
since they provide voxel wise measures determined in thewith the features estimated, either by volumetric or voxel-
entire brain[[7]. More, there is no evidence that other regiobased methods, on training cases, a classifier can be trained
(except hippocampus and entorhinal cortex) did not provié@d applied to predict the diagnosis of a testing case, whose
any information for AD and NC[[14]. Recent studies on AQeatures are extracted in the same way. Among the most
diagnosis found that the quantity of CSF is a bio-marker @lpular classifiers: Linear Discriminant Analysis (LDA)]1
AD [15]. Indeed, smaller hippocampal volume is associatedeural Network [[17], linear or non-linear Support Vector
with greater CSF amounit][5]. Machines (SVM) [[4], [18]-[20] and KNN[[21].

Nevertheless, these methods are less accurate due to thl\gany of th_e classification studies on the detec'gion of AD

were done with both men and women. However, it has been

limited resolution of the voxel grid and less robust to nois%emonstrated that brains of women are different from men to

mainly because of the inherent inter subject anatomicat Valhe extent that it is possible to discriminate the gendeMRI

ability an_d the effects of a brain pat_hologﬂ [7]. In_deed, eomanalysis. Moreover, it has been shown that VBM is sensitive
pathologies may affect not only a single anatomical stméctu

. ; o to the gender difference$ [22]. For these reasons, we have
or interconnected regions, but specific structures loedliar been very cautious in this study: therefore, as proposein [
away from each other. This kind of patterns are difficult t Y y; ; s prop

i . . . , [23]-[31], we have selected a set@f MRI  women’s
find and analyzg W'th.th(.:" standard morphometrical techisig rain volumes. This subsample from OASIS contains the same
[7]. To cope with this issue, we have developed an autQ-

. . . number of AD patients and controls, therefore is a well class
matic content-based framework for recognition of Alzheiime balanced sampl& [23]. In addition, our study was also vegitia
disease subjects using MRI segmented scans with the con- P : ’ y

cept of consensus seamentation. In our case. the princi (?r the entire database to demonstrate the stability of the
P g ' o) P! r%posed method regardless of the set of data used. It must be
of consensussegmentation allows us to build two reliabl

segmentation-based prototypes, one corresponding tthiea oted that this is a large number of subjects compared with
9 P ypes, P 9 Epe other studies referred above as it has also been medtione

individuals and the second one corresponding to unhealt.rym

subjects (with AD) from a training database of previously In this work we propose an automatic content analysis

segmented brain MR images. First, let us stress us that Bha?sed framework for recognition of AD using MRI scans.

segmentation is a representation of an image into somethin . e ;
9 P N | ge content analysis and classification methodologies ar

that is easier to analyze than the MR image itself. In ad- o . -
. . now more and more used for medical information mining and
dition, these two consensus segmentation-based prowty

Fetrieval [32], [33] with the aim of Computer-Aided Diagries

have also several appealing advantages whose the first g .
is to suppress or remove undesired components in the br¢ D). The proposed method exploits recent advances made

image (to be classified) such as the anatomical variability segmentation and multimedia indexing and classificaiton

2 L . content based visual information retrieval and, more jgedyj
existing between individuals which are not relevant for tht%e concent of Consensus seamentation to define two seamen-
detection and quantification of AD. The second advantage P 9 9

IS
that the segmentation-based prototypes allows us to nake tta%on prototypes (Prototyp8IC and PrototypeAD) of the

into account the noise of the MR imaging modality into thgraln in terms of cerebral GM, WM, and CSF. These two

classification procedure. In addition and finally, the difece prototypes are then used with a Minimal Distance Classifier

between these two prototypes also allows us to localize tH\éDC) and cleverly combined with the KNN algorithm to

regions in the brain that are affected by the AD or to identif';&1Crease the classification accuracy.

ROIs with a specific textural pattern in the segmentatiorctvhi  The rest of the paper is organized as follows: Section 2

could represent an interesting early bio-marker of thigate presents the related work on the consensus of segmentation i

(cf. fig[2). These two segmentation-based prototypes (NC aimgaging, describes the combination model and the consensus
AD), built from a training segmented database can be viewetbdel, according to different criteria (or different megi

and understood as being a mean and “denoised atlas” oflmtween two segmentations), to built two segmentation pro-

healthy or unhealthy subjects (with AD). Indeed, in estiorat

theory, an estimator based on the average (or the weightethttp:/iwww.ehu.es/ccwintco/index.php/GIC-experinatatabases
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totypes PrototypeNC and PrototypeAD. Section 3 presents Let us mention that when the different anatomical classes
the proposed MDC-KNN classifier. Section 4 presents exp@an be easily identified from the spatial clustering result,
imental results, and some comparisons with several sfate-as it is the case of a three-class segmentation of a brain
the-art methods and finally, Section 5 concludes this wotk aMR image (since the CSF, grey and white matter exhibit
outlines its further perspectives. regions with increasing mean value of grey level), the saspl
consensussegmentation model can be based on the local
majority vote criterion. This technique simply consiststfir
in collecting, for each pixel the class labels of the diffdre
segmentation maps of the segmentation ensemble and sgcondl
by assigning to that central pixel, the class label that has
the majority vote. A spatially regularized variant of this
Image segmentation is a frequent pre-processing stepni@thod consists in gathering the class labels contained in a
computer vision whose goal is to simplify and transform th8D window centered on this pixel. Nevertheless, many other
representation of an image with a set of coherent significatdnsensus criteria in the segmentation field exist and which
and spatial regions with similar attributés [34]. This Itevel have also the appealing advantage of not requiring the numbe
vision task, which changes the representation of an image classes and to previously identify the semantic class of
into something that becomes easier to analyze, is often #&ch segmented region. For example, we can mention the
preliminary and crucial step in the development of manyonsensus model proposed(in][35] that averages or merges a se
image-understanding algorithms and computer vision Byste of segmentation maps in the sense of inertia or intra-aluste
In our case, the segmentation of a brain MR image int@riance criterion (or its variant [36], in the weightedrant
three kinds of regions (classes), each one associated witblass inertia sense), in the Probability Rand Index [37]I{PR
specific brain anatomical tissue (CSF, WM and GM) has thense with different optimizers or strategies| [38]-[48] the
merit to efficiently reduce the information content of a braivariation of Information (Vol) [43], [[44], Global Consistey
MR image and to suppress undesired components suchEagor (GCE) [45], F-measuré [46], in the sense of the Support
noise or artifacts which are not relevant for the detectiod aVector Machine (SVM) criterion[[47]ife., in the maximum
classification of AD. margin hyper-plane sense between the classes) or finally in

Recently, the notion afonsensusegmentation has recentlytN® sense of the Maximum A Posteriori (MAP) of the Logit
distribution [48] to name a few.

been proposed in the image processing communitgoisen-
sus segmentation is conceptually the compromise (in termsjt is also worth mentioning that the notion @bnsensus

of level of details, contour accuracy, number of regions,)et segmentation has been also recently exploited in CBVIR [49]
exhibited by each segmentation map (or spatial clustebeg) in order to help a user to browse through a large database in an
longing to a set of segmentations. In some sense;dheensus intuitive and efficient manner. For example, it is also used f
segmentation is the average of all the individual segmiemsit searching a specific subset or class of images in terms af thei
belonging to a (so-called) segmentation ensemble, aswprdsegmentation-based descriptive content and, more phgcise
to a defined criterion. according to the geometrical layout and shapes of the difiter

This concept otonsensuslustering has been first exploitedoPiects detected and segmented within the image (and not
in image processing as an interesting alternative for Séga_\sed on low level co_lor or texture \_/lsua_ll featur_es as it has
menting complex scenes. Indeed, in this case, a possible &§n commonly and widely proposed in this domain and which
reliable segmentation approach consists in combiningn@us 'S limited in usefulness).
or merging) multiple low-cost and rough image segmentation
results of the same scene associated with simpler segrioentat
modef to provide aconsensussolution which is a final B. Consensus segmentation model principle

improved segm_entation map. In fact, this strategy can _beLet us consider that we have at our disposal, a sef of
viewed and easily understood as a (special type of) de@'S@egmentatiom{Sk}kq = {81, 82,...,51,} of size N pixels

problem in which each segmentation (to be merged) is in f%t be averaged (or combined) in order to obtain either a final

ahn0|sy segmgntauorg) SO|lé'[I0n (ﬁr observation). In. esfonat improved segmentation result relatively to each member of
theory, an estimator based on the average operation glner if each segmentation mag. results from the same

i i i ; ; k}k<L
yields to an optimal denoised splutlon (when the noise f age or either to build a prototype if each segmentation is
uncorrelated). In the same way, in the consensus theory,

it iina denoised ati luti 5o t i rBfhted to an anatomical structure affected by a same diseas
interesting enot|st§ t_se?me_ztn ation soiu |onfa s"othurn_ae i In this latter case, which is herein considered, it allowdas
averaget (Itn a staé)s ica ctr)| er:;)n sense) of all the | provide a kind of segmented anatomical atlas that capthees t
segmentations to be combined. segmented anatomy of unhealthy anatomical structure wuftitho

» , . . _ taking into account the inherent anatomical shape vaitbil

by varying the internal parameters of a given segmentatigoritghm (or . b individual hich | f h
seeds for stochastic algorithms) and/or by using diffefeatures for an input eX|st|n_g etween 'n_ !V' E"as whic gre no_t relevant for the
image or simply by using different segmentation algorithms detection and quantification of Alzheimer disease.

II. CONSENSUS OF SEGMENTATIONS IN IMAGING

A. Introduction



Conceptually, most of the consensus criteria used to fuseatuistering (or segmentation) error measure is not symmetri
average a set of segmentations, is based upon the definigma encodes a measure of refinement in one direction only. A
of a distance or metric between two segmentation mapessible and natural way to combine the LRE at each pixel
(measuring the similarity between the two clusterings)isThinto a measure which is symmetric is to consider:
is straightforwardly the case for the Vol [43], GCE[45], PRI L N
[41], F-measure[[46] criterion and this distance can belyeasi _ 1
found for the other criteriag( g, for the majority vote criterion CCRs152) _2N{;LRE(S“S2”“) N ;LRE(S2’S“’”)} ®)
this distance could be simply the sum (for each pixel) of the

proportion of labels that are different to the label asdeda This segmentaporll error, based on the GCE, IS a distance
with the final majority vote). whose values lie in the range, 1]. A value of 0 indicates

Based on this distance, the estimation of the consenéngt the two .segmentation_s are iden_ticgl (perfect matci) an
or prototype of these. segmenta‘gions can be conceptuall? value Of_l |ndk|)ca_1tes maX|mug1 deviation between the two
defined as the segmentation solutiwmhich is at the center of segmentations being compared.
the segmentation ensemb{lé‘k}kq or equivalently as being  2) Variation of Information (Vol): The variation of in-

the segmentatior that minimizes the considered averagérmation (Vol) metric is a recent information theory based
pairwise distance between the consensus segmentsitand Measure for comparing the similarity of two segmentation
all other segmentatios, of the segmentation ensemble. Fortesults. This metric quantifies the information shared leetw
mally, this optimization problem called thmedian partition WO segmentations by, more precisely, measuring the amount

[50]) problem can be expressed as: of information that is lost or gained in changing from one
. segmentation to another [49].
. . 1 .
Sow = arg min { 7 Y Dist(S, i)} (0 VoI(S1,S2) = H(Sy) + H(Ss) —21(S1, ) (4)
" k=1

where S,, represents the set of all possible segmentations.\f)v erefl and! are respectively the entropies of and mutual

size N pixels andZéz1 Dist.(S, Sk) is commonly called the 'nuorﬂg?:gcgeévxeg]l Ssegargzn(t)?tgjstaer:i?] S;' v-\[r?i?:hv?s! Isogitive
consensus or cost function of this energy-based consengug P 9 P '

model for the considered distance or criterion. This optani symmetric and obeyg the trla_ngle _mequallty. It. _takes ae/a_lu
: . : .. _.of 0 when two clusterings are identical and positive otherwise.
tion problem can then be solved either with determinist

gradient procedures, algebraic optimization methodsanya Itis bounded waNnSiV IS the number of pixels), and ilx

programming or either with stochastic search or simulati’ﬁ 52 have at mosfi™ clusters, it is bounded bylog 2

procedures or machine Learning based optimization sche

[38]-[43], [45]-[48], [50]. 3) Probabilistic Rand Index (PRI)The Rand index[[37]
simply computes the proportion of pairs of pixels with com-
patible region (or clustéy label relationships between the two

C. Criteria or distance used in consensus segmentation ﬁeé‘égmentations to be Comparedlﬁf designates the region or

1) Global Consistency Error (GCE)The Global Consis- cluster labels associated to the segmentation nyag pixel

tency Error (GCE) [[45] measures the extent to which orlecationi and if Z is the identity function, the Rand index is

segmentation map can be viewed as a refinement of anotgien by:

segmentation. Segmentations which are related in this arann 1

are considered to be consistent, since they could représentPRands, S2)=m > { Z(I7 =15 anal2=152) +

same image segmented at different scales. i.j 7]

Let S, = {C1,C3,...,C%} and Sy = {C2,C5, ..., C2,} T(IAL andl724172) } (5)
be respectively the first and second segmentationfinand . . . .
R? being respectively the number of clustérsor segmenty A value of1 indicates that the two segmentations are identical
in S, andS,. For a given pixel;, let C* and C? be and a value of indicates that the two segmentations do not

<p> <p> - - -
the cluster that contain that pixel. The local refinemenorerr9réé on any pair of points (e.g., when all the pixels are

(LRE) is then defined at pixel; as: gathered in a si_ngle region in one_segmentgtio_n_ Wherea_s the
. , other segmentation assigns each pixel to an individuabrggi
LRE(S,, S, pi) = |C<m>\c<m>| @) When the number of labels i§; and Sy are much smaller
e |CLps | than the number of pixel&/, a computationally inexpensive

estimator of the RI can be found ih [37]. Since the PRI is a
measure of similarity lying in0, 1], a distance based on the
PRI criterion can bél — PRandS, S2)].

3In fact, two different measures can be defined, one applyimglosters 4) The F Measure:The gIobaI F measure (or harmonic
or class, another applying on regions or segments. For ageinaregion is

a set of connected pixels belonging to the same class andss, @aset of mean of preC|s.|on-recaII measwEII[SZ] prowdes a perfomaa )
pixels possessing similar textural characteristics. score, evaluating the agreement between region boundaries

where \ denotes the set differencing operator aidd the
cardinality of the set of pixel€. As noticed in [[45], this



between two segmentations. This latter measure is, in factABLE I: Demographic information of the subjects in the
deduced from the well-known precision/recall values. QualtWo classification classes. Education codes corresponiéto t
tatively, the precision measure (P) is defined as the fractiéollowing levels of education: 1. less than high school grad
of detections that are true boundaries; this measure is lov#- Nigh school grad., ~3: some college, 4: college grad.,

when there is significant over-segmentation, or when a large 5: beyond college

number of boundary pixels have poor localization. The Recal | [ Very mild to mid AD | Normal Control ]
(R) measure gives the fraction of the true boundaries d&dect [No. of subjects 29 29

[46]. A particular (vision) application can define a relativost Age 78.08 (66-96) 77.77 (65-94)
o related to these two quantities, which controls a harmony | Education 2.63 (1-5) 2.87 (1-5)

. . Socioeconomic status| 2.94 (1-5) 2.88 (1-5)
betweenP and ik [52] (or equivalently focuses attention at a |—=pg (057172) ST )
specific point on the precision-recall curve). The F meamire MMSE 24 (15-30) 28.96 (26-30)
defined as:

PR
Fo(S1,52) = TRt (1l—aP (6) o . .
aR+(1-a) rigidly aligned to the Talairach and Tournoux spatel [54],

The best F measure, for a givem reflects the optimal (b) transformed to a template with &-parameter affine
compromise between how much true signal is required arepistration and merged into Bmm isotropic image[[53],
how much false alarms can be tolerated. Since the F meas{®eskull stripping with the Brain Extraction Tool (BEYand

of similarity lying in [0, 1], a symmetric distance based on theorrected for intensity inhomogeneity [55], and finally (d)
F criterion can bél — (1/2){F,(S1,S2) + Fa(S2, 51)}. segmented intok" = 3 classes corresponding to the three
existing cerebral tissues (CSF, WM and GM). TBiglass
segmentation is obtained by applying firstly) times the K-
means clustering algorithm with different seeds and dffier
number of neighbors of the pixel to be classified and secondly
A. Data description by combining them with a simple majority vote schéme

The data analyzed in this paper was obtained from thein our application, the majority vote is achieved with a
OASIS databade The data set consists of a cross-sectiongpatial window (of size3 x 3 pixels and centered on the
collection of 416 subjects aged 18 to 96 years, including 2p8el s to be classified) that collects the class labels oflitie
subjects aged 18 to 59 years and 198 subjects aged 6Gsdégmentation results obtained by edchmean clustering and
96 years. For the older subjects, 98 subjects NC and 18 finally assigning to that central pixe] the class label that
subjects who were diagnosed with very mild to moderate ABas the majority vote. This strategy ensures both an efficien
The detailed statistics of the data set was described in #gatial regularization of the final segmentation result also
literature [53]. As proposed in[1]. [17], [23]=[31], a s@tof a reliable decision fusion between results obtained byethes
the OASIS databasee., 98 right-handed women (agéd—96  -mean clusterings. In this segmentation, @8F, the white
years) is considered herein and was selected in order ta-evahatterand thegrey matterare represented by a dark, a grey,
ate the detection performance of the proposed classifiereMand a white region respectively, in order to visually expres
precisely, the used subset consists46fsubjects who have the activity level of the blood flow. The preprocessing steps

been diagnosed with very mild to mild AD (clag} and49 are summarized in Fi@l 1 for the T1 image of one subject.
non-demented (clagy. The designation of demented and non-

demented is based on the Clinical Dementia Rate (CDR). The
CDR is a dementia-staging factor that categorizes subfects E Prototype_s_ NC_: and AD _ -
impairment in each of the six domains: memory, orientation, Our classification model is based on a two-step classifi-
judgment and problem solving, function in community affair cation procedure whose the first step relies on a minimum
home and hobbies, and personal care. Absence of demefltfii@nce based classifier using two consensus segmentation
is indicated by a CDR of), very mild, mild and moderate based prototypes of the brain, in terms of CSF, WM and GM
are respectively represented by CDRs0d§, 1 and 2. The regions and built from the entire OASIS basis (see Sections

demographic information of these subjects is summarizedlfBl& [l More precisely, one brain prototype corresportds
Table[]. unhealthy individuals (with AD or clask) and is obtained by

combining all segmentations related to subjects who haga be
diagnosed with very mild to mild AD (from00 subjects) and

the second one (clag3, corresponding to healthy subjects, is
In this work, we used T1-weighted magnetic resonance

images of the brain, that were captured with a T Vision ®https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BE Text

: : : : or all the above-mentioned pre-treatments, we use thest®tak Parametric
1.5 scanner. As described in_[53], all (axial section) M'%\T/Iapping SPM software (VBM8 toolbox) with its parameters tsfailt.

images were: (a) corrected for inter-scan head movement anéye have noticed that this simple segmentation techniqueides better

classification results than a SPM software (Statisticakiatric Mapping)
4http://www.oasis-brains.org based segmentation technique (the classification accisawogtter by 2%).

IIl. PROPOSED CLASSIFICATION MODEL

B. MRI data preprocessing



to Template (BET) segmentation

1. Affine registration 2. Brain masking Greyfwhite/CSF ‘

Fig. 1: Snapshot of a specific subject. (a) One original s@i@nAtlas-registered image. (c) Brain masked version of [Hig
(b). (d) The GM/WM/CSF segmentation image

‘ | GCE | FM | LSQ | VYOI PRI ‘ Maj. Vote
Fig. 2: Prototype AD (Alzheimer) and NC (Normal Control) acding to different criteria of merging (GCE_[45], FNI_[46],
LSQ [35], VOI [43], PRI [41))

NC

AD

built from the set of non-demented subjects contained in the  spectively the Prototype PrototygeC (D_NC) and the
OASIS database3(6 healthy subjects). Prototype PrototypeAD (D_AD).

Choose the classifier KNN or (prototype-based) Minimal
distance (MD). The choice of classifier (KNN or MD)
depends on the difference betweenNIC and D AD.

If the difference is large (greater than a threshold T
which was set tol.5%’), then, in this case (case

or 2 of Fig.[4), we choose the MD classifier since in
this case we are certain that the segmentation is very
close to one of the two prototypes and consequently we

As already said (see Sectidnl Il), these two consensus)
segmentation based prototypes can be achieved according to
different criteria (each criterion being, in fact, conaggty
based on the definition of a specific distance between two
segmentation maps). In this work, we will test and compage th
efficiency of different consensus criteria for the two ptypes
used in our classification scheme. The methodology for the
creation of the two consensus segmentation based prototype

is illustrated in Fig[B. can thus rely on this classification procedure. Otherwise,
we apply the weighted KNN classifier (cas®f Fig.[4)
D. Two-step classification in with the GCE distance (see Section TIC1) between

the segmentation related to an input MRI image and the
3-class segmentations obtained for each image of the
training data sét

3) Classification.

The proposed hybrid classification technique named MDC-
KNN (for Minimum Consensus Distance-KNN), combining
the previously estimated prototypes (Prototyd€ and Pro-
totype AD) and the KNN (weighted KNN as proposed in [56])
algorithm consists of three stages: ; _ , -

We have computed than the distance (in percentage of pifferatice)

1) Calculate .the two Consensys d'StanC?S between H@ﬁmeen PrototypeNC & Prototype AD is 15%. Based on this, we have set
segmentation related to an input MRI image and renis threshold T to an order of magnitude X0) lower (.e, T = 1.5%).
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Prototype NC Prototype AD

MRI Input
I I
Stage (1): Calculate distance
D_NC =Consensus_Distance (fnputMRLPuﬂz)tyyn_}(C)
& -y

| Stage (2): Classification

| D_NC-D_AD|-T Choose the |D_NC-D_AD =T
T classifier e
~ -
" .
¥ \\._ i "

Fig. 5. The methodology of the proposed two-step classifinanethod (see Sectidn I1ID)

Let us note that our two-step classification procedure whi¢h Evaluation criteria

combines, in the first step, the MD classifier based on two\we evaluate the performance of the proposed classifica-
consensus segmentation based prototypes followed by ffa method, against recent leading classification methods
second step, which uses a classical weighted KNN classifigy.terms of sensitivity=TP/(TP + FN), specificity=TN/(TN +
can be also viewed as a single hierarchical KNN C|aSSifi¢:fp) and accuracy=(TN + TP)/(TN+TP+FN+FP) where True
Indeed the MD classifier based on our two prototypes can pgsitives (TP) are AD patients correctly identified as ADy&r
seen as a simple 1-nearest neighbor in which the prototyggatives (TN) are controls correctly classified as costrol
summarizes the set of segmented brains belonging to a safa@&e Negatives (FN) are AD patients incorrectly identified
pathology class (healthy or AD). The schematic diagram f@k controls and False Positives (FP) are controls incdyrect
the proposed two-step classification methodology is cedlinjgentified as AD. Sensitivity is the proportion of AD subject
in Fig.[S. correctly classified, and the specificity is the proportidn o
correctly classified control$ [57],[58] (see Tablk II).

In addition, we also compare the performance of our
) ) ) i classification method with different consensus criteriatfee

In this section we describe our experiments and report tBF‘eation of the two prototypes (see Secfion I-C and Figure
results of the proposed method. In order to investigate t@eﬂ and), namely; GCE, FM, Least Square (LSQ), Vol, PRI
detection performance of the proposed MDC-KNN classifieg,, Majority vote (see Tabl&sliII afdVI).

a set of appropriate experiments were conducted. For therpg yajidation was performed using a leave-one-out cross-
experimental purposes, specific software was developed,Wjigation. In this scheme, a single MRI is classified usimg t
Ct. _A” experiments were executed in an Inteldz GHz ¢ |agsifier trained with the remaining observations.

PC with 16 GB RAM. The validation of the whole methodology was performed
8To examine the performance of the classifier, a leave-on . for two experimental groups, the first one consisted of a-well
validation approach was taken, and every subject was edlamice as the b.alanced subset of the original OASIS dataset, 'nCILfdmg 98
test data, with the remaining subjects forming the trairdaga. right-handed women (aged 65-96 years). More precisely, 49

IV. RESULTS ANDDISCUSSION



| MRI Data (416 subjects] | to moderate AD. More precisely, 316 subjects with CDR=0,
70 subjects with CDR=0.5, 28 subjects with CDR=1 and 2
subjects with CDR=2.

At first we will make the classification into two classes (NC
vs.AD). Nevertheless, when we include the subjects with CDR
= 0.5, CDR=1 and CDR=2, we have 4 classes of the disease
(NC, very mild AD, mild AD and moderate AD) that are
not easily separable, to distinguish between these clagses
divided the task in two steps as shown in Figuke 5.

B. Performance measures & comparison with state-of-the-ar
methods

1) Classification results into two classes (NC vs. ADke
actual feature datasei§ subjects19 AD and49 NC) has been
used in several works in the literature, hence results oéthi
i - with a variety of classifier models are publicly available
Fusion of segmentations in Fusion of segmentations in for comparison, for example/[[1] applied a K-NN classifier

Hesithy mibjmas Sesardiipera. || | sbi f““‘;f' e dis defined in the LC (Lattice Computing) context, on the 98
Ansiiten e Sibsm] .,m;ii':;:-, female subjects. He obtaineéd% accuracy,79% specificity

and80% sensitivity, also, authors in [24] studied the feature-
extraction process with VBM analysis and achieved the best
results with85% accuracy for the rbf-DAB-SVM classifier
(see Tablgll). The AD detection statistics, accuracy, isigitg

and specificity, of the proposed MDC-KNN classifier by per-
forming a leave-one-out cross validatfalest, in comparison
with the state-of-the-art models][1], [23[,_[24], [28], [3are
summarized in Tablélll regarding an OASIS subset96f
subjects (see Sectign 1IA).

Fig. 3: Methodology for the NC and AD prototype creation o _
TABLE II: Classification results comparison between our

method and the morphometric approaches proposed in [1]
Gl S and several other approaches (using a leave-one-out cross
e b validation test and the same dataset)

[ Classifier type | Accuracy | Sensitivity | Specificity |
MDC-KNN (GCE meas.) 0.90 0.90 0.91
rbf-DAB-SVM 0.85 0.78 0.92
PCA+Multi-Kernel SVM 0.84 0.85 0.86
PCA+Linear SVM 0.83 0.83 0.83
vQ2 0.83 0.74 0.92
LVQ1 0.81 0.72 0.90
MDC (GCE meas.) 0.80 0.81 0.79
LC-KNN 0.80 0.80 0.79
rbf-AB-SVM 0.79 0.78 0.80
PCA+SRAN 0.79 0.79 0.79
MLP-BP 0.78 0.69 0.88
BeEtEtype.AD Protorgpe e PNN 0.78 0.62 0.94
i . Linear SVM 0.78 0.72 0.88
Fig. 4: |Dyc — Dap| large (casel or 2) or low (case3) den-THRSVH A e g
Kernel-LICA-DC 0.74 0.96 0.52
Indep-Linear-SVM 0.74 0.51 0.97
control subjects and 49 patients diagnosed with AD, The E’r\:gar(icBl_Es\r?&as') 8:;2 8:& 8:;2
demographic information about these subjects is sumnthrizg§ RBF 0.66 0.65 0.68

in Table[]. The second one was the whole OASIS dataset,
consisted of 416 subjects aged 18 to 96. The subjects are all
right-handed and include both men and women subjects (156¢_ . N . . .

| d 260 females) 100 of the included subiects o This procedure iteratively I_ea_lves out the information onheaubjgect and
males an : | YSfhs the model on the remaining subjects for subsequest @dssignation

the age of 60 have been clinically diagnosed with very milef the person that was not included in the training procedure
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Fig. 6: Performance comparison between our method and tliphometric approaches proposed|[ih [1] for AB. NC

TABLE Ill: Comparison of the classification results of our gy computing additional measures such as Matthews Correla-
approach with different consensus criteria for the creatid {jon Coefficient (MCC) and F1 Score from the classification

prototypes ¢8 subjects) matrix, we can get additional insights about our approaele (S
[ Criterion [ Accuracy | Sensitivity | Specificity | Table[V).
GCE 0.90 0.90 0.01 By examining the results of Tablel Il & Fidl 6, it follows
FM 0.88 0.81 0.95 that the proposed classifier MDC-KNN with GCE measure (for
\'—/gf‘St Square 8-?3 8-2? 8-32 the MD classifier) ands = 3 (this number was empirically
PRI 085 085 086 tested) demonstrated superior performance than someconve
Majority Vote 0.89 0.88 0.90 tional classifiers such as RBF, MLP-BP, PNN, Linear SVM

(12% higher accuracy) and some advanced classification mod-
els (Indep-linear-SVM, Indep-rbf-SVM, linear-AB-SVM, fb
AB-SVM, Kernel-LICA-DC, LVQ1, LVQ2, rbf-DAB-SVM,
PCA+Linear SVM, PCA+SRAN, PCA+Multi-Kernel SVM).

TABLE 1V: Confusion matrix of classification accuracy for
classifier MDC-KNN (GCE measure)

[ 2 class problem | NC subjects | AD subjecis | Let us note that the single KNN classifier (without being
NC subjects 45 4 combined with our prototype based MD classifier) with the
AD subjects 5 44 GCE distance reaches a classification value of org.

Conversely, the single MD classifier (without being combline
with our KNN classifier) with the GCE distance reaches a

In order to evaluate the performance of our classificatigrassification value of onlg0% (See Tabld1l). In addition,

pipeline to distinguish Alzheimer’s disease (AD) patigintsn W€ have processed a total 16 MR images from100 AD

normal control subjects, we can use confusion matrix (Sé@d 316 control subjects and noticed that our classification
Table[TV): results is stable over the entire database and thus relisdde

. - . Table[VI).
* Qlé?giﬁgigi;izzCilr?isglirrr&?ilggsr;_redlcmns (%8 SUbJeCTSLet us note that our method (MD_C—KNN) achieves the best
o Out of 98 subjects, our model correctly classified 8§eSUIt W!th the GC.E measure or grltenon and the second best
subjects: 44 were c,orrectly classified as AD, and 45 S.UI.t W'.th the Majority Vote f:rlten_on (see. Tabl_ds__lll &),
them were correctly classified as NC. This resulfos; his indicates that th_e GCE_ is an !nterestmg distance nreasu
between segmentations with which useful consensus-based

accuracy. . - o e
. Further, 5 out of 98 subjects were classified falsely: gmentations can be efficiently exploited in a classificati
: réamework.

subjects, which were actual NC, were not predicted
NC (False Negative). And 4 subjects, which were actual 2) Classification results into four classes (NC, very mild
AD, were not predicted as AD (False Positive). AD, mild AD and moderate AD)Previous classification aims



TABLE V: Computation of basic measures from the confusioririnaf Table[TV

| Measure | Value | Derivations |
Sensitivity 0.900 TPR=TP /(TP + FN)
Specificity 0.917 SPC = TN/ (FP + TN)
Precision 0.918 PPV =TP /(TP + FP)
Accuracy 0.908 ACC = (TP +TN)/ (TP + TN + FP + FN)
F1 Score 0.909 F1=2TP/ (2TP + FP + FN)
Matthews Correlation Coefficient 0.817 TPTN_FP+«FN

V(TP+FP)«(TP+FN)«(TN+FP)x(TN+FN))

TABLE VI: Comparison of the classification results of our TABLE VII: Confusion matrix of the classification accuracy
approach with different consensus criteria for the creatib  for the classifier MDC-KNN (GCE measure) for a 4-class

prototypes (for the entire databasé16 subjects) classification task (416 subjects)
Criterion Accuracy | Sensitivity | Specificity Very mild | Mild | Moderate

| SCE | 990 | 088 | 001 | 4 class problem | NC AD AD AD Accuracy
FM 0.89 0.88 0.90 NC 274 26 16 0 86.7%
Least Square 0.88 0.86 0.89 Very mild AD 8 58 4 0 82.9%
VOI 0.81 0.62 0.88 Mild AD 0 2 24 2 85.7%
PRI 0.86 0.85 0.87 Moderate AD 0 0 0 2 100%
Majority Vote 0.90 0.87 0.91

C. Computation time

to distinguish between two separated classes (SDNC). The averaged computation time of every stage is listed in

Nevertheless, when we include the subjects with CDR = 0..'|5 bl : : :
_ ~ ) e[VIMl The preprocessing (registration) costs the tmos
CDR=1 and CDR=2, we have 4 classes of the disease (NI e, namely 35 minutes for the total dataset (48 Gigabytes

;/erg_ T'ld ADh rtr)nISNAD a:]hd mog%rate '?DI) and |t_|rs 'rt'rtfreStg]grepresenting 416 subjects). The 3-class segmentationeof th
0 distinguish between these diiferent classes. 10 tNISWBA jaiaqet costs about 20 minutes. Afterwards, the creation of

can divide the task into two stages: _the two prototypes cost approximately 5 minutes. Each ad-
« Step I:in this step, all the subjects are taken and classifiggional registration, for a subject outside the datasskes

as NC or AD as described in Figl. 5, the AD class includeg,proximately 5 sec. Finally, the classification of MDC-KNN
patients with very mild to moderate AD, this first step cagykes 0.7 sec. In practice, let us note that the construction
be viewed as a diagnosis step. . the prototype with the registration and the segmentatichef

- Step Il in this step, we use the MDC classifier basefitia| dataset is off-line. Consequently, it costs at mbstec.
on three new prototypes,e., respectively built from 1o perform a new registration, 3 sec. for the segmentatiep st
brain segmented images having (in the training basghq apout 0.7 sec. to get the computer-aided diagnosis ébr ea

a CDR=0.5, CDR=1 and CDR=2 (Figl 7) to classify,e,; patient for a non-optimized C++ code under Linux for a
them into the very mild AD, mild AD and moderate AD|qte| i7 3.3 GHz PC.

classes, this second step allows us to quantify the severity
of the disease.

- . . TABLE VIII: Averaged computation time
The classification performance with the second experinhenta g P

group achieved6% with the GCE measure for the entire | Stage [ Time |

database4(16 subjects) and7% for the subset of database Registration of the dataset 35 min.

(98 subjects). Segmentation of the dataset 20 min.
Prototypes construction 5 min.
Additional registration and segmentatign 8 sec.
MDC-KNN classification 0.7 sec.

D. Discussion

First, we would like to recall that the use of consensus
segmentation-based prototypes is the core idea of our peapo
detection and classification approach and emphasize why

Fig. 7: From the lexicographic older: prototypes using thdhese prototypes have several appealing characteristicaf

GCE distance and built from (a): CDR=0.5 (very mild AD),Cl."leSifiCation task. . .
(b) CDR=1 (mild AD), (c) CDR=2 (moderate AD) Since these two consensus models are built from segmentatio

maps, it allows us to reduce the information content of a
brain MR image and to suppress undesired components such
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as noise which may degrade the classification performantdge OASIS database with our two prototypes according to the
Second, as a consensus model, it also allows us to suppi@&E distance. This can be done with the Multi-Dimensional
undesired components in the brain image such as the anato®ualing (MDS) and the technique describedin [49] with, in ou
cal variability existing between individuals (of the samteup) application the GCE distance between pair of segmentations
which are not relevant for the detection and quantificatibn @nstead of the Vol distance as applied [in][49]). To this end,
AD (and consequently to improve the classification schema).consists in computing the distance matrix describing the
We have compared the performance of our classificatidiissimilarities between each existing pair of segmentatii
method with different segmentation consensus criteria, fterm of GCE distance, and used this distance matrix with a
the creation of the two prototypes namely; GCE, F-Measuttechnique which will attempt to find an embedding, in a (for
Least Square (LSQ), Vol, PRI and Majority vote. It turns outxample) 2D space, such that pairwise distances betwesa the
that the GCE seems the most relevant criterion for modelisggmentations are preserved as much as possible. This embed
a healthy or unhealthy segmented brain consensus, for thieg method, aiming at preserving the original relatiopstof
specific application of detection and quantification of ADthese images (in term of a given distance), is done with the
This is not surprising and can be explained by the fact thstDS visualization technique in the least square sense. It is
the GCE use a (purely) geometrical criterion for buildingow used in navigation systems, browsing or image database
the consensus segmentation-based prototypes. Condgptual which it may be interesting to arrange the images of the
speaking, the GCE searches the segmentation solution thatabase according to their descriptive content extraoyea
minimizes the geometrical difference or overlap (see Hqoat segmentation process, or otherwise said, based on thalspati
[2) between its segmented regions (in terms of CSF, WM aadangement of the different objects detected or segménted
GM) and the segmented regions of the different segmentatitie image (instead of simply their own color or textuie)l [49]

maps to be combined. It is meaningful since recent studies ONrhis 2D MDS visualization map of the MRIs based on the
AD diagnosis found that the excess of CSF or locally the la CE distance is shown in Fig] 8. The MDS estimates a (pos-

of GM (relative to the WM region), at certain specific part§ible) 2D mapping with 7% of error (or loss of information if

of the brain, is a good bio-marker of AD. . e consider the MDS technique as a dimensionality reduction
Another explanation may be due to the nature of this GG heme). In spite of this error, we can see two clusters; the
criterion which can take into account the inherent mulﬁscablue brains are related to the healthy brains and are in seclus

nature of any segmentation by measuring the level of refiNge e ot the bottom and left of the image and conversely the

ment existing between two segmentations. . . red brains, corresponding to unhealthy brains are in aerust
Let us also add that the proposed approach yields h|gr|1

classification accuracy compared to the other state-ckthe btated at the top and right of the image.
methods. In addition, the proposed method produces small

classification errors with the appealing property to be well

balanced across the predictions, as indicated in the ciomfus V. CONCLUSION

matrices. In this paper, we have presented a novel and reliable
Combining MDC and KNN seems especially interestingrototype-based classification framework, in structurd®IM
in our classification method maybe because our two-stgf} the early detection and classification of the Alzheimer’
procedure can be considered as a hierarchical, multiscae Qjisease. The proposed framework relies on two prototypes,
coarse-to-fine KNN classifier in which the MD classifier capased on the recent concept of consensus segmentation, to
be regarded, at the coarsest scale, as a 1-nearest neighboggfine two average models of segmented brain, corresponding
which each prototype is assumed to summarize (with a welly healthy subjects or unhealthy individuals affected by de
suited geometrical criterion, as proposed by GCE) the setgkntia. These two consensus segmentation-based pragotype
segmented brains belonging to a same pathology class. have several appealing characteristics for our classiicat
Finally, it is worth mentioning that, in the clinical prac-task. First, since these two consensus models are built from
tice, the results presented in our paper should be usedsiymentation maps, it allows us to reduce the information
conjunction with other data (Neuropsychological Testsl\Ea content of a brain MR image and to suppress undesired com-
Diagnosis, etc.) to reach a classification performancertte®t ponents such as noise which may degrade the classification
turn out useful in practice. Indeed, we will be able to see, Berformance. Second, as a consensus model, it also allows
the following section, how mixed the two-class distribu8o s to suppress undesired components in the brain image such
are (.e, the two prototypes are closed to each other in tergy the anatomical variability existing between individugf

of GCE similarity distance, see Figl 8). the same group) which are not relevant for the detection and
o ) quantification of AD. In this study, different consensugaria
E. Visualization of image databases of segmentations have been tested and it turns out that the

In order to appreciate all the relevancy of the GCE distand8|obal Consistency Error seems the most relevant critédon
used in our classification procedure, it may be interestong modeling a healthy or unhealthy brains consensus whictdcoul
find a strategy to provide a quick overview of how are dide subsequently used for the early detection of AD in strattu
tributed the19 healthy andt9 unhealthy brains of our subset ofMRI. This can be due to the inherent nature of this criterion
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Fig. 8: A MDS visualization map of the considered subset ef @ASIS databaselq healthy and49 unhealthy subjects)
based on the GCE distance between (pair of) segmentati@osding to their similarity. MRIs framed in blue are NC and
MRIs framed in red are AD. the large red and blue frame is retspdy the AD and NC prototypes

which can take into account the inherent multiscale natfire o
an image segmentation by measuring the level of refinemem

existing between two segmentations. Experiments, coeduct

on 98 subjects show the validity of the proposed method and
especially its simplicity and high accuracy compared to thé?!

other state-of-the-art AD diagnosis approaches propasttei
literature. In addition,

Authors would like to thank FESP-UDeM (Faculty Of[lo] J.-F. Mangin, D. Riviere, A. Cachia, D. Papadopouliiancs, D. L.

Our approach is less time-consuming compared to thg]
state of the arts computer-based Volumetric methods, and

is fully automatic (it does not require the intervention of

an expert during the classification/retrieval phase). [4]
It is extensible to other diseases that can be diagnosed by

brain MRI such as Schizophrenia.

The method could be extended by combining axial, coro-
nal, and sagittal MRI data for improving the classification(5]

accuracy.

The method is fast and reliable, so it can be used for
clinical applications. 6]
As the proposed approach rely on the training phase, so
increasing the number of the data in the training set can
improve the performance of the approach and leads to [@

better detection in subjects with/without AD.
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